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Abstract. Model-Based Systems Engineering and early simulation
based Validation & Verification are now key enablers for managing the
complexity in the development of modern complex systems like Cyber-
Physical Systems. Models provide a formal account of system require-
ments and design decisions. Model simulation enables both design explo-
ration and design versus requirements correctness assessment. Model
simulation activities rely on Simulation Systems (i.e. systems that exe-
cute the model simulation). System execution environment models play
a key role during these activities. Appropriate models must be devel-
oped for each kind of analysis conducted during Validation & Verifica-
tion. More and more often, complex Systems Engineering is conducted in
Extended Enterprises and the simulation activities are performed using
partial models that must be completed with mock-up models for miss-
ing parts of the system. The development of Simulation Systems is thus
costly and error prone and would benefit from the same Systems Engi-
neering principles that are applied to the product. We propose a method-
ology for a seamless integration of the Simulation Systems development
in the Products Systems Engineering. This method imports the available
elements from the models of the system and its environment, from the
Systems Engineering for Product space to a dedicated Systems Engineer-
ing for Simulation space. The required mock-up models are then defined
in the Systems Engineering for Simulation space. As a result, we target
a better management and reuse of the various environment and mock-up
models in the various simulation activities during the development of the
same product. This proposal is independent both of the actual methods
and tools used to model the system and of the simulation environment.

1 Introduction

The use of MBSE (Model-Based Systems Engineering) and early simulation-
based V&V (Validation & Verification) offers effective means to handle the com-
plexity of real-life industrial development projects. Regularly, such projects need
to combine several engineering fields in the context of EE (Extended Enterprise)
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where many stakeholders are involved such as Cyber Physical Systems (CPS).
In this context, the simulation activities are often performed in an ad-hoc man-
ner depending on the project, the involved partners, etc. To our knowledge and
understanding, there exists no common reference methodology helping the var-
ious engineers involved in the product development in making the best choices
seamlessly and efficiently for the simulation activities. Our work aims at filling
this gap by proposing a methodology that specifically addresses the simulation
and its needs. This paper provides a first draft of this methodology illustrated
through a realistic case study.

This paper first provides insights on approaches that achieve early simulation-
based V&V in the context of MBSE in common industrial settings, in particular
within the MOISE (MOdels and Information Sharing for System engineering in
Extended enterprise) project of the IRT-SE (Institut de Recherche Technologique
Saint Exupéry – Institute of Technology Saint Exupéry), where our work takes
place. One key aspect is that these activities are nowadays mostly conducted in
EEs where many stakeholders target an efficient cooperation while protecting
their know-how (usually named wrongly IP (Intellectual Property) which is a
legal term that may only cover partly the stakeholder purpose). Thus, the various
parts of the systems models are built in a concurrent engineering manner and
simulation activities are conducted on partial models that must be completed
with mock-up models for missing parts of the system. These models must also
be completed with environment models whose content depends on the kind of
validation and verification activities that are conducted relying on simulation.
The building of these Simulation Systems (SS) is thus, in itself, costly and error
prone and would benefit from the same SE (Systems Engineering) principles that
are applied to the product.

Our contribution advocates the use of a rigorous methodology to build SSs
tailored for its specific needs. We introduce such a methodology, by adapting to
SSs development, many principles specific to SE. In this context, a particular
attention is given to the representation of the environment that plays a key role
in the simulation. Particularly, for needs that are specific to simulation activities,
its representation must be carefully handled and shall be included to a certain
degree in the modelling. Our approach is generic and potentially compatible with
various actual system development and simulation technologies.

The rest of this paper is organized as follows: in Sect. 2, we present exist-
ing efforts for simulation-based early V&V in the industry, in particular in the
MOISE project, as well as our running example: the AIDA inspection drone
that will be used throughout the rest of the paper. Section 3 overviews the prin-
ciples of our generic methodology for performing simulation in the context of
MBSE, which is detailed in Sect. 4 with illustrations from the AIDA case study.
Section 5 presents the expected benefits for the use of a rigorous methodology
for SSs development and gives some directions for future work.



2 Context Presentation

2.1 Industrial Concerns

MBSE and early V&V are now key enablers for the development of complex CPSs
in many application domains like transportation [1–3]. Model simulation is an
effective approach for early V&V, allowing design decisions to be assessed earlier
in the product life cycle. The duration and costs of the system development can
thereby be reduced [4–6].

According to [7], simulation-based design is a “process in which simulation is

the primary means of design evaluation and verification”. Given the increasing
complexity of the systems and in order to manage the structural complexity of
the systems simulations, [8] proposes a MBSE [9] method to integrate simulation
activities in the development process of complex systems. This approach seems
all the more relevant in the concurrent design of systems involving multiple engi-
neering domains such as: mechanical, hydraulic, electrical, etc. parts. Depending
on the point of view to be assessed, different simulation activities allow to esti-
mate, and/or to refine the different interactions between components [7,8].

While aiming at time and development costs reductions, [2] focuses on issues
related to the integration, verification, validation and qualification of the sim-
ulation models. To reduce the potential ambiguities between system engineers
and domain experts in charge of simulation model development, [2] adds a new
actor in the process called “Model Architect” that coordinates the various MBSE
activities. This new actor should have a multidisciplinary vision of the product
whose architecture is under design and some knowledge in simulation technolo-
gies used for modeling the various parts of the architecture.

In [2], the authors propose an ontological DSL (Domain Specific Lan-
guage), MIC (Model Identity Card), that covers the needs of various application
domains, including the specification of interfaces and the building of simulation
models. This DSL targets all the actors of the models, unfortunately it does not
integrate a precise account of the behavior of simulation models. To overcome
this, [10,11] use the concept of MoI (Model of Intention), defined as a model
based approach to request and specify model(s) or simulation(s) for a specific
scenario.

The combination of MIC and of MoI proposed by [10,12] allows to fill the gap
existing between the requirements for the simulation performed by the system
architect and the implementation of all the required simulation models, therefore
reducing the problems related to their integration.

The importance of the simulation for early V&V of requirements and design
while protecting IP in EEs is highlighted by the presence of a standard dedi-
cated to the implementation of such SSs - the FMI (Functional Mock-up Inter-
face) standard [13]. The co-simulation part of this standard (FMI 2.0), allows to
implement multi-simulations [14] or heterogeneous simulations [15] (see Fig. 1-a),
while preserving the IP in simulation models [14]. This IP protection only allows
the supplier to visualize the content of its own models and not the one of the
others (see Fig. 1-b).



Fig. 1. Collaborative and private aspects of the FMI 2.0 standard (from [13]).

Furthermore, in order to build distributed simulations, [15] creates a bridge
between FMI and the HLA (High-level architecture) standards [16,17]. In the
same purpose, [18] extends the FMI 2.0 standard and supplies a tool (inde-
pendent of HLA) to implement the simulations on distributed and multi-core
architectures.

However, as far as we know, there is no common reference process offering a
global and structured vision that allows to implement co-simulation platforms
for systems models.

To address this, we advocate that the use of MBSE is meaningful not only for
the development of the products, but also for the development of the SSs used
during the development of the products. The current contribution illustrates how
MBSE can be used for the development of the simulation tools and what are the
expected associated models specific to the simulation.

The proposed method for the development of executable simulation models
is generic with respect to product and SS development Methods and Tools. This
is achieved by clearly separating concerns related to the (i) Systems Engineering
for the Product under development, (ii) Systems Engineering for the Product
Model Simulations, and (iii) simulation execution and results analysis. This sep-
aration can be expressed, for example, in this way: SEPS (Systems Engineering
for Product Space) could rely on the MBSE method CESAM for developing the
product, while SESS (Systems Engineering for Simulation Space) could rely on
the ARCADIA method for developing the SS required for the simulation activi-
ties during the product development. Modelica [19], C, C++, Java languages, for
example, could be used for implemented the various mock-ups, in the simulation
execution space.

The core ideas, of this proposal, are that (i) each model simulation can be
a project in itself, with its own constraints and costs; (ii) MBSE can also be
applied to these simulation projects; and (iii) commonalities and building blocks
can be reused for the different models involved in the development of the same
product. Indeed, the development of a product using MBSE involves many dif-
ferent models that may be assessed using simulation. This results in a family of
related, yet distinct, models that are conjointly developed and assessed as they
are all involved in the development of the same product. Their assessment is
done through various simulations which subsequently may require specific sim-
ulation models and tools. In this particular context, building blocks developed
for the various simulation projects could be reused in the same manner as reuse
occurs in SE.



2.2 The MOISE Project

The approach presented in this paper takes part in the MOISE project within
the IRT-SE in Toulouse (France), with industrial partners, consulting companies,
tools vendors and public research institutes (e.g., ISAE, IRIT, LAAS-CNRS, S/C
ONERA).

MOISE develops a collaborative MBSE in EEs with the aim to both improve
the development activities and reduce their costs. For this, in MOISE we consider
requirement validation and design verification, for embedded systems, to enable
seamless co-engineering between industrial partners and to manage requirements
waterfall with agility and continuity. Furthermore, in MBSE, designers must
ensure that the models that they have built are a correct expression of the
design they had in mind. This is a specific kind of model validation that occurs
each time a formal language is used to express human ideas. This is similar to
requirement validation as the ideas a designer has in mind when he is building a
model are similar to the informal requirements given by the user at the beginning
of a project.

One of the key goals of the project is to reduce V&V costs by using early
model simulation activities. The purpose of our proposal is to ease the devel-
opment of SSs using MBSE and reduce the associated costs by improving reuse
both in the transfer of models from product to simulation space [20] and in
between the SSs built for the various models involved in the development of the
same system.

2.3 The AIDA Inspection Drone Case Study

To illustrate our method, we apply it on a use case targeting an inspection drone
that moves around a plane on the runway before take off (see Fig. 2). Its purpose
is to support the pilot in the mandatory inspection of the aircraft before each
flight. This drone should (i) quicken the pilot inspection task and (ii) improve its
precision, by scrutinizing not-visually-accessible parts of the plane (e.g., the top
of the wings, fuselage, . . . ), in order to detect irregularities, such as forgotten
caps on sensors, ill closed trap doors, or mechanical defects such as thunderclaps
or impacts of hail.

This drone should be manually controlled following predefined paths (drone
flight plans), with enhanced automated safety capacities to avoid hurting ground
staff. For this purpose, the drone is aware of the cartography of the plane and
of the location of the points of interest to be scrutinized. The drone is equipped
with various sensors: vision system, GPS locator, and a radar, for a greater
precision, to ensure a sufficient safe distance with respect to the plane and the
ground staff.

To enable the diagnostic in case of malfunction, the flight data are saved
locally and transferred in real-time to the ground. Moreover, the operator can
watch live images taken by the drone, to make sure that control points do not
present any irregularities, and adapt the drone flight plan if needed.



Fig. 2. External Walk around a plane.

3 The V Cycle and Simulation Activities

3.1 Overview

The main purpose of our work is to ease the simulation-based early V&V activ-
ities in MBSE. Let’s recall the distinction between Validation and Verification:
According to Boehm, Validation targets building the right product (i.e. the prod-
uct that fits the user needs – the implicit requirements that are the source for
writing the product specification) and Verification targets building the product
right (i.e. the product that satisfies its explicit requirements – the product speci-
fication). Thus, if the product is correct (i.e. has been verified), Validation mainly
targets detecting an erroneous translation from the implicit requirements in the
user mind to the explicit requirements – the product specification. This analysis
must involve the user. A first assessment may be conducted without the user in
the loop: checking that the explicit requirements are complete and consistent.
When the development process involves several phases that each have explicit
requirements and expected results, these definitions needs to be adapted to be
applied to each phase: Phase Verification assesses the compliance of the results
with respect to the requirements; and Phase Validation assesses the requirements
(completeness and consistency). When all phases have been conducted, Verifica-
tion is complete whereas final Validation activities are still needed for the user
to accept the product. The IEEE Standard Glossary of Software Engineering
Terminology states that Verification is “The process of evaluating a system or

component to determine whether the products of a given development phase sat-

isfy the conditions imposed at the start of that phase” and that Validation is



“The process of evaluating a system or component during or at the end of the

development process to determine whether it satisfies specified requirements”.
This user part of the validation can be extended to any human activities con-
ducted in a development that require translating the implicit human ideas to
explicit documents. In MBSE, these documents are expressed as models. Thus,
Model Validation assesses that the model is a correct rendering of the ideas
the developer had in mind, whereas Model Verification checks that the resulting
model satisfies the explicit requirements, that are most of the time also expressed
as models resulting from the previous phases. This can even be extended to doc-
uments that have no formal semantics (e.g. natural language, drawing, etc.)
used as requirements. Formal Model Validation assesses that a formal model is a
correct rendering of an informal document, whereas Formal Model Verification
assesses that a formal model satisfies explicit requirements available as formal
models.

One of the oldest and most common life-cycle model for system development
processes is the V-Model. This is a theoretical model that was never applied
as it was defined. It consists of sequential process phases, where each phase
must be completed before the next one begins. The V-Model is rather common
in the manufacturing industry such as aviation, automobile, and many others
where there exists usually three main phases: product, systems and equipments.
A product combines several systems that integrates various equipments. Each
phase consists of sequential process steps defined in the development method
used. For example, ARCADIA experimented in MOISE relies on the Require-
ment, Function, Logical and Physical steps.

On the theoretical side, which has almost never been applied as is, the left
side of the V corresponds to the development of the product and the right side
of the V corresponds to the various V&V activities.

Before the introduction of MBSE, the left hand side of the V-Model roughly
corresponded to the product development with very little efficient V&V activi-
ties conducted. Indeed, only proofreading could be conducted as the results of
each steps where semi-formal graphical or textual documents targeting human
readers. The right hand side of the model covered test-based V&V of the equip-
ments; then equipments integration and test-based V&V of the systems; systems
integration and, in the end, test-based V&V of the product.

Its use could raise problems of diverse natures as most of the efficient V&V
activities were only conducted quite late when the various equipments needed
for a product had been implemented. It often resulted in the late discovery of
Requirement, Functional, Logical or Physical issues during the integration of
the various validated and verified equipments. For minor issues, minor changes
in the requirements, design and implementation may be possible, while staying
efficient and cost effective. However, in some situations, issues discovered during
late V&V activities will require major architecture changes or local patches to
circumvent and prevent the problem. In all cases, this leads to increased costs
and delays in delivery, additional maintenance difficulties, and potentially the
addition of new weaknesses.



Furthermore, architecture exploration suffered from the same issues. Either,
it was conducted early in the development by humans based on document read-
ing. It was usually far from optimal for complex systems. Or, it was conducted
later using tests based on the implemented equipments. But, this led to very high
costs as all the equipments required by all the variants of the architecture had to
be developed and all the variants of the architecture also had to be implemented.

Last, design document proofreading is not well adapted to IP protection in
EE. Indeed, in order to conduct a V&V activity using proofreading, the designer
needs to have access to all documents related to the system he designed including
the ones built in other enterprises.

To prevent this, the introduction of MBSE and early V&V was shown to be of
precious help and is currently being deployed in most manufacturing industries.
MBSE enforces the writing of formal models in each step of each phases instead
of semi-formal documents, and the assessment of these models using simulation-
based testing. These assessments allow the early validation of requirements and
verification of design steps. Furthermore, it allows validating the models written
by the designers to assess that they are a correct rendering of the ideas he had
in mind. The early V&V can take various forms, such as model exploration
and structural analysis. That would allow to check for instance that there is
no isolated communication port and that the direction of communication paths
is unambiguous, thus detecting issues in the architecture that would only be
detected in the integration V&V activities.

The actual interpretation of the V cycle depends on the abstraction level
at which we consider the system. Figure 3 provides the product, system and
equipment views that correspond to the main engineering phases.

At the highest level of abstraction – the one covered by the upper left part
of the V-Model – the customer needs are expressed and coarse models of the
environment of the future product are required to validate the expression of these
needs. An exploratory phase is usually conducted to assess the appropriate use of
new technologies (see Fig. 3, phase 1) with respect to previous similar products.

The exploratory phase must respond to questions like: (i) what kind of mate-
rial should be used for its physical parts: steel, aluminum, carbon, composite
fiber? (ii) what is the worse case of winds the drone will be submitted to? (iii)
can the AIDA drone be protected from radio or EMC interference? To answer
these questions, material models or environment models (atmospheric, radio,
EMC (Electromagnetic compatibility)) should be simulated with more or less
precise description of known and already identified interactions with the system
to be studied.

This phase handles the expression of customer needs. For example, in AIDA
(see Sect. 2.3), the drone shall conduct an inspection around the plane to detect
irregularities.

In this exploratory phase, simulation can be used to illustrate high-level
behaviour, under the form of textual requirements using customer vocabulary, or
sequence, activity, or state diagrams: operational scenarios that will be executed
in front of the user that can accept or not the simulated behaviour. For instance,
the procedure of drone intervention around the plane needs to interact with



the pilot, the meteorological data provider, and eventually the control tower.
These diagrams allow to precisely define the order of interaction with different
stakeholders, and simulation can be used to validate it.

In this exploratory phase, the environment models must have the appropriate
accuracy to assess that models, within this phase, reflects really its intended
semantics and behavior. The environment models, in the simulation, could be
later refined to better capture reality.

The second phase of the V-Model (see Fig. 3, phase 2) is the system phase

that takes into account higher-level requirements stemming from the previous
phase in order to express operational requirements associated with the various
systems to be designed in order to build the final product. This is an essential
part, that represents the core of our work, although our proposal is generic
enough to be applied to the other phases. Models and activities involved in this
phase will be provided in the following sections of this contribution.

The equipment phase (see Fig. 3, phase 3) focuses on the underlying hardware
platform and the associated deployed software. It is developed on the basis of
the requirements produced at the system phase (phase 2). In the context of
simulation, at this stage we target particularly accurate simulations. That could
cover the simulation of a processor whose behaviour is described at the clock
cycle level of accuracy, the simulation of a communication protocol taking into
account the physical layers of the OSI standard, etc.

This last kind of simulation is not addressed in this paper, but our pro-
posal could be easily adapted to handle such constraints, usually involving HIL
(Hardware In the Loop).

3.2 MBSE-RFLP Method

The MBSE approach, used for the AIDA use case, relies on the RFLP (Require-
ment, Functional, Logical, Physical) general methodology that drives many
industrial methods and tools, like the ARCADIA methodology [21] and the
associated CAPELLA toolset. With this toolset, during the development of the

Fig. 3. Global V cycle and focus on system development layer.



system models, it is possible to build several kind of architecture correspond-
ing to each layer (see Fig. 3, phases 2.1 to 2.4). These models, in each layer,
can be assessed through simulation, both to check that models reflect the sys-
tem designer intention (validation) and that models satisfy the requirements
expressed in the previous layer (verification).

The first step of the System phase, Operational Analysis, analyzes the oper-
ational requirements issued from the Product phase and builds corresponding
models that will drive the following steps of the System phase. These models
can be validated using simulation.

To meet the operational requirements expressed in these first models, the next
step is the “System Architecture design” that mostly consists in refining models
from the previous phase. The obtained architecture shall meet the requirements
of the operational layer, which can be assessed through V&V. Newly defined
functions and their communications interfaces (see Fig. 3, phase 2.2) adds new
requirements to be met by the next steps.

When this functional architecture is complete and mature enough, it may
be significant to group similar elements into common and specific functions,
providing logical components (as it is the case with the Allocation functions

from Figs. 8, 9 and 10). This results in an intermediate architecture layer (the
Logical layer in Fig. 3, phase 2.3) situated between the functional layer expressed
above and the physical layer to which these logical functions will be allocated.
This logical layer can ease the deployment and the assignment of components
(more precisely, their inner functions) to the equipments in the physical layer.

Finally, the physical layer specifies the physical architecture of the equipment,
as well as deployment and inter-dependency links. Additional requirements are
added to this layer to specify/constrain component deployment, communication
means and interfaces between them (see Fig. 3, phase 2.4).

The principles of the MBSE method used previously are quite similar to other
approaches like CESAM [22]. Therefore, the MOISE approach can be adapted
to other methods.

4 Proposed Approach

Building the required tools for a specific model simulation activity can be expen-
sive. It is submitted to temporal constraints related to the development process
and associated steps. In a common industrial frame, this kind of simulation
project involves numerous specialists and may require the building of a specific
simulation platform with a significant computing power.

This contribution advocates that it is possible and meaningful: (i) to apply
system engineering principles to Simulation Systems (see Fig. 4), (ii) to handle
the models for simulation as autonomous objects, and (iii) to take into account
separately its support of execution, including the computing power and its spa-
cial distribution, within the various stakeholders in the EE, that participate in
the development of the product whose models must be simulated (see Fig. 6).



Fig. 4. Global View of the methodology, without processing platform allocation.

Fig. 5. Data transfer from ES product space to ES simulation space. (Color figure
online)

4.1 Model-Based Systems Engineering for Simulation

MBSE helps the system engineer in assessing the relevance of the system archi-
tecture and the compliance with the desired system properties. The same results
can be expected from its application to Simulation Systems. Our proposal has
the particularity that both methodologies (e.g., CESAM [22], ARCADIA [21],
. . . ) are independent: the one used for the development of the simulation system
can be different from the one used for the design of the product.

The clear separation between the Systems Engineering for the Product and
the Systems Engineering for the Simulation offers numerous advantages. The
main benefit of our approach is that it offers flexibility and adaptability. Dili-
gent to the (cultural) context of the companies involved, it allows to comply to
the methods and the working habits of the involved people and facilitates the
collaboration of the various actors involved in the development and simulation.



Fig. 6. Content of the simulation physical layer.

4.2 Systems Engineering Product Space

The SEP (Systems Engineering for Product) space is the entry point of our
method. It relies on models to represent the various aspects involved in the sys-
tem design phase of the product. To illustrate our point, we use the MBSE-RFLP
design method, as explained in Subsect. 3.2. The system engineer in charge of
the product plays the role of the System Architect. By acting on the four layers,
he will be able to use simulation, throughout the design cycle to assess that
the obtained models correctly capture his purpose, and are conforming to the
models from the previous phases: operational architecture for the requirements,
functional architecture of the provided services, components in the logical archi-
tecture and allocation of these logical components in the physical architecture.

4.3 Simulator Systems Engineering Space

Each simulation project for each simulation V&V activity in the SEP space
will be developed in the SES (Systems Engineering for Simulation) space. The
system engineer in charge of the simulation project is called the SA (Simulation
Architect). SA has the choice of the most appropriate method of conception. To
illustrate more easily our proposal, we have chosen the same design method as
the one from the SEP: the MBSE-RFLP method. It is also in this space that
the SA specifies the inputs/outputs of simulation models and shares them for
execution on the simulation platform of each stakeholder (see Fig. 6).

4.4 Models Simulation Execution Space

This space is dedicated to the management, integration and execution of exe-
cutable simulation models. These activities can be facilitated by the use of co-
simulation standards like FMI. Due to space limitations, we do not address the
specifics of this space in this contribution.



4.5 Simulation Architect

The SA should have some particular skills, such as: (a) have a wide knowledge
of the various domains being simulated, and (b) be open minded and endowed
with communication skills [2]. Indeed, typically the simulation involves different
actors that are each expert in their field of activity. The SA is the interface
between the System Architect and these experts involved in the implementation
of the simulation models. The SA performs in the SES space and the models
simulation execution space and thus will also communicate with people in charge
of the infrastructure of the simulation, in the various companies. Let us mention,
for example, the people in charge of the implementation of computers and OS, of
the security of the internal and external networks, of the management of physical
access rights to the hardware and software.

4.6 Simulation: From Its Request to Its Execution

The description of the process proposal is generic, regardless of the system design
method used, and of the selected layer in the SEP space: Operational (OP),
Functional (Fun), Logical (Logic) or Physical (Physic) as illustrated in Fig. 4:
Product Space.

The starting point is the System Architect needs to assess properties of the
product’s architecture. Therefore, he transmits all the information needed to the
SES space. Figure 5 illustrates the information flow between the functional layer
of the product and the operational layer of the SES space.

Fig. 7. Evolution between Product Space & Simulation Space.

Our approach is illustrated using the AIDA drone use case introduced in
Sect. 2.3. With respect to Fig. 7-a, the drone is the System of Interest whose
architecture is currently being designed and must be assessed using simulation.
The System Architect is currently assessing the behavior of the “Move” function
(see Fig. 8, Product Model) present in the System of Interest at the “Func” layer
of the SEP space (see “Func” layer in Figs. 4 and 5). The“Move” function shall
control correctly the position and the speed of the drone.



To perform a simulation, the System Architect provides some information to
the SA:

– the system architecture model. With respect to our case study, it includes
the “Move” function and all the directly related functions (“Compute Actual
Position and Speed”, “Inertial Central”, “Compute Next Position and Speed”,
“Receiver GPS”)

– test scenarios models describing the interactions between the “System Engi-
neer” actor and the System of Interest during the simulation

– requirements for traceability

– a prescriptive semantic model of the function to be simulated. In our case, this
corresponds to a model of the execution semantics of the “Move” function,
as an UML activity or state diagram, or as a Modelica or Simulink model, or
even as software code, etc.

– environment models requirements. In our case (see Fig. 8-Product Model), the
System Engineer asks to include in the simulation, the “Provide Signal from
GPS Environment” and “Create Lift force from Atmosphere Environment”
models.

The System Architect transfers all these information to the SES space, as one
can see in Figs. 4 and 5).

The SA handles these data as requirements, and places them in the dedicated
operational layer for simulation (see Fig. 5).

From these elements, he begins to build the simulation system functional
architecture whose purpose is the simulation of the “Move” function (see Fig. 5:
OP → Func). This layer imports functions from the “Product Model”, provides
functions to describe environments and the scenario for simulation.

The SA models the internal environment (turquoise blue) as a family of func-
tions, currently under development, directly or indirectly connected to the func-
tion of interest. In this “Internal Environment”, the output and input of func-
tions, directly connected to function of interest, describes the expected behaviour
of the function of interest and are thus considered as correct by construction.
For the AIDA use case, functions placed in “Internal Environment” are “Inertial
Central”, Compute Actual Position & Speed”.

For instance, the “Compute Next Position & Speed” function is not part of
the “Internal environment” because, this function has already been designed and
the associated validated and verified models are already available.

The external environment model describes the environment of the System of
Interest at an appropriate level of detail to ensure the expected quality of the
analysis. These models can be reused, with eventual refinements, from previous
simulation (see Fig. 5).

In the SEP space, the GPS satellite sends signals to the GPS receiver. How-
ever, for simulation purposes, we do not need to provide details of the relations
between GPS signal and the GPS receiver. Thus, in our example, the path “Pro-
vide signal” and “Receiver GPS” from SEP are modeled in SES space by the
simpler “Position & Speed” function of the “GPS Environment”.



The System of Interest of the simulation is the “Move” function which is
identified in dotted red line in Fig. 8. All the other simulated functions are drawn
with full red or green line.

Fig. 8. From product SE Space to Simulator SE. (Color figure online)

When the successive refinements of the functions reach a precise enough
description in functional layer for the assessment under way, these functions (see
Fig. 9) are assigned to the components of the logical layer (see Fig. 10).

However, before actually assigning them to a logical layer, the refinement of
Fig. 9 can be interpreted in two ways: (i) It may be a refinement provided by the
system architect. In this case, the SA must rely on this refinement instead of the
container “Move” function. If needed, the System Architect must provide the
Prescriptive Semantic Model for the refined function (the intended behaviour),
(ii) It may also be a Model of Intention represented by the functions: “Regulation
Pos&Speed”, “Compute Motor Speed”, “Regulation ith Motor Speed” and “Cre-
ate Rotation ith Motor”. The SA keeps the “Move” function unchanged, retrieves
the Prescriptive Semantic Model from the System Architect, and forwards it to
the experts in the Simulation Execution space.

In our case study, we consider that it is a simple refinement. The logical
layer groups related functions as “logical components”. The relation used for
the grouping depends on the purpose of the model designer. For example, in

Fig. 9. Detail of “Move” function, in simulation SE Space. Env Functions in Turquoise
Blue. (Color figure online)



Fig. 10. Allocation of functions to logical components. Internal&External Env in
Turquoise Blue. (Color figure online)

the SES, the notion of component is preserved, to which is added the notion of
business domain (mechanical, electrical, etc.). The component becomes a logical
and specialized container for a particular business domain.

In the Fig. 10, we can see functions grouped in logical components from our
example: Functions “Inertial Central” and “Compute Actual Position & Speed”
are grouped in the logical component “LC3.4 Compute Position & Speed”,
“Compute Next Position & Speed” in “LC2.1 Fly Plan Exec(ution)” for example.

The physical layer (see Fig. 6) allows expressing the EEs elements: the entities
(companies), the physical execution supports (Execution Unit, down to possibly,
Processors and associated Threads), the communication means (Networks), and
the simulation models. In this layer, the SA will deploy the inner functions of
Logical Components using, for example, FMU (Functional Mock-up Unit) on
the execution platform. These FMU are placed in companies, on their simula-
tion platforms. As evoked in the state of the art, FMUs have a standardized
communication interface, and the model comes in the form of an executable
binary.

At this point, the SA engineer has taken into account the model from the
space of SE, set up the necessary environments of simulation, refined the func-
tions, created Logical Components, defined the hardware structure of simulation
and assigned inner functions of Logical Components to Physical Components
FMU-type on Execution Units, located in companies (see Fig. 11 for the AIDA
use case simulation of the “Move” function.). Red lines correspond to Commu-
nication Links between Execution Units of different Extended Enterprises. The
Global Master algorithm manages exchange data between Local Master, placed
on Execution Units of each Enterprise. The Local Master drives the execution
of its attached FMU.

It remains for the SA to transform scenarios of the requested tests, as sim-
ulation scenarios that will drive the execution. The purpose is to integrate the
environments of simulation, to specify the order of execution, in order to provide



Fig. 11. Allocation of inner functions of LComponents to FMU, in Physical Layer.

the necessary data for the “Move” functions of the product model (see Fig. 4).
For instance, a requirement for the environment could be: “a wind of Northwest
sector and speed of 5 knots”, or “a fog with visibility of 20 m”.

This diversity of approaches leaves to the experts the choice of the most
appropriate model, still respecting the inputs/outputs of the FMI interface.

Besides the aforementioned files, he will forward to each company involved
in the co-simulation, the data regarding the configuration of the appropriate
algorithm (global/local master) that are provided in the physical layer and the
simulation scenario. These data provide useful information to enable compa-
nies to schedule their own simulations. These local algorithms executed in each
company must allow to send and receive all the intermediate data of the sim-
ulation toward the algorithm controlling the simulation from a global point of
view (global master). At the end, the SA distributes the appropriate resulting
simulation data towards the concerned companies.

5 Conclusion and Future Work

This contribution proposes an approach to improve the integration of early sim-
ulation in the model based systems engineering development life-cycle in the
context of extended enterprises. The proposed approach is generic, thus inde-
pendent of any particular system development methods or tools. We illustrate
and discuss our approach using the AIDA drone case-study for plane inspection.

The major benefit of this approach is to put the simulation at the core of
the development process, by carefully defining its own development steps and
positioning it against the overall product development. Moreover, our approach
contributes to a better organization of the development, by making explicit
links between simulation models and other models built during development.



Also, there is a significant reuse potential within the models dedicated to the
simulation architecture. As a result the V&V activities can become more efficient
and explore a large spectrum of situations for the same cost.

The benefits and potential improvements in the current development process
introduced by our proposal come in different forms: with respect to the organi-
zation of the work, to architecture exploration and simulation of the product, as
well as in terms of re-use of the simulation architecture models.

The major interest of this approach is to ensure the independence between
various categories of models: models issued from the system engineering devel-
opment, models issued from the SE of the simulation, and models created for the
simulation execution itself. Additionally, information on the traceability between
these models is explicitly stored. Our proposal does not enforce any particular
methods or tools for system development. By defining adequate model transfor-
mations between the various modeling tools, the stakeholders can use the SE
tools and methods that best fit their needs. The same analysis stands for the
company responsible for the design and the integration of the simulation. This
approach also allows to clearly separate the responsibilities between the design
of the product and the design of the simulations in a “don’t be both judge and

jury” spirit (independence between specification, implementation and verifica-
tion usually required by certification bodies).

Another advantage of our proposal is to be able to successively reuse (partial)
models and results of the previous simulations for similar systems. That would be
the case for instance for models of functions, components, hardware equipment,
or simulation architecture. Similarly, it is possible to reuse or refine executable
mock-ups or FMU. This approach facilitates the set up of exploratory simulations
for architectures, and allows to conduct partial simulations of the product that
may be later refined.

The clear separation between the product and simulation spaces will provide
a high flexibility in the construction of the simulation platform: knowing part-
ners interested in the design, it is possible to model and then create gradually,
the simulation platform, inside and between partners, in accordance with the
available budget.

Environment models are key elements for simulation. We intend to explore
and to specify attributes needed to give a precise account of their nature.
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