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Sequential decision making under uncertainty:

ordinal uninorms vs. the Hurwicz criterion

Hélène Fargier and Romain Guillaume

IRIT,CNRS and Université de Toulouse, France
{fargier, guillaum}@irit.fr

Abstract. This paper focuses on sequential decision problems under un-
certainty, i.e. sequential problems where no probability distribution on
the states that may follow an action is available. New qualitative criteria
are proposed that are based on ordinal uninorms, namely R∗ and R∗.
Like the Hurwicz criterion, the R∗ and R∗ uninorms arbitrate between
pure pessimism and pure optimism, and generalize the Maximin and
Maximax criteria. But contrarily to the Hurwicz criterion they are as-
sociative, purely ordinal and compatible with Dynamic Consistency and
Consequentialism. This latter important property allow the construction
of an optimal strategy in polytime, following an algorithm of Dynamic
Programming.

Keywords: qualitative decision making, uncertainty, sequential decision prob-
lems

1 Introduction

In a sequential decision problem under uncertainty, a decision maker faces a
sequence of decisions, each decision possibly leading to several different states,
where further decisions have to be made. A strategy is a conditional plan which
assigns a (possibly non deterministic) action to each state were a decision has to
be made (also called ”decision node”), and each strategy leads to a compound
lottery, following Von Neuman and Morgenstern’s terminology [17] - roughly, a
tree representing the different possible scenarios, and thus the different possible
final states that the plan/strategy may reach. The optimal strategy is then the
one which maximizes a criterion applied to the resulting compound lottery.

Three assumptions are desired to accept the optimal strategy without dis-
cussions on the meaning of optimal strategy. Those assumptions are:

– Dynamic Consistency: when reaching a decision node by following an optimal
strategy, the best decision at this node is the one that had been considered
so when computing this strategy, i.e. prior to applying it.

– Consequentialism: the best decision at each step of the problem only depends
on potential consequences at this point.

– Tree Reduction: a compound lottery is equivalent to a simple one.



Those three assumptions are linked to the possibility to compute an optimal
strategy using an algorithm of dynamic programming [13].

When the problem is pervaded with uncertainty the Hurwicz criterion [7] is
often advocated since it generalizes the optimistic maximax and the pessimistic
maximin approaches. It makes a ”compromise” between these approaches, through
the use of a coefficient α of optimism - the Hurwicz value being the linear com-
bination, according to this coefficient, of the two criteria.

Unfortunately, this approach does not suit qualitative, ordinal, utilities: the
Hurwicz criterion proceeds to an additive compensation of the min value by
the max value. Moreover, the criterion turns out to be incompatible with the
above assumptions: it can happen that none of the optimal strategies is dynam-
ically consistent nor consequentialist - as a consequence the optimization of this
criterion cannot be carried out using dynamic programming.

In such a situation, a decision maker using the Hurwicz criterion should adopt
a resolute choice behavior [2], initially choosing a strategy and never deviating
from it later. But many authors insist on the fact that Resolute Choice is not
acceptable since a normally behaved decision maker is consequentialist. This
leads some of them to use algorithmic approaches based on Veto-process [11]
and Ego-dependent process [3] (see also [9],[8]).

In the present paper, rather than trying to ”repair” the Hurwicz criterion in
an algorithmic way, we are looking for new qualitative criteria which can take
into account the level optimism/pessimism of the decision maker, like Hurwicz’s
criterion, and satisfies the three properties stated above (Dynamic Consistency,
Consequentialism and Tree Reduction).

The paper is structured as follows. The next Section presents the Hurwicz
criterion, the background on decision trees under pure uncertainty and the prin-
ciple of dynamic programming. Section 3 then proposes the use of two qualitative
uninorms, R∗ and R∗, as alternatives to the Hurwicz criterion. Drowning them in
the context of sequential decision making, we show in Section 4 that R∗ and R∗

are compatible with Dynamic Consistency and Consequentialism , and propose
to apply an algorithm of dynamic programming to compute an optimal, conse-
quentialist and dynamically consistent strategy. Section 5 eventually summarises
the discussion between the two uninorms and the Hurwicz criterion 1.

2 Background

2.1 The Hurwicz criterion [7]

Let us first consider simple, non sequential decision problems under uncertainty:
each decision δi is characterized by the multi set of final states Eδi = {s

i
1
, ..., si

mi}
it can lead to. Given a utility function u capturing the attractiveness of each
of these final states, δi can be identified with a simple lottery over the utility
levels that may be reached: in decision under uncertainty, where no probability
distribution over the consequences of an act is available, a simple lottery is

1 The proofs are omitted for the sake of brevity.



indeed the multiset of the utility levels of the sij , i.e. Lδi = (ui
1
, ..., ui

mi) (where

ui
j = u(sij)).
A usual way to take the optimism of the decision maker (DM in the following)

into account is to use the Hurwicz criterion. The worth of δi is then:

H(δi) = H(Lδi) = (1− α)×min(ui
1
, ..., ui

mi) + α×max(ui
1
, ..., ui

mi).

where α ∈ [0, 1] is the degree of optimism. H indeed collapses with max aggre-
gation when α = 1 (and with the min aggregation when α = 0).

2.2 Decision trees

A convenient language to introduce sequential decision problems is through de-
cision trees [13]. This framework proposes an explicit modeling in a graphical
way, representing each possible scenario by a path from the root to the leaves of
a tree. Formally, a decision tree T = (N , E) is such that N contains three kinds
of nodes (see Figure 1 for an example):

– D = {d0, . . . , dm} is the set of decision nodes (depicted by rectangles).
– LN = {ln1, . . . , lnk} is the set of leaves, that represent final states in S =
{s1, . . . , sk} ; such states can be evaluated thanks to a utility function: ∀si ∈
S, u(si) is the degree of satisfaction of being eventually in state si (of reaching
node lni). For the sake of simplicity we assume, without loss of generality,
that only leaf nodes lead to utilities.

– X = {x1, . . . , xn} is the set of chance nodes (depicted by circles).

For any node ni ∈ N , Succ(ni) ⊆ N denotes the set of its children. In a decision
tree, for any decision node di, Succ(di) ⊆ X : Succ(di) is the set of actions that
can be chosen when di is reached. For any chance node xi, Succ(xi) ⊆ LN ∪D:
Succ(xi) is the set of possible outcomes of action xi - either a leaf node is
observed, or a decision node is reached (and then a new action should be chosen).

The present paper is devoted to qualitative decision making under uncer-
tainty; thus:

– the information at chance nodes is a list of potential outcomes - this suits
situations of total ignorance, where no probabilistic distribution is available.

– the preference about the final states is purely qualitative (ordinal), i.e. we
cannot assume more than a preference order on the consequences (on the
leaves of the tree), captured by the satisfaction degrees. The scale [0, 1] is
chosen for these degrees, but any ordered set can be used.

Solving a decision tree amounts at building a strategy, i.e. a function δ that
associates to each decision node di an action (i.e. a chance node) in Succ(di):
δ(di) is the action to be executed when decision node di is reached. Let ∆ be the
set of strategies that can be built for T . We shall also consider the subtree Tn of
T rooted at node n ∈ T , and denote by ∆n its strategies: they are subtrategies
of the strategies of ∆.

Any strategy in ∆ can be viewed as a connected subtree of T where there
is exactly one edge (and thus one chance node) left at each decision node -



skipping the decision nodes, we get a chance tree or, using von Neuwman and
Morgernstern’s terminology, a compound lottery 2.

Simple lotteries indeed suit the representation of decisions made at the last
step of the tree: (u1, ..., uk) is the multiset of the utilities of the leaf nodes
(ln1, ..., lnk) that may be reached when some decision x is executed. Consider
now a decision x made at the penultimate level: it may lead to any of the
decision nodes di in Succ(x), and thus to any of the simple lotteries Li =
(ui

1
, ..., ui

mi), di ∈ Succ(x) - the substrategy rooted in x defines the compound
lottery (Li, s.t. di ∈ Succ(x)). The reasoning generalizes for decisions x at any
level of the tree, hence the definition of the (possibly multi level) compound
lottery Lδ associated to δ.

In order to apply a criterion, e.g. Hurwicz’s, a simple lottery is needed. To
this extent the Reduction of the compound lottery relative to the strategy is com-
puted, which is the simple lottery which gathers all the utilities reached by the
inner lotteries. Formally, the reduction of a compound lottery L = (L1, ..., Lk)
composed of lotteries Li is defined by:

Reduction(L) = Reduction(L1) ∪ ... ∪Reduction(Lk) (1)

where the reduction of a simple lottery is the simple lottery itself. For instance,
if L composed of simple lotteries (L1, ..., Lk), with Li = (ui

1
, ..., ui

ni):

Reduction(L) = (u1

1
, ..., u1

n1 , ..., u
k
1
, ..., uk

nk) (2)

The principle of reduction make the comparison of compound lotteries (and
thus of strategies) possible: to compare compound lotteries by some criteria O,
simply apply it to their reductions:

O(L) = O(Reduction(L)) (3)

For instance, considering the Hurwicz criterion, the preference relation over
strategies is defined by:

δ �H δ′ iff H(Reduction(Lδ) � H(Reduction(Lδ′)) (4)

In all the approaches that follow Equation (3), and in particular in the ap-
proach considered in this paper, Tree Reduction is thus obeyed by construction.

Optimality can now be soundly defined, at the global and the local levels:

– δ ∈ ∆ is optimal for T iff ∀δ′ ∈ ∆,O(Reduction(Lδ)) � O(Reduction(Lδ′))
– δ ∈ ∆n is optimal for Tn iff ∀δ′ ∈ ∆n, O(Reduction(Lδ)) � O(Reduction(Lδ′))

Let us now consider Dynamic Consistency. An optimal strategy δ is said to
be dynamically consistent iff for any decision node n, δn, the restriction of δ to
node n and its descendent, is optimal for the subtree rooted in n. A criterion is

2 Recall that a simple lottery L = (u1, ..., uk) is a multiset of utilities; a compound
Lottery L = (L1, . . . , Lk) is a multiset of (simple or compound) lotteries.



Fig. 1. A Decision Tree

said to be compatible with Dynamic Consistency if there is always an optimal
strategy that is dynamically consistent.

The purely optimist (resp. pessimist) criterion, max (resp. min) is compat-
ible with Dynamic Consistency - there always exist an optimal strategy whose
substrategies are optimal. Unfortunately, the Hurwicz criterion is not compatible
with Dynamic Consistency. Let us give a counter example:

Example 1. Consider the decision tree of Figure 1 and α = 0.1; Strategy (d0 ←
down, d1 ← down, d2 ← up) is optimal, with a Hurwicz value of 0.1·0.04+0.9·1 =
0.904 ; as a matter of fact (d0 ← down, d1 ← down, d2 ← down) has a Hurwicz
value of 0.9 and all the strategies with d0 ← up or d1 ← up have a lower
value. Hence the (only) optimal strategy prescribes ”up” for d2. On the other
hand, considering the tree rooted in d2, ”up” has a H value equal to 0.684,
while ”down” has a H value equal to 0.864 - up is not the optimal strategy in
this subtree. This counter example shows that Hurwicz is not compatible with
Dynamic Consistency.

2.3 Dynamic programming

Consequentialism prescribes that the decision maker selects a plan looking only
at the possible futures (regardless of the past or counterfactual history) . This is
the case when choosing, at each node n, the decision that maximizes O. Hence
a consequentialist strategy can be built starting from the anticipated future
decisions and rolling back to the present (see Algorithm 1). This is the idea
implemented in the algorithm of dynamic programming, which simulates the
behaviour of such a consequentialist decision maker: the algorithm builds the



Algorithm 1: Dynamic programming

Input: decision tree T of depth p > 1, criterion O

Output: A strategy δ which is optimal for O, its value O(δ)
for ln ∈ LN do

L(ln) = u(ln)

for t = p− 1 to 0 do

for d ∈ Dt do

// Dt denotes the decision nodes at depth t

for n ∈ Succ(d) do
L(n) =

⋃
n′∈Succ(n)L(n

′)

δ(d) = argmaxn∈Succ(d)O(Reduction(L(n)))
L(d) = L(δ(d))

Return (δ,O(Reduction(L(d0))))

best strategy by a process of backward induction, optimizing the decisions from
the leaves of the tree to its root. Roughly, one can say that a criterion is coherent
with Consequentialism iff the strategy returned by the algorithm of dynamic
programming is optimal according to this criterion.

Unfortunately this is not always the case when optimality is based on the
principle of Tree Reduction: rolling back the Hurwicz optimization at each node
of the tree of Figure 1 leads to strategy (d0 ← down, d1 ← down, d2 ← down)
which is not optimal according to equation (3).

The correctness of dynamic programming actually relies on an important
property, called weak monotonicity:

Definition 1 A preference criterion over lotteries is said to be weakly mono-
tonic iff whatever L, L′ and L′′:

O(L) �O O(L′)⇒ O((L,L′′)) � O((L′, L′′)) (5)

Proposition 1 If a criterion O satisfies weak monotonicity then the strategy
returned by dynamic programming is optimal according to O.

By construction, this strategy is dynamically consistent (any of its substrate-
gies is optimal it its subtree), consequentialist and equivalent, according to O,
to its reduction.

Corollary 1 If a criterion O satisfies weak monotonicity then strategy returned
by dynamic programming is consequentialist and dynamically consistent

3 R∗ and R
∗ as criteria for decision making under

uncertainty

As we have seen in the previous Section, the Hurwicz criterion which is often
advocated for decision making under uncertainty suffers from severe drawbacks,



and in particular form its incapacity to satisfy Dynamic Consistency. This is
regrettable from a prescriptive point of view: when optimizing this criterion, the
decision planned for a node is not necessarily the one that would be the best
one if the tree rooted at this node were be considered - when reaching this node,
a Hurwicz maximizer would be tempted not to follow the plan. That is why
we look for alternative qualitative generalizations of the maximax and maximin
rules, which, like Hurwicz, allow a balance between pure pessimism and pure
optimism.

3.1 The R∗ and R
∗ uninorms

The uninorm aggregators [18] are generalization of t-norms and t-conorms. These
operators allow the identity element (e) to lay anywhere in the unit interval - it
is not necessarily equal to zero nor to one, as required by t-norms or t-conorms,
respectively.

Definition 2 [18] A uninorm R is a mapping R : [0, 1]× [0, 1] → [0, 1] having
the following properties:

1. R(a, b) = R(b, a) (Commutativity)
2. R(a, b) ≥ R(c, d) if a ≥ c and b ≥ d (Monotonicity)
3. R(a,R(b, c)) = R(R(a, b), c) (Associativity)
4. There exists some element e ∈ [0, 1], called the identity element, such that

for all x ∈ [0, 1] R(x, e) = x

In this paper we focus on two ordinal uninorms proposed by Yager [18]:

1. R∗ : [0, 1]n → [0, 1]:

– R∗(a1, ..., an) = Min(a1, ..., an) if Min(a1, ..., an) < e

– R∗(a1, ..., an) = Max(a1, ..., an) if Min(a1, ..., an) ≥ e

2. R∗ : [0, 1]n → [0, 1]:

– R∗(a1, ..., an) = Min(a1, ..., an) if Max(a1, ..., an) < e

– R∗(a1, ..., an) = Max(a1, ..., an) if Max(a1, ..., an) ≥ e

R∗ specifies that if one of the ai’s is lower than e then the min operator is
applied, otherwise max is applied. R∗ specifies that if one of the ai’s is greater
than e then the max operator is applied, otherwise min is applied. One can see
that both R∗ and R∗ generalize the min and max uninorms, as Hurwicz does
(min is recovered when e = 1 , max when e = 0). The identity element e can
represent the threshold of optimism (as α for Hurwicz).

R∗ and R∗ constitute two different ways of generalizing the maximin and
maximax criterion, and capture different types of behaviours of the decision
maker. In the context of decision making under uncertainty, we propose to in-
terpret [0, e[ as an interval of hazards and [e, 1] as interval of opportunities:

1. When all the possible utilities lay in the hazardous interval, both R∗ and R∗

behave in a pessimistic way and evaluate the lottery by its worst outcome.



2. When all the possible utilities lay in the interval of opportunity, both R∗ and
R∗ behave in an optimistic way and evaluate the lottery by its best outcome.

3. When some possible utility belongs to the hazardous interval and others in
interval of opportunities, R∗ returns a pessimistic value (the worst one) while
R∗ returns the best, optimistic, one.

Hence, in the simultaneous presence of hazards and opportunities, R∗ fo-
cuses on the hazards while R∗ focuses on the opportunities. In other terms, the
comparison of strategies is made as follows:

– R∗: if one of the two strategies may lead to (at least) one opportunity, the
DM prefers the strategy with the greatest opportunity. If both lead surely
into the interval of hazards, the DM prefers the more robust strategy.

– R∗: if one of the two strategies may lead to (at least) one hazardous utility,
the DM prefers the more robust of the strategies. If both are exempt of
hazards, the DM prefers the one with the greatest opportunity.

In robust decision making, where performance guarantees are looked for,
one will obviously apply the R∗ uninorm because of its cautiousness. R∗ indeed
appears as too adventurous: one single possible opportunity carries the final
decision, and this even if all the other utilities lay in the hazard interval. On the
contrary, R∗ looks for opportunity only when the required level of satisfaction,
e, is guaranteed for all the possible outcomes.

Example 2. Let us consider three decisions � = (0.55, 0.55), △ = (0.7, 0.39)
and © = (0.9, 0.2) (see Fig.2). In red, on the figure, is represented the zone
containing decisions that the DM would like to avoid because too risky when e

is set equal to 0.6 ((a).Figure 2 for R∗ and (b). Figure 2 for R∗). One can see
that if the DM uses R∗, all the solutions are in the red zone hence she/he will
select �. Conversely, if the DM uses R∗, decision � is the only decision in the
red zone and © will be selected.

Depending on the value e ∈ [0, 1], the optimal solutions are:

– ∀e ∈ [0, 0.2] the optimal solution is © for both R∗ and R∗.
– ∀e ∈]0.2, 0.39] for R∗: △ and for R∗: ©
– ∀e ∈]0.39, 0.9] for R∗: � and for R∗: ©
– ∀e ∈]0.9, 1] the optimal solution is � for both uninorms.

Notice that△ is favoured by R∗, when the degree of guaranteed performance,
e, is moderate (e ≤ 0.39). If a higher degree of performance must be ensured,
R∗ chooses � = (0.55, 0.55).

4 R∗ and R
∗ in the sequential decision context

Let us now study the two uninorms in the context of sequential decision. Apply-
ing the principle of lottery reduction, we have:

δ �R∗
δ′ iff R∗(Reduction(δ)) � R∗(Reduction(δ′)) (6)

δ �R∗ δ′ iff R∗(Reduction(δ)) � R∗(Reduction(δ′)) (7)



Fig. 2. Illustration of R∗ and R∗

Example 3. Let us go back to the example of Figure 1 and focus first on criterion
R∗. The strategies that decide down for d2 are risky (may reach s5, which have
a utility of 0) and have a R∗ equal to 0 whatever the value of e. This is also the
case for all the strategies that decide up for d0. Now,

– if e ∈]0, 0.04] (d0 ← down, d1 ← down, d2 ← up) is optimal, with a R∗ = 1.
– if e ∈]0.04, 1] there are two optimal strategies, (d0 ← down, d1 ← up, d2 ←

up) and (d0 ← down, d1 ← down, d2 ← up) , both with R∗ = 0.04.

It can be checked that any optimal strategy is dynamically consistent. For in-
stance, R∗(d2 ← up), which is at least equal to 0.04 (whatever e), is always
greater than R∗(d2 ← down),which is always equal to 0.

If we consider R∗, both (d0 ← down, d1 ← down, d2 ← down) and (d0 ←
down, d1 ← down, d2 ← up) are optimal: their R∗ is equal to 1, whatever the
value e (and both are dynamically consistent)

Beyond this example, R∗ and R∗ behave well for sequential problems in
the general case; indeed, both are compatible with Dynamic Consistency and
Consequentialism. The reason is that, contrarily to the Hurwicz criterion, they
satisfy weak monotonicity:

Proposition 2 The R∗ and R∗ satisfies weak monotonicity

A direct consequence of Propositions 1 and 2 is that both uninorms can be
optimized by dynamic programming (see Algorithm 2 )

Theorem 1 Algorithm 2 computes a strategy optimal w.r.t R∗ (resp. R∗) in
time polynomial with respect to the size of the decision tree.

This strategy is thus consequentialist and dynamically consistent; it follows
from Theorem 1 that:



Algorithm 2: R∗ and R∗ under pure uncertainty

Input: decision tree T of depth p > 1, criterion O ∈ {R∗, R
∗}, optimism

coefficient e
Output: A strategy δ which is optimal for O, its value O(δ)
for ln ∈ LN do

V (ln) = u(ln)

for t = p− 1 to 0 do

for d ∈ Dt do

// Dt denotes the decision nodes at depth t

for n ∈ Succ(d) do
V (n) = O((V (n′), n′ ∈ Succ(n)))

δ(d) = argmaxn∈Succ(d)V (n)
V (d) = V (δ(d))

Return (δ, V (d0))

Corollary 2 The uninorm R∗ and R∗ are compatible with Dynamic Consis-
tency, Consequentialism and Tree Reduction.

As already outlined compatibility with Dynamic Consistency guarantees that
the DM cannot be tempted to deviate from the plan during its execution. Because
R∗ is consequentialist, the evaluation of a decision can be conservative at some
node in the tree (because hazard cannot be excluded) and become optimistic
when some safer point is reached (e.g. at node d1 when e ≤ 0.08). On the
example of Figure 1, with e = 0.05, R∗ compares the min values of the two
candidate decisions at node d2, but is optimistic at node d1: all the outputs that
can be reached from d1 are greater than 0.05, i.e. all the decision are safe when
d1 is reached. Similar examples can be built for R∗ (which is nevertheless less in
accordance with the intuition, since pessimism is taken into account only when
no opportunity is available).

A last algorithmic advantage of R∗ and R∗ over Hurwicz is that they are
associative (like any uninorm). This allows the algorithm of dynamic program-
ming to memorize, for each node, the value of the corresponding reduced lottery
rather than the lottery itself

Definition 3 A criterion O satisfies the decomposition principle iff whatever
L,L′, O(L ∪ L′) = O(O(L), O(L′)).

Proposition 3 R∗ and R∗ satisfy the decomposition principle

Hurwicz, which is not associative, does not satisfy this principle - for instance
H((1, 0), (0)) = α2 while H((1, 0, 0)) = α.

5 R∗ and R
∗ vs. Hurwicz

Let us now focus on the comparison between the uninorms (and especially of R∗,
which has a well founded interpretation in terms of robustness) and Hurwicz’s



criterion. All are generalization of the maximax and maximin criteria, allow a
tuning between optimism and pessimism, and extend to sequential problems
through the application of the principle of lottery reduction.

The first remark is thatR∗ can capture the desiderata of a decision maker who
looking for guarantees of performance, the level of performance being represented
by e. This kind of requirement cannot be captured by the Hurwicz criterion,
unless α = 0, i.e. unless Hurwicz collapses with the min (and also collapses with
R∗ and with R∗, setting e = 0).

Moreover, the behaviour of Hurwicz’s approach may appear chaotic in its
way to move from pessimism to optimism. Consider again Example 2: � =
(0.55, 0.55) and © = (0.2, 0.9) are the min optimal and max optimal solutions,
respectively. The max (resp. the min) value of △ lays between the ones of �
and ©, so △ = (0.39, 0.7) appears as an intermediate solution between � and
© (see Figure 2). Nevertheless, △ is never optimal for Hurwicz. It can indeed
be checked than H(�) = 0.55 whatever α. H(△) = 0.545 at α = 0.5. When
α ≤ 0.5, H(△) < 0.55 = H(�); when α ≥ 0.5 H(©) ≥ H(△), because H(©)
increases faster than H(△). Hence a slight variation of α makes Hurwicz jump
directly from the pessimistic solution � to the very optimistic solution©, with-
out considering △, which is Pareto optimal and intermediate between � and
©.

If we look at the formal properties that may be looked for, the first difference
is that the uninorms are purely ordinal. They do not need to assume that the
utilities are additive to some extent, while Hurwicz is basically an additive crite-
rion. The second one is their associativity - a basic property that is not satisfied
by the Hurwicz’s aggregation. Last but not least, R∗ and R∗ are compatible with
Dynamic Consistency and Consequentialism, while Hurwicz is not.

A first, practical consequence is that a polynomial algorithm of dynamic pro-
gramming can be designed to find consequentialist and dynamically consistent
optimal solutions. Dynamic Consistency and Consequentialism are also impor-
tant from a prescriptive point of view. Because the R∗ and R∗ optimal strategies
are dynamically consistent, the DM will never be tempted to deviate from it -
we have seen on Example 1 that Hurwicz does not prevent for such deviations.

Consequentialism says that the value of a (sub)strategies only depends on the
future consequences - R∗ and R∗ never care of ”parallel”, counter factual worlds.
As we have seen, Hurwicz is not compatible with this principle: what happens
in a world (e.g., in Example 1 in d2 when up is chosen for d2) may influence
the decision in an independent, parallel world (here, in d1). Indeed, Hurwicz will
always prefer d1 ← down to d1 ← up even in case of a very low - but positive -
degree of optimism. This is due to the fact the low value (0.04) for s3, which is
not a descendent of d1 but of d2, masks the 0.08 utility of s2.

Our running example also shows that Hurwicz can be very adventurous even
for small positive α’s: (d0 ← down, d1 ← down, d2 ← up) might reach a very low
utility (0.08) is indeed optimal for Hurwicz as soon as α > 0. This strategy will
on the contrary be considered as too risky for R∗, unless a low level ( e < 0.08)
of guaranteed performance is looked for .



6 Conclusion

In this paper, we have shown how the R∗ and R∗ uninorms can be used for de-
cision under uncertainty. They constitute an appealing alternative to Hurwicz’s
criterion to model the behavior ofa DM who is not purely optimistic nor purely
pessimistic: an optimal strategy can be computed in polytime, which satisfies
the three natural assumptions of sequential decision making. Moreover, these
utilities are purely qualitative; as a perspective, it would be natural to extend
them to possibilistic (qualitative) decision trees [14], that allow the expression of
some knowledge about the more or less possible consequences of the decisions.
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