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Abstract. In this paper we propose a novel Deep Reinforcement Learn-
ing (DRL) algorithm that uses the concept of “action-dependent state
features”, and exploits it to approximate the Q-values locally, employing
a deep neural network with parallel Long Short Term Memory (LSTM)
components, each one responsible for computing an action-related Q-
value. As such, all computations occur simultaneously, and there is no
need to employ “target” networks and experience replay, which are tech-
niques regularly used in the DRL literature. Moreover, our algorithm
does not require previous training experiences, but trains itself online
during game play. We tested our approach in the Settlers Of Catan
multi-player strategic board game. Our results confirm the effectiveness
of our approach, since it outperforms several competitors, including the
state-of-the-art jSettler heuristic algorithm devised for this particular
domain.

Keywords: Deep Reinforcement Learning · Strategic board games

1 Introduction

Deep Reinforcement Learning (or DRL) is widely used in different fields nowa-
days, such as robotics and natural language processing [23]. Games, in particular, 
are a very popular testbed for testing DRL algorithms. Methods like Deep Q-
Networks were found to be especially successful for video games, where one can 
learn using video frames and the instant reward.

Research on RL in strategic board games is particularly interesting, because 
their complexity can be compared to real-life tasks and their testbed allows 
comparison of many different players as well as AI techniques. The most known 
example of Deep RL use in this domain is perhaps AlphaGo [24], but other 
attempts have been made as well in games like chess and backgammon [7,15].

Now, the popular board game “Settlers Of Catan” (SoC), has recently 
been used as a framework for machine learning and sequential decision making
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algorithms [4,28]. Also, it has been used in the field of natural language under-
standing (parsing discourse used during multi-agent negotiations) [1], but such
work has not dealt with strategic decision making.

In this paper we present a novel algorithm and a novel deep network archi-
tecture to approximate the Q-function in strategic board game environments.
Our algorithm does not directly approximate the whole Q-function, like stan-
dard DRL approaches, but evaluates Q-values “locally”: in our case, this means
that the Q-value for each possible action is computed separately, as if it were
the only possible next action. Standard techniques seen in DRL literature so far,
like experience replay and target networks, are not used. Instead, we take advan-
tage of the recurrency of the network, as well as the locality of our algorithm,
to achieve stable good performance. Our generic Deep Recurrent Reinforcement
Learning (DRRL) algorithm was adapted and tested in the SoC domain. Our
results show that it outperforms Monte-Carlo-Tree-Search (MCTS) agents, as
well as the state-of-the-art algorithm for this domain [28]. In addition, its perfor-
mance gets close to that of another DRL agent found in the literature [4], though
it does not—in contrast to that agent—use network pre-training for learning: as
we detail later in the paper, our algorithm trains itself “on-line” while playing
a game, using fewer than one hundred (100) learning experiences, as opposed
to hundreds of thousands used by the DRL agent in [4]. Moreover, when we
allowed training our network over a series of games, using ∼2, 000 learning expe-
riences, our method’s performance improves and matches that of the DRL agent
in question.

2 Background and Related Work

In this section we provide the necessary background for our work, and a brief
review of related literature.

2.1 Deep Reinforcement Learning

The main goal of DRL is to approximate an RL component, such as the Q-
function, the value function or the policy. This function approximation is done
by generalizing from samples.

The standard framework for RL problems is provided by Markov Decision
Processes (MDPs). An MDP is a tuple of the form (S,As, P

a
ss′ , γ, Ra

ss′) where
S is a set of the possible states that represent the dynamic environment, A is
the set of possible actions available in state s, P a

ss′ is the probability to transit
from state s ∈ S to state s′ ∈ S by taking action a ∈ As, γ ∈ [0, 1] is a discount
factor and Ra

ss′ is the reward function that specifies the immediate reward for
transitioning from state s ∈ S to state s′ ∈ S by taking action a ∈ As.

To measure the value (i.e. performance) of a state-to-action mapping, the
fundamental Bellman Optimality Equations [3] are usually used. If we consider
a policy π(b) as the mapping of beliefs to actions, or else the probability of taking
action a ∈ As, we describe the expected value of the optimal policy:



V ∗(s) = max
a

[

R(s, a) + γ
∑

s′

P (s′|s, a)V ∗(s′)
]

(1)

An optimal policy is then derived as π(s) = argmaxQ∗(s, a), where

Q∗(s, a) = R(s, a) + γ max
a′

Q∗(s′, a′)

With the optimal Q-function known, the optimal policy can be easily found, by
choosing the action a that maximizes Q∗(s, a) for state s. When the state-action
spaces are very large and continuous, the need for function approximation arises
[26], in order to compute the underlying functional form of the Q-function, from
a finite set of state-action pairs in an environment. In recent years, using deep
neural architectures for function approximation became possible.

DRL Algorithms. Recent algorithms combat problems that were inherent
in DRL (such as instability and inefficiency during learning). The first such
algorithm, which was also able to be highly effective in a wide range of prob-
lems without using problem-specific knowledge or fine tunning, was the Deep
Q-Network algorithm (DQN) [17].

DQN, implements Q-learning in a deep Convolutional Neural Network (CNN)
and manages to master a range of Atari games with only raw pixels and score as
input. For stability and better convergence, DQN also uses “experience replay”,
by storing state transitions. Furthermore the target Q-values are computed in a
separate identical target Q network updated in a predefined number of steps.

Many extensions and improvements have been proposed in the literature (e.g
[2,9,19]). One of the most significant contributions is AlphaGo [24], the first Go
agent to have actually won a human professional player. Alpha Go combines
Monte Carlo Tree Search (MCTS) for position evaluation and CNNs for move
selection. Research has also focused lately in Deep Reinforcement Learning in
continuous action spaces. In this case the DRL problem is approached with policy
gradient methods rather than Q-learning [16].

Neural Network Types and Architectures. The most known deep archi-
tectures are Deep Feed Forward (DFF), Convolutional (CNN), and Recurrent
Neural Networks (RNN). One RNN type that is especially effective in practical
applications is Long Short Term Memory (LSTM) [11]. LSTMs make it possi-
ble for current information to be processed by keeping in mind previous states’
information, since they actually have internal recurrence, more parameters than
normal RNNs, and a system of gating units that controls the information flow.

DRL has been successful in working with RNNs and especially LSTMs [18],
because of their good performance in sequential data, or data with temporal
relationships, and especially for their capability of avoiding the problem of van-
ishing gradients. Recent work in RNNs [10] also, showed that recurrency in deep
networks provides good belief estimates in Partially Observable MDPs.



2.2 Action-Dependent Features and Q-Decomposition

The concept of “action-dependent state features” was introduced in [25], and
was later generalized the idea of Q-function decomposition by [22] (and, later,
others—see, e.g., [14]). In [25] the RL process is partitioned in multiple “virtual”
sub-agents, and rewards realized by each sub-agent are independent given only
the local action of each sub-agent.

In more detail, assume a factored representation of the state space, which
entails a feature vector (that is, a vector of state variables) representing the state
s. In general, when at a state one needs to select the appropriate action, execute
it, and then further update the Q-function values given real-world reward gained
by this action selection, and our estimates on the long-term effects of the action.
Now, if we assume that the feature vector contains action-dependent features,
and each specific instantiation of this vector (“feature value”) is strongly related
to an action ai, then the long term reward for choosing action ai depends only on
the feature value related to ai [25]. Since there is only one feature value related
to each ai, an agent can realize rewards independently, by performing only a
specific action evaluated locally (i.e., given the current state).

To elaborate further, consider a possible action ai ∈ A, let I denote |A|, and
let e(s, ai) be a fixed function that takes ai and s as input and outputs a specific
instantiation of the feature vector (i.e., its “feature value”). This essentially
relates the ai action to the specific values of the state variables.1 Intuitively, this
means that the effect of using an action at a particular state is that the feature
vector takes a specific value (e.g., because specific state variables take on specific
values). The feature values can then be associated with the long-term effects
of employing ai at s via a Q-function over action-feature values pairs. That is,
Q(〈e(s, a1), ..., e(s, aI〉), ai) denotes the long-term value of ai when s gives rise to
(or, to use the language of [25], generalizes to) the vector 〈e(s, a1), ..., e(s, aI)〉 via
a generalization function f . Now, since the feature values are action-dependent,
we can assume that the expected value of employing ai at s depends only on the
feature value related to ai: for a specific f , the value Q(f(s), ai) entirely depends
on e(s, ai). That is:

Q
(

〈e(s, a1), ..., e(s, aI)〉, ai
)

= Q
(

〈e(s′, a1), ..., e(s′, aI)〉, ai
)

(2)

whenever e(s, ai) = e(s′, ai). In other words, Q(f(s), ai) is entirely independent
of (s, aj) for j �= i.

In our work we apply this idea in deep networks, considering that the asso-
ciation between each possible action and the feature values (networks’ input) is
based on the networks weights, which are different for each evaluation function.

2.3 The Settlers of Catan (SoC) Domain

The Settlers Of Catan (SoC) is a multi-player board game, where players attempt
to build establishments while trading with other players to acquire the needed

1 We remark that no factored state representation was assumed in [25]; rather, each
state was linked to a single action-dependent feature (with its set of values).



resources in order to do so. The actual board of the game is an island representa-
tion, composed of hexagonal tiles (hexes), each one representing a different land
type and resource (Clay, Wool, Wheat, Ore and Sheep). The players establish-
ments can be settlements, cities and roads. Especially roads are used in order
for the players to connect their holdings.

In order to be able to build, a player must spend an amount of resources. The
available resources are Clay, Wool, Wheat, Ore and Sheep and are represented
by resource cards. In each turn, depending on the dice roll, it is decided which
hexes produce resources, thus the player with a settlement (city) in this hex
gains one (two) resource card of the corresponding resource type. To provide an
example, if a number corresponding to a clay hex is rolled, the player who owns
a city and a settlement adjacent to this hex, will get three clay resource cards.

There are also five kinds of development cards (i.e. knight, victory point,
monopoly, road building and year of plenty). When a development card is played,
it has a positive outcome for the player. For example, the “road building” card
allows the player to build two roads with no cost.

Another way for a player to gain resources is by trading with other players or
the game bank. Thus in each turn the player rolls the dice and all players gain
resources based on their establishments. Then it is up to the player if she wants
to propose a trade, if she is in need of some particular resources. Afterwards she
can decide whether she wants to build a settlement, road or city, buy or play a
development card. When a trade is offered, the other players can accept, reject
the offer or make a new counter-offer.

Each time a player expands its territory, she gains victory points. A settle-
ment (resp. city) awards the player 1 (resp. 2) victory point. Furthermore, the
player with longest uninterrupted road is awarded 2 victory points. The game
ends when a player gets 10 victory points (at least).

Agents for SoC. The Java Settlers game as well as two jSettler agents included
in it, was originally created in [28]. The jSettlers use business negotiation strate-
gies for evaluating offers and trading during a negotiation. For other decision
making in the game, [28] implemented two separate algorithms for computing the
building speed (each corresponds to an agent respectively). The “fast” strategy
takes into account the immediate reward, and the “smart” one evaluates actions
beyond that. Both switch between three different strategies (road-building, city-
building and monopolizing) for deciding their build plan. Then, [8] altered the
original jSettler by improving aspects regarding initial placement of builds, favor-
ing specific types of build plans and the purchase of development cards. In [21],
model trees and linear regression were used for Q-function approximation.

SoC has also been a popular testbed for MCTS methods. Several implemen-
tations have been put forward [20,27] but without being tested according to the
complete game rule set, or without being able to make trade offers. Three differ-
ent MCTS agents capable of trading, while playing under the full set of rules are
introduced in [12]. Specifically, one uses the known bandit family method UCT,
the second agent is an extension of UCT using Bayesian inference (BUCT), and



the third employs the VPI RL method [5]. All these agents also use parts of the
original jSettler, for tasks not supported by the MCTS (e.g. playing develop-
ment cards). Although the MCTS agents could not outperform the jSettler, the
VPI one appeared to be competitive. In [6], an extension of UCT incorporat-
ing knowledge mining from a corpus of human game-play was proposed. It had
promising results, but was not tested against the jSettler agent.

According to [13], the only approaches so far capable of outperforming the
jSettler, are specific heuristic improvements in agent negotiation strategies, and
also, interestingly, a DRL approach [4]. That agent trains and tests a fully-
connected neural network using DQN against several opponents, focusing on
mapping game instances to dialogue actions. The DRL agents trained playing
against jSettlers and supervised agents, both outperformed the jSettler. In con-
trast to [4], our approach does not require a long sequence of training experiences
ranging over a series of games, but actually learns to play effectively within a
single SoC game instance, in true “on-line” RL style. As such, learning occurs
within a realistically small number of rounds.

3 Our Approach

In this section we explain the algorithm and architecture of the novel agent
we designed for decision making in strategic board games. This agent observes
the environment (i.e. the game state), and returns an appropriate action, one
with maximal Q-value. To do this, we built a deep structure. Figure 1 provides
a graphical overview of our approach.

(a) (b)

Fig. 1. (a) A top-level view of the DRRL agent algorithm, with the state as input and
the preferable action as output. (b) The network gets St as input at time t and outputs
all the Qis. Then the action with the maximum Qi for this state is returned as output
of the algorithm and the maximum Qi is used in next network iteration.

We decided to exploit the advantages of recurrent networks and specifically
LSTMs, along with the concept of Q-decomposition. This is novel for DRL:



in this way, our network does not approximate the Q-function itself, but the
different local Q-values. Considering that the neural network architecture we
have implemented uses recurrency, we can employ the Bellman Q-value function
as if dealing with an MDP problem [10].

3.1 Local Q-Function Approximation

In order to approximate the Q-function, we will use the Bellman equation as
well as the concept of Q-decomposition. We define st = 〈sj

t 〉 as a factored state
at time t, with st

j being one of N variables (state features) that takes a value

in its domain. Then, ai
t as the action i = {1, 2, ...I} selected at t, where ai ∈

{a1, a2, ..., aI} ∈ A (and I = |A|). S includes all possible states, and A all
possible actions. We also consider a reward function r(st, a

i
t) which denotes the

returned reward when selecting action ai
t in state st at time step t. The real Q-

function can be approximated by some Q̂ at time t, whose form can be expressed
recursively, in terms of the Q̂ of the next state, as follows:

Q̂(st, a
i
t; θ) = r(st, a

i
t) + γ max

a
Q̂(st+1, a; θ) (3)

where θ are some network weight parameters.
Following the concept of Q-decomposition presented in Sect. 2, we assume

that the Q function can be decomposed into i ∈ [1, I] partitions, where I = |A|.
In this way we can compute the short-term effect of every action ai

t based on
the current environment state, i.e., a local Q-value which is action dependent.
Since we try to approximate these Q-values, we will also associate a different set
of weights for each one of them, denoted as θi, such that:

Qi(st, a
i
t; θ

i) =
[

φ1(st) φ2(st) · · · φN (st)
]











θi
1

θi
2
...

θi
N











=

N
∑

j=1

φj(st) · θi
j (4)

where Qi is the Q-value estimated for action i at timestep t, and the φj(st) basis
functions are of the form:

φj(st) = (1 − σ(st)) · φj(st−1) + σ(st) · tanh(st) (5)

where σ is the sigmoid function and tanh the hyperbolic tangent function, and
each φj is actually applied to a corresponding state variable s

j
t (the state vari-

ables for the SoC domain are listed in Table 1).
Note that with φ(st) being an 1 × N vector, each θi, is a N × 1 vector. By

multiplying these two vectors, we end up with a unique value for each Qi.
Now, to come up with better Qi estimates, we naturally aim to minimize the

difference between the “real” Q-value estimate, and Qi in each time step. This
can be framed as an optimization problem that minimizes a loss function with
respect to the θi parameters, and solved with stochastic gradient descent (SGD)
via back-propagation.



Given these calculated Qis, the action that will now be considered “best”
for the state that was observed, is the one with maximal (locally) estimated
Q-value:

arg max
i

Qi = arg max
i

Qi(st, a
i
t; θ

j) = arg max



















Q1(st, a
1; θ1)

Q2(st, a
2; θ2)

...

Qn(st, a
I ; θI)

(6)

The Q-value of that a∗ action will constitute the new Q̂ value estimate for an
s = st, a = a∗ pair: whenever s = st is encountered, a = a∗ is the currently
assumed action of choice, and has a value of Q̂(s, a∗); of course, this can be
updated in future iterations.

We note again that in our case, there is a separate θi for each ai. Given
this, notice that the evaluation for the Q-values at st can be computed locally
in parallel2 for all possible actions and corresponding parameters θ.

3.2 Deep Architecture

We implemented a deep network (see Fig. 2) consisting of I = |A| parallel recur-
rent recursive neural networks (RNN). Each RNN is an LSTM [11] (i.e. LSTM
layer) followed by a soft-max activator (soft-max Layer) and outputs a Q-value.
The LSTM layer practically summarizes a state input vector retrieved from
the environment as a single representation, that contains information about the
entire input sequence. The LSTM cells also provide an internal memory to the
network, regarding useful information from the previous seen states of the envi-
ronment, in order for them to be used in the next time step. Those aspects of the
LSTM provide us with the necessary mathematical transformations to compute
the basis function presented in Sect. 3.1 based on the current state input as well
as the previous state’s one.

Fig. 2. A visualization of the network for one action. The deep network consists of
I = |A| parallel RNNs with LSTMs (LSTM layer). A soft-max activator (soft-max
layer) follows each one of them in order to normalize weights θi and the Q-value is
updated (Q-value layer). Each RNN outputs a Q-value.

2 More accurately, in our implementation in a pseudo-parallel manner: all LSTMs are
executed independently and the final action is selected given their outputs.



By iteratively optimizing a selected loss function, the corresponding param-
eters θi for each RNN can be computed. The inner product of the LSTM output
with each θi vector, is normalized with the soft-max activation function [26],
in order to keep values scaled between [0, 1]. This information is actually a Q-
value estimate. The actual value of each Qi corresponding to an action is then
approximated after the new gradients are computed, (i.e. the θi updates from
the loss function minimization with SGD) as described earlier. The output of
the Q-values at one time step is actually the output of the whole network.

3.3 The DRRL Agent

In this section we present the Deep Recurrent Reinforcement Learning agent,
an algorithm to approximate the local Q-values using the deep network above.
In each time step t (or a round of a game), the algorithm receives a state of the
environment as an input and returns the action corresponding to the maximum
Q-value approximated by the network. In response it receives a reward and
observes a state transition.

In every t all the Qis corresponding to actions are updated, as well as the
weights θi relevant to each one of them. This means, that an optimization step
occurs for every Qi separately, where previous estimated parameters θi for ai

are updated. Thus evaluations for all the θis are conducted in parallel.
Since all the θis are updated, the Qis are updated too. We preserve each

Qi(st, a
i
t; θ

i) approximation in the Q-values layer as the output of the RNN,
and when the back-propagation optimization steps take place, those Q values
are updated with the corresponding θis. Each Qi represents the mapping from
all states seen so far and parameters to a specific action; thus it is a part of
a local Q-function approximator that contains the previous time step Q-value
approximation for this action with the corresponding θi. The action ai

t extracted
from the relevant Qi which maximizes it locally, is considered to be the one that
maximizes the actual Q-function. So this action is returned by the algorithm.
The appropriate Q̂ = Qi for the selected action is fed back in the RNN iteratively
as part of the input, representing the Q-value of the previous time-step.

To summarize, the algorithm learns through the network different set of
parameters regarding the loss functions, and also saves parameter-dependent
function approximators. Thus, there are I = |A| Q-approximators, each one
using a different instance of the LSTM layer to update its own parameters in
every iteration. A pseudo-code for the algorithm is provided in Algorithm1.

4 Evaluation

The DRRL agent was evaluated in the Settlers of Catan (SoC) domain, using
the jSettlers Java application.3 In this section we explain how DRRL was instan-
tiated in this domain, and present our evaluation results.

3 http://nand.net/jsettlers/.



Algorithm 1. DRRL Algorithm

1: procedure DRRL

2: Input = st, Q̂

3: // Returns a “best” action a∗ and an estimate of its value at st

4: Initialize Qi to zero, ∀i ∈ {1, 2, ..., |A|}
5: // at t=0 only, all Q̂s and θis are also initialized to zero
6:
7: for ∀i ∈ {1, 2, ..., |A|} do ⊲ All computations and updates in parallel
8: Set temporary Qi(st, a

i

t; θ
i) = φ(st)θ

i

9: Perform SGD with respect to θi:

10: L(θi) = ∇θi

(

r(st, a
i

t) + γQ̂((s′|at, st), a
′) − Qi(st, a

i

t; θ
i)

)2

11: Update θi, Qi

12: a∗ = arg maxi Qi(st, a
i

t; θ
i)

13: Q̂(st, a
∗) ← maxi Qi(st, a

i

t; θ
i)

14: return Q̂(st, a
∗), a∗

4.1 Domain State Representation and Action Set

Our decision making algorithm requires a state of the environment to be fed
as an input to the network. The state captures the board of the game, and
the information known to the player at time step t. Each state feature (state
element) is assigned to a range of integers, and thus the state is an integer
vector of 161 elements (see Table 1). In more detail, the first 5 features (hasClay,
hasOre, hasSheep, hasWheat, hasWood) represent the available resources of the
player whose turn is to move. The board consists of 19 main hexes. Each hex has
6 nodes, thus there are in total 54 nodes. Also there exist 80 edges connecting
the nodes to each other. The player can build roads to connect her settlements
and cities on those edges. The robber is placed in the desert hex when the game
begins, and can be moved according to the game rules.

Since SoC is a board game with numerous possible actions, we focused our
learning on a constrained set of actions, in order to reduce computational com-
plexity. Since trading is key to the game, this is the action set we selected.
Therefore, we select an action set A0 ∈ A, containing (i) actions specifying
“trade offers”, and (ii) “reply” actions towards proposers. For all other actions,
the agent simply adopts the choices of the jSettler. Thus, the jSettler part of the
agent is responsible for choosing actions like “build a road”).4

In more detail, the DRRL agent is responsible for “reply” actions to opponent
offers (i.e. accept, reject, counter-offer), and “trade offers” for giving up to two
resources (same or different kind) and receiving one. The resources available are
Clay, Ore, Sheep, Wheat and Wood—thus the “trade offers” include all possible
combinations of giving and receiving those resources. Some trade offers examples
are: Trade 1 Clay for 1 Wheat, Trade 2 Woods for 1 Clay, Trade 1 Ore and 1
Sheep for 1 Wood. Overall, we have 72 actions ∈ A0, 70 for trade offers, and 2

4 In general, our action and game set up follows [4].



Table 1. State features retrieved from jSettlers. Number is the number of elements
needed to describe this feature and Domain includes the feature’s possible values.

Num Feature Domain Description

1 Clay {0, .., 10} Player’s number of Clay Units

1 Ore {0, .., 10} Player’s number of Ore Units

1 Sheep {0, .., 10} Player’s number of Sheep Units

1 Wheat {0, .., 10} Player’s number of Wheat Units

1 Wood {0, .., 10} Player’s number of Wood Units

49 Hexes {0, .., 5} Type of resource in a hex (unknown element = 0, clay
= 1, ore = 2, sheep = 1, wheat = 4, wood = 5)

54 Nodes {0, .., 4} Builds ownership on each node (settlements and cities):
(no builds = 0, opponents’ builds = 1, 2, agents’ builds
= 3, 4)

80 Edges {0, .., 2} Roads ownership on each edge: (no road = 0,
opponents’ road = 1, agents’ road = 2)

1 Robber {0, .., 5} Robber’s location (unknown element = 0, clay = 1, ore
= 2, sheep = 1, wheat = 4, wood = 5)

1 Turns {0, .., 100} Number of game turns

1 VP {0, .., 10} Number of player’s victory points

for reply actions. The counter-offer reply action is not considered as a separate
action in the actual implementation, since the agent directly makes a new offer
instead of accepting or rejecting a trade.

4.2 DRRL in the SoC Domain

In SoC, the DRRL agent is responsible for the following during game-play:

1. Decide whether to accept, reject or make a counter-offer to a given trade
proposal from another player.

2. At each round decide if a new trade offer should be made or not.
3. Select the preferred trade offer, if such an offer is to be made.

Given our discussion above, we consider ai
t as the action i = {1, 2, 3, ....72}

selected at t, where ai ∈ {a1, a2, a3, ..., a72} ≡ Ao. Furthermore, assuming
action-dependent state features, we consider Qi(st, a

i
t; θ

i) as a partition of the
Q-function, for taking action ai in state s at t, given the network parameters θi.
Thus we assign a different θi ∈ {θ1, θ2, ..., θ72} for each possible action.

The function r(st, a
i
t) gives the returned reward when executing action ai

t

in state st at time step t. In our setting, the only reward signal provided by
the jSettlers at a state is VPs accumulated so far. So, we formulate the reward
function as follows:



r(st, a
i
t) =

{

V P (st, a
i
t) · k if V P (st, a

i
t) > 0

−V P · k otherwise
(7)

where V P are the accumulated victory points gained in the game so far, and
V P (st, a

i
t) are the victory points gained in t by acting with ai—i.e., the immedi-

ate reward provided by the difference between VPs in the previous and current
state (which actually can sometimes be a negative number). The k parameter
was set to 0.01 after trials, since we wanted the reward to have an impact on
the Q-values, without creating a huge deviation among them.

The DRRL algorithm is taking action every time the agent wants to decide
whether to trade or reply to an offer. In each round, the network receives the
state of the game as an input. To achieve this, the architecture of the neural
network is formed accordingly. This means that the LSTM layer consists of 72
independent LSTM units, and also 72 different Qi and sets of θi are produced.

4.3 Simulations and Results

The DRRL agent was implemented in Python using the Tensorflow library. To
measure agent’s performance we manipulated the jSettlers Java API, in order
to support python-based clients, and specifically ones with deep neural network
architecture. We tested our algorithm both in CPU (Intel(R) Core(TM) i3-2120
@ 3.30 GH) and GPU (NVIDIA GeForce GTX 900), and actually it was perform-
ing slightly faster in the CPU. This probably happens since learning is taking
place in batches of one, thus the GPU’s accelerating aspects are not used.

Usually the training of deep neural networks needs thousands of iterations.
For instance, in [4], they trained their DRL agent for SoC with 500, 000 learning
experiences, until it converges to an effective policy. In our approach, we do not
train the neural network, thus we had to find an efficient way to optimize the
network parameters within the given game limitations. To this end, we exper-
imented with different learning rates for Stochastic Gradient Descent (SGD).
For very small learning rates (i.e. exponential), the algorithm appeared to be
incapable of exploring the action space within the course of one game, and alter-
nated among using 3 or 4 actions only. On the other hand, for higher learning
rates, the algorithm gets stuck at local minima, and ended up exploring during
the first game rounds, but then kept selecting the same preferred action. After
some experimentation, we set the learning rate to 0.0023.

The θi model parameters were initialized with a truncated normal distribu-
tion. We also tested the network initialized with random, normal, and uniform
distributions, but this did not help, because it introduced a bias towards specific
actions in some cases. Finally, the Q̂ (i.e. the Q-value of the previous chosen
action) as well as the local Qis were initialized with zeros.

We pit our agent against the “standard” jSettler agent, and also against the
three MCTS implementations from [12]: BUCT, UCT, and VPI (Sect. 2.3). A
SoC game involves four agents, thus in each game four of the aforementioned
five agents face each other, chosen randomly and also in random order. We made



sure that every agent faces every possible combination of others an equal number
of times: in total, we ran five 4-agent tournaments of 20 games each, and each
agent participated in four of those tournaments.

In every new game, all network parameters are initialized, as if the agent has
never played before. Each game lasts about 15–26 rounds, and the agent gains at
most about 70 learning experiences (since an experience is gained in every turn
where she has to propose an offer, or respond to one).5 The DRRL algorithm
itself runs in about 56 s, and the whole game in approximately half to one hour
and a half (depending on the number of rounds). As mentioned above, in total
we ran 100 games, by combining the agents in five different pools of four agents
(each corresponding to a “tournament”). Thus, every agent faces all different
combinations of opponents, itself participating in 80 games in total. We used as
our principal comparison metric, the agents’ win ratio, calculated for each agent
over the number of games that agent participates in.

(a) (b)

Fig. 3. (a) The agents’ winning ratio over 80 games against all opponents. (b) The
agents’ winning ratio over 20 games against jSettlers.

Our evaluation results shown in summarized in Fig. 3a show that the DRRL
agent is capable to outperform all others without pre-training, but by only train-
ing itself in real time while playing a game, and rapidly adapts to the game envi-
ronment. Some instability is noticed from game to game, but this is normal due
to the fact that each game is a first time experience for the agent, yet we plan to
further investigate this in the future by learning parameters over a sequence of
games. We can also report that the DRRL agent was consistently proposing sig-
nificantly more offers (and counter-offers) than its opponents (specifically, 10–40
per game), and actually in a very early stage of the game, while other agents
did not. This increased trading greatly benefited the agent. Yet, it was rarely
accepting other players’ trades offers—it would rather counter-offer instead. We
also report that the MCTS agents perform much better when the DRRL agent
is in the game, since it favors trading, while the jSettler does not.

5 Compare this number to the 500, 000 learning experiences required by the DRL agent
in [4].



We also ran experiments in a pool with only jSettlers as opponents. This
allows us to make an indirect comparison of our DRRL agent against the “best”
DRL agent built in [4], namely a DRL agent whose policy was pre-trained
using about 500, 000 learning experiences while facing jSettler opponents. Once
trained, that DRL agent was able to achieve a win ratio of 53.36% when playing
against three jSettler agents. We see in Fig. 3b that our DRRL agent achieves
a win ratio of 45% against jSettlers, using at most 70 learning experiences; we
note however that 45% is higher than the results achieved by most other DRL
agents in [4]. We then increased our training horizon, allowing our DRRL agent
to train itself across a series of 30 games; that is, the agent continued to update
its network weights across 30 games ran sequentially, and not just one. This cor-
responds to ∼2, 000 learning experiences. We can report that now the win rate
of our agent rises to 56%, with DRRL now winning 17/30 games, and with the
agent winning nine out of the fifteen last games played. Therefore our DRRL
agent (a) matches (and slightly surpasses) the results of the DRL agent in [4];
and (b) we can also reasonably deduce that adding more training experience
benefits the agent.

5 Conclusions and Future Work

In this paper we presented a novel approach for deep RL in strategic board
games. We optimize the Q-value function through a neural network, but perform
this locally for every different action, employing recurrent neural networks and
Q-value decomposition. Our algorithm managed to outperform state-of-the-art
opponents, and did so with minimal training.

Regarding future work, we intend to examine performance differences when
using stacked LSTMs compared to the vanilla ones we used now, or even GRUs.
Furthermore, we plan to extend the algorithm to larger or different action sets,
and also create DRRL agents for other games. A final goal is to incorporate
natural language processing, in order for the deep network to take into account
the players’ conversations during the game.
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