
HAL Id: hal-02124387
https://hal.science/hal-02124387v1

Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three-Dimensional Electrical Resistivity Tomography of
the Solfatara Crater (Italy): Implication for the

Multiphase Flow Structure of the Shallow Hydrothermal
System

Marceau Gresse, Jean Vandemeulebrouck, Svetlana Byrdina, Giovanni
Chiodini, André Revil, Timothy Johnson, Tullio Ricci, Giuseppe Vilardo,

Annarita Mangiacapra, Thomas Lebourg, et al.

To cite this version:
Marceau Gresse, Jean Vandemeulebrouck, Svetlana Byrdina, Giovanni Chiodini, André Revil, et al..
Three-Dimensional Electrical Resistivity Tomography of the Solfatara Crater (Italy): Implication for
the Multiphase Flow Structure of the Shallow Hydrothermal System. Journal of Geophysical Research :
Solid Earth, 2017, 122 (11), pp.8749-8768. �10.1002/2017jb014389�. �hal-02124387�

https://hal.science/hal-02124387v1
https://hal.archives-ouvertes.fr


Three-Dimensional Electrical Resistivity Tomography
of the Solfatara Crater (Italy): Implication for the
Multiphase Flow Structure of the Shallow
Hydrothermal System
Marceau Gresse1 , Jean Vandemeulebrouck1 , Svetlana Byrdina1 , Giovanni Chiodini2 ,
André Revil1 , Timothy C. Johnson3, Tullio Ricci4 , Giuseppe Vilardo5 , Annarita Mangiacapra5,
Thomas Lebourg6, Jacques Grangeon1, Pascale Bascou1, and Laurent Metral1

1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France, 2Istituto Nazionale di
Geofisica e Vulcanologia, Bologna, Italy, 3Pacific Northwest National Laboratory, Energy and Environment Directorate,
Richland, WA, USA, 4Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, 5Istituto Nazionale di Geofisica e
Vulcanologia, Osservatorio Vesuviano, Naples, Italy, 6Géosciences Azur UMR 6526, Nice, France

Abstract The Solfatara volcano is the main degassing area of the Campi Flegrei caldera, characterized by
60 years of unrest. Assessing such renewal activity is a challenging task because hydrothermal interactions
with magmatic gases remain poorly understood. In this study, we decipher the complex structure of the
shallow Solfatara hydrothermal system by performing the first 3-D, high-resolution, electrical resistivity
tomography of the volcano. The 3-D resistivity model was obtained from the inversion of 43,432 resistance
measurements performed on an area of ~0.68 km2. The proposed interpretation of the multiphase
hydrothermal structures is based on the resistivity model, a high-resolution infrared surface temperature
image, and 1,136 soil CO2 flux measurements. In addition, we realized 27 soil cation exchange capacity and
pH measurements demonstrating a negligible contribution of surface conductivity to the shallow bulk
electrical conductivity. Hence, we show that the resistivity changes are mainly controlled by fluid content and
temperature. The high-resolution tomograms identify for the first time the structure of the gas-dominated
reservoir at 60m depth that feeds the Bocca Grande fumarole through a ~10m thick channel. In addition, the
resistivity model reveals a channel-like conductive structure where the liquid produced by steam
condensation around the main fumaroles flows down to the Fangaia area within a buried fault. The model
delineates the emplacement of the main geological structures: Mount Olibano, Solfatara cryptodome, and
tephra deposits. It also reveals the anatomy of the hydrothermal system, especially two liquid-dominated
plumes, the Fangaia mud pool and the Pisciarelli fumarole, respectively.

1. Introduction

Hydrothermal systems associated with active volcanoes involve fluids and heat transfer across porous and
fractured rocks. Depending on temperature-pressure conditions, these systems can be either “liquid domi-
nated” or “vapor dominated” (White et al., 1971). In the latter, near-surface gas condensation produces a large
amount of water channeled into the ground and often released through acid streams (Hochstein &
Sudarman, 1993).

For long-lived calderas, volcanic unrest is generally characterized by a pressurization of the hydrothermal
system (e.g., Acoccella et al., 2015; Chiodini et al., 2016) leading to ground uplift and to changes in the
composition and degassing rate of fumaroles (Caliro et al., 2014). Hydrothermal systems constitute there-
fore a critical element widely used to assess and monitor a renewal activity (e.g., Chiodini, 2009; Chiodini
et al., 2002, 2012; Gottsmann et al., 2007; Tassi et al., 2013; Werner et al., 2012). Unraveling the shallow
volcanic structure is of primary importance to properly assess the complexity of hydrothermal systems
because knowledge of fluid pathway geometry can help to decipher a systematic hydrothermal response
to magmatic activity.

Electrical resistivity tomography (ERT) and magnetotellurics (MT) are classical geophysical methods used to
image shallow and deep hydrothermal systems thanks to the sensitivity of the electrical resistivity to the
presence of thermal fluids and alteration (e.g., Aizawa et al., 2005; Byrdina et al., 2014; Finizola et al., 2004;
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Hase et al., 2005; Revil et al., 2011, 2004). The electrical resistivity (or its inverse, the electrical conductivity)
of rocks is influenced by two contributions, one associated with electrical conduction in the bulk pore fluid
and one associated with the presence of an electrical double layer surrounding the grains. The first con-
tribution depends on saturation, the ionic strength, and temperature of pore water (Revil et al., 2002;
Roberts et al., 2001; Ussher et al., 2000). The second contribution, called surface conductivity, is mainly
related to their cation exchange capacity (CEC) (e.g., Revil et al., 2017a, 2017b). High CEC values are gen-
erally associated with the formation of secondary minerals, such as clays, due to host rock alterations pro-
cesses (Revil et al., 2017a, 2017b). Knowing which contribution between surface conductivity versus pore
fluid conductivity dominates the observed conductivity response is a recurrent issue when interpreting
electrical resistivity tomograms. Understanding resistivity images also requires soil temperature and CO2

flux mappings in order to delineate the surficial extents of hydrothermal systems (e.g., Revil et al., 2008,
2011). In addition, self-potential measurements allow inference of the direction and the dynamics of
hydrothermal circulations (e.g., Ishido, 2004; Revil et al., 2011; Villasante-Marcos et al., 2014) (Text S1 in
the supporting information).

Most volcanic edifices are polygenetic structures, comporting inherited geological and tectonic features,
which lead to complex spatial changes in both fluid circulations and geochemical processes. In the last
decade, progress has been made to improve 3-D imaging and interpretation using ERT (Revil et al., 2010;
Rosas-Carbajal et al., 2016). However, to date, studies have used low spatial resolutions (20 m or more
between each measurement) to cover large areas and, therefore, cannot account for local effects and
complex geometry.

In this study, we focus on the Solfatara volcano for the following reasons. Campi Flegrei caldera is presently
experiencing unrest (Chiodini et al., 2016), characterized by an intense degassing, with ~2,000 t of CO2 and
some thousands of tons of H2O released per day at the Solfatara (Chiodini et al., 2015), which can be
compared to a small-scale volcanic eruption (Chiodini et al., 2012). The geochemical evolution of the fumar-
oles suggests an increase of temperature of the hydrothermal reservoir, while extension of the degassing
area, ground uplift, and seismic swarms is still ongoing (Chiodini et al., 2016). This activity renewal needs
to be better understood and assessed since approximately half million inhabitants live within the Campi
Flegrei caldera. Moreover the Solfatara volcano is the most probable area of a future explosive eruption
(Neri et al., 2015) that may be associated with very short precursor signals (Jolly et al., 2014). Finally, the
small size of this crater with a diameter of ~700 m, extending on ~0.35 km2 allows such high-resolution
spatial imagery.

Here we present the first 3-D ERT model of the shallow hydrothermal system of the Solfatara volcano in the
Campi Flegrei caldera (Italy). This 3-D model includes new high-resolution ERT data and thermal and soil CO2

flux maps and uses self-potential and ERT data from Byrdina et al. (2014). The purpose of this work is to
precisely recognize the main geological and hydrothermal structures, with a resolution up to 1 m, in order
to understand the multiphase fluid circulation within the crater. We also aim to evaluate the contribution
of grain surface conductivity with respect to fluid conductivity, in order to separate liquid-dominated
structures from clay-rich areas.

2. Geological Settings

Extending over ~65 km2, the volcanic region of the Campi Flegrei is located in the western metropolitan
area of Naples (Italy). The Campi Flegrei is a long-lived nested caldera formed over the last 50 kyr by two
major eruptions: the Campanian Ignimbrite and the Neapolitan Yellow Tuff, respectively, at ~39 kyr and
~12 kyr (see Figure 1a, and De Vivo et al., 2001). After the Neapolitan Yellow Tuff eruption, more than
70 mainly explosive eruptions occurred during three main epochs: 15.0–10.6, 9.6–9.1, and 5.5–3.8 kyr
(Orsi et al., 2004; Smith et al., 2011; Vito et al., 1999). Monte Nuovo was the last historical eruption, which
occurred in 1538 A.D. It was preceded by a ground uplift of several meters over few decades (Guidoboni &
Ciuccarelli, 2011). The present activity started in the 1950s, with three main uplift episodes in the years
1950–1953, 1970–1972, and 1982–1984, each one accompanied by seismic swarms, with a cumulated
ground uplift of ~3 m (Del Gaudio et al., 2010). This typical activity known as bradyseism has a double ori-
gin. The first one is related to the pressurization of a magmatic gas accumulation at 3–4 km depth
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(Chiodini et al., 2015). Its second origin is due to repeated CO2-rich magmatic fluids injections from the
magmatic gas reservoir into the hydrothermal system at 2 km depth inducing its pressurization and
heating (Chiodini et al., 2016).

The Solfatara volcano, located at the center of the Campi Flegrei caldera, was formed 4.2 kyr ago by a
series of phreatic and phreatomagmatic eruptions (Isaia et al., 2015). It was built over the Mount
Olibano lava dome and several tephra deposits (Figure 1b) (Isaia et al., 2009, 2015). This volcano lies on
the top of a hydrothermal plume driving a large amount of fluids toward the surface (Chiodini et al.,
2001). These hot fluids—mainly H2O and CO2—exsolve from a magmatic body at a depth of 8 km then
mix with meteoric components in a hydrothermal reservoir at 3–4 km depth (Zollo et al., 2008)
(Figure 2). Finally, these fluids are released through diffuse and direct degassing at the surface of the
Solfatara crater, a permeable maar-diatreme structure (Isaia et al., 2015), crossed by NW-SE and NE-SW ring
faults (Chiodini et al., 2015; Dvorak & Gasparini, 1991; Rosi et al., 1983). The main surface hydrothermal
features comprise the Fangaia mud pool, Bocca Grande and Bocca Nuova fumaroles, and a currently
evolving fumarolic area at Pisciarelli (Figure 1b, 2, and 3).
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Figure 1. Map of the studied area and location of the ERT profiles. (a) The Solfatara crater inside the Campi Flegrei, in the Neapolitan urban area (GIS database from
Bechtold et al., 2005). Two major eruptions formed nested calderas, Campanian Ignimbrite and Neapolitan Yellow Tuff calderas (black and red dotted line).
(b) Solfatara satellite map (2014) with ERT profiles (red lines) crossing main geological units: Mount Olibano, Solfatara cryptodome, and eruptive deposits, after Isaia
et al. (2015). Black dotted lines indicate the major fractures/faults, after D’Antonio et al. (1999) and Petrosino et al. (2012). Main vents are indicated with black circles:
Bocca Grande (BG) and Bocca Nuova (BN) fumaroles and Fangaia mud pool (F) and the Pisciarelli fumarolic area (P).
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3. Material and Methods
3.1. Electrical Resistivity Tomography: Acquisition Processing and Inversion

During each ERT measurement, an electric current is injected into the ground between two current electro-
des (A, B). This current generates an electrical field. The resulting electrical potential distribution is sampled
between two voltage electrodes (M, N). Transfer resistance R (in Ω) is then calculated using Ohm’s law:
R = ΔV/I, where ΔV denotes the electrical potential difference between M and N and I is the injected current
between the current electrodes A and B.

In order to characterize the subsurface electrical conductivity of the Solfatara volcano, 73,987 transfer resis-
tances were collected along 63 ERT profiles between 2008 and 2016. (Surveys information in Table S1 and
the reliability of data with time are investigated in Text S2.) We performed 14 profiles crossing the crater
rim and the main faults (Figure 1b). The density of the measurements was increased around the two major
hydrothermal areas corresponding to the Bocca Grande fumarole and the Fangaia mud pools. Electrode
spacing varies from 2m on dense profiles, to 10m and 20m for the 0.95 km and 1.26 km long profiles, respec-
tively. For each ERT profile, we used either the Wenner or the Wenner-Schlumberger arrays because of their
good signal-to-noise ratio. In addition, pole-pole and gradient configurations were realized on several profiles
for a greater depth of investigation and a quick acquisition time, respectively.

Electrode coordinates were obtained using a real-time kinematic Global Positioning System (GPS) with 2 cm
accuracy. On some remote locations, a handheld GPS with a 2 m precision was used. Electrode elevations
were recovered after a linear interpolation using a precise 1 m resolution digital elevation model (DEM) to
ensure a common elevation baseline for all electrodes.

Each transfer resistance value was obtained by stacking three to seven individual measurements. Only
measurements with a standard deviation below 5%were retained for the inversion. Furthermore, it appeared
that in the globally conductive area of the Solfatara crater, an injection current below 50 mA was not high
enough to ensure robust resistance measurements; consequently, we removed these data. At the end of
the filtering process, 43,432 transfer resistance were kept for the inversion.

An unstructured mesh of the Solfatara volcano was constructed with 902,919 tetrahedral elements and
180,211 finite-element nodes using TetGen algorithm (Si, 2015). The mesh was delimited by electrical
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Figure 2. Conceptual model of the Solfatara hydrothermal system (modified after Bruno et al., 2007; Caliro et al., 2014; Chiodini et al., 2001; Ducci & Tranfaglia, 2005;
Isaia et al., 2015; Petrosino et al., 2012; Zollo et al., 2008). This E-W model crosses the main fumarolic areas of Bocca Grande (BG), Pisciarelli (P), and the Fangaia mud
pool (F).
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resistivity surveys and covers a ~0.68 km2 ovoid area. The surface topography was integrated using the 1 m
accuracy DEM (Figure S1). Mesh refinement was achieved near the electrodes location to improve the
numerical accuracy (Johnson et al., 2010). In addition, five specific domains were defined to apply either
distinct inversion options or a specific mesh refinement depending on the measurements density. The
bottom of the mesh was set to 50 m below sea level (bsl), based on the maximum depth investigation
reached by the 1.26 km long ERT surveys. Finally, an external domain was created by extending the mesh
20 km both laterally and at depth to avoid boundary effects.

The inversion of the electrical conductivity was performed using the E4D inversion code (Johnson et al.,
2010). Regularization was done using classical first-order isotropic spatial derivative with deterministic
smoothing constraints. Solving the inverse problem consists in minimizing the Occam’s type objective
function:

Φ ¼ Φd udð Þ þ βΦm umð Þ; (1)

with ud and um given by:

ud ¼ Wd dobs�dpredð Þ; (2)

um ¼ Wm mest�m0ð Þ; (3)

where dobs and dpred are respectively the observed and simulated transfer resistance values,Wd is a diagonal
data weighting matrix, which contains the reciprocal of the standard deviations of the measurements along
the diagonal, andΦd represents the Euclidian L2 norm of ud. In themodel constraint term,mest represents the
estimated natural logarithm of the conductivity distribution, m0 represents a prior conductivity model, and
Wm is the regularization matrix. Finally Φm is the Euclidian L2 norm of um. The regularization matrix is

a

c d

b

Figure 3. Hydrothermal manifestation at the Solfatara volcano: (a) the Fangaia mud pool, (b) the “Nuova Fangaia,” (c) the Pisciarelli fumaroles with mud pool, and
(d) the Bocca Grande fumarole. These mud pools are identified with green stars in Figures 5, 6, S2, and S4, and fumaroles are shown with black circles.
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formulated to impose smoothly varying structure in the inverse solution
when Φm is minimized. The regularization parameter (or trade-off
parameter) β determines how much weight is placed on minimizing Φm

in comparison to Φd when minimizing the overall objective function. At
the first iteration β starts at a large value, thereby imposing smoothness
on the solution. As the inversion progresses, β is systematically reduced
to enable reduction in Φd(i.e., to improve the data fit) by allowing greater
heterogeneity in the resistivity distribution. By default, the β value is con-
servatively decreased by half of its previous value when the total objective
function Φ decreases by less than 5% compared to the previous iteration.
At each iteration, data points whose weighted residual error exceeds three
standard deviations from themean weighted residual error are considered
as outliers and removed (Figure S3b). Note that outliers are defined at each
iteration, which means that removed values can be reused in the next
iteration. If the data are appropriately weighted, the inversion converges
when the normalized χ2 statistic (i.e., the squared RMS) reaches 1:

χ2 ¼ 1
N

XN

i¼1

dpred;i � dobs;i
σi

� �2

; (4)

where N is the total number of transfer resistance data and σi is the stan-
dard deviation of the transfer resistance given by the following criteria
proposed by LaBrecque and Yang (2001):

σi ¼ M dobs;i þ γ: (5)

HereM = 0.05, is a 5% error set for all data whileγ = 0.001Ω is considered as
the instrument precision and prevents measurements with excessively
small transfer resistance magnitudes from dominating the inversion. We
used M = 5% because (1) filtered data standard deviations are often lower
than forwardingmodeling errors, such that forward modeling errors deter-
mine the appropriate convergence criteria, and (2) forward modeling
errors are typically no more than 5% of transfer resistance magnitude.
Under these assumptions, the data may be slightly underfit when χ2 = 1
but not overfit and, therefore, free from overfitting induced artifacts.

The ERT inversion is a highly non unique problem unless Occam’s type-
regularization is used to constrain the solution (Loke & Barker, 1996).
Hence, additional constraints and a priori information have to be imple-
mented to better constrain the subsurface structure (Doetsch et al.,
2012; Johnson et al., 2012; Zhou et al., 2014). We incorporated two prior
constraints. First, the electrical conductivity of water in the Fangaia mud
pool is regularly measured around 1 S m�1. Hence, we defined a small
mesh domain according to the spatial extent of this liquid area (70 m2,

2 m deep) and then fixed its electrical conductivity value during the inversion process (Johnson et al.,
2012). In addition, a prior conductivity distribution was used as a starting model. It was obtained by interpo-
lation of the 3-D resistivity model from audio-magnetotellurics (AMT) data inversion with a spatial resolution
of ~50 m (Figure 4a and Text S3). These electromagnetic data were combined with a conductivity model, for
the six first meters, derived from an EM-31 apparent conductivity data (Text S3 and Figure S2). In regions
where no AMT or EM-31 data were available, the electrical resistivity was assigned to a value of 20 Ω m
corresponding to the mean resistivity value of the 63 tomograms. As stated before, the convergence criterion
of the inversion is given by a target value of the normalized chi-square in equation (4), which was determined
assuming modeling errors are greater than measurement errors. After viewing the inversion results at each
iteration, and as an extra precaution against over fitting the data, we opted to terminate the inversion before
the normalized chi-square reached unity. Under these conditions, the 3-D resistivity model of the Solfatara
converged after 16 iterations, with a RMS of 1.92 (Figures 4b and S3).
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Figure 4. Inversion of ERT data. (a) Initial electrical resistivity model (Ω m)
derived from the interpolation of resistivity values found from inversion of
electromagnetic data on the 902,919 elements of the mesh. Surface resis-
tivity down to 6 m is obtained after electromagnetic EM-31 data (inside the
dotted line area, see Figure 4a, Text S3, and Figure S2). The deeper resistivity
layers are taken from the audio-magnetotelluric surveys (AMT). In regions
without AMT or EM-31 data, the resistivity has been fixed to the average
value of 20 Ω m. Main locations are Fangaia pool (F), the Bocca Grande
fumarole (BG), and the Pisciarelli area (P). (b) Decrease of the RMS at each
iteration for the two inversions: homogeneous initial model (20 Ω m) and
heterogeneous initial condition derived from AMT and EM-31 conductivity
surveys with prior constraints (see Figure S3c for RMS relative comparison).
The blue dotted line indicates that the AMT-EM-31 inversion has converged
after 16 iterations with a RMS of 1.92. The AMT-EM-31 initial model slightly
enhances the data fitting compared with the homogeneous one, especially
in the earlier iterations. Consequently, we decided to present this model in
the paper. However, the homogeneous model displays a similar structure but
is less resolved in areas without ERT data.
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3.2. Temperature and CO2 Flux Mapping

An infrared thermal image of the Solfatara crater and its surroundings was captured, using an Airborne
Multispectral sensor Daedalus 1268 ATM Enhanced (Borfecchia et al., 2013) on 19 December 2013, 04:00
(UTC). We orthorectified and georeferenced this 1 m ground resolution image with 70 benchmark points
(Figure 5a).

Soil CO2 flux measurements were carried out using the accumulation chamber method (Chiodini et al., 1996)
with an infrared gas analyzer LI-COR LI 800. Reproductibility of field measurements is around 10%
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Journal of Geophysical Research: Solid Earth 10.1002/2017JB014389

GRESSE ET AL. RESISTIVITY MODEL OF SOLFATARA CRATER 8755



(Chiodini et al., 1998) and CO2 saturation value of the detector is 20,000 ppm. The data set includes 1,136
measurements that were interpolated using a geostatistical ordinary kriging method (isotropic Gaussian
semivariogram model) to provide a mapping of soil diffuse CO2 flux. In addition, we collected 2,085 soil
temperatures at 30 cm depth using a thermal probe (K thermocouple) and used the same geostatistical
process to produce a soil temperature map (Figures 5b and 5c). Since both CO2 flux and temperature sur-
veys were collected between 2008 and 2016, we investigated their reliability with time which showed no
significant changes of the main anomalies over the years (Text S2).

3.3. Soil pH and CEC Measurements

Accurate interpretation of self-potential signals (Text S1) and electrical resistivity in terms of geological
structures, fluid, or clay content requires the knowledge of petrophysical properties. To this end, we
performed soil measurements of CEC and pH on 27 representative samples inside the Solfatara crater
(Figure 6).

In situ soil pH measurements followed the protocol detailed by (Hendershot et al., 2008) using a Woltcraft pH
meter PHT-01 ATC. In practice, 10 g of soil are added into a beaker with 50 mL of deionized water. The
suspension of soil is stirred intermittently for 30 min and left to rest 1 h. Finally, pH measurement is realized
on the supernatant.

The CEC was determined following the method proposed by Aran et al. (2008). We adapted the protocol
in order to keep a good precision and reproducibility for low values (<2 meq 100 g�1). For this purpose,
we increased the soil mass from 2 to 10 g and decreased the cobaltihexamine chloride concentration
from 0.05N to 0.01 N. In practice, 10 g of dry soil are added into a propylene tube with 40 mL of
0.01 N cobaltihexamine chloride solution. After 1 h of shaking, supernatant is filtered on a 0.22 μm.
Finally, absorbance is measured at 472 nm using a spectrophotometer. CEC is calculated with the
following formula:

CECA472 ¼
A4720:05N � A472sample
� �

A4720:05N

� �
�10

V
m
100; (6)

where A4720.05N and A472sample are the absorbencies at 472 nm of 0.01 N cobaltihexamine chloride solution
and of sample supernatant respectively, V is the volume (L) of cobaltihexamine chloride solution added to soil
sample andm is the weighed dry soil (g). Measurements deviation was tested with fivemeasurements on two
samples, and differences were lower than 10%.

4. Results
4.1. Main Degassing Structure Imaged by the Ground Temperature and Soil CO2 Flux Mappings.

The surficial extent of the Solfatara hydrothermal zone is well delimited on the maps of diffuse soil CO2 flux
and ground temperature, showing a clear spatial correlation (Figure 5). The main temperature and flux
anomalies (T > 40°C, at 30 cm depth and soil CO2 flux >500 g m�2 d�1) are clustered inside the Solfatara
crater and on its eastern flank, near Pisciarelli (Figure 5a). This diffuse degassing structure (Chiodini et al.,
2001) of ~0.5 km2 area coincides with the main SW-NE and N-S regional faults. This degassing activity leads
to strong hydrothermal alteration with the formation of secondary minerals (Mayer et al., 2016). In this region,
alteration results in a whitish to reddish color of the ground and the lack of any vegetation. The diffuse degas-
sing structure can be subdivided in three main parts:

1. diffuse degassing area in the central part of the crater, at the Solfatara cryptodome and around main
fumaroles with intense soil CO2 flux from ~1,000 up to ~20,000 g m�2 d�1. The ground temperature (at
30 cm depth) can reach 98°C, which is close to the boiling temperature.

2. direct intense degassing at the main fumaroles: Bocca Grande (~164°C, ~150 t d�1 of CO2), Bocca Nuova
(~148°C, ~50 t d�1 of CO2), and Pisciarelli (~115°C, ~300 t d�1 of CO2 after Aiuppa et al., 2013). These vents
lie on ring and buried faults after Isaia et al. (2015).

3. mud pools, where CO2 and steam are bubbling through hot water (from 50 to 90°C), marked by green
stars in Figure 5. They are located inside the crater at the Fangaia but also close to the Solfatara crypto-
dome and at the Pisciarelli fumarole (Figure 3).
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4.2. Petrophysical Investigations

Maps of soil CEC and pH are shown on Figure 6. These parameters are correlated and display very low values
(CEC < 1 meq 100 g�1 and pH < 2.5) inside the crater, with minimum values in the Fangaia mud pool and
close to themain fumaroles. Highest values (CEC> 5meq 100 g�1 and pH> 3) are located in vegetated areas
and mainly related to the presence of organic matter, clearly visible in these samples.

4.3. Three-Dimensional Resistivity Model of Solfatara

The 3-D resistivity model of the Solfatara crater and Pisciarelli is characterized by low values ranging from 1 to
150Ωm and thus appears as globally more conductive than other volcanic edifices (Byrdina et al., 2017; Revil
et al., 2011, 2010; Rosas-Carbajal et al., 2016). The observed resistivity range is in good agreement with
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previous 2-D ERT studies (Bruno et al., 2007; Byrdina et al., 2014; Isaia et al., 2015) and 2-D AMT surveys
performed at Solfatara (Troiano et al., 2014). It is also consistent with borehole resistivity measurements
carried out in the Campi Flegrei caldera (Giberti et al., 2006; Rabaute et al., 2003). The sensitivity of our
model is satisfactory down to 150 m below the surface (50 m bsl) in the center of the crater and to 100 m
below the surface (sea level) on outer edges and at Pisciarelli. Beneath sea level, the whole structure is
conductive, with electrical resistivity <5 Ω m, in good agreement with the AMT model. This low resistivity
structure is mostly related to ERT surveys. However, in areas that are not covered by these surveys (e.g.,
N-E of the volcano), the AMT resistivity model provides additional constraints at depth, whereas the
EM-31 resistivity model brings a minor contribution in the shallow subsurface of the crater. Thanks to
very high density measurements (43,432 points expanded on ~0.68 km2), the model resolution at
shallow depths reaches 1–2 m in the main fumarolic area, 4 m at the Fangaia, and 10 to 20 m close to
the long ERT profiles.

To support our results, we present cross sections of the 3-D resistivity model, overlain with maps of tempera-
ture, soil CO2 flux, self-potential (from Byrdina et al., 2014) and 3-D representations of electrical resistivity
isovalues. Two resistivity cross sections are shown in Figures 7 and 8 together with a surface temperature
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Figure 7. Resistivity cross section Pr1 overlapped with (a) surface temperature image (°C), (b) soil CO2 flux (g m�2 d�1), (c) self-potential (mV) mapping (black dots
indicate the measurements location), (d) sensitivity of the 3-D cross section. Pr1 crossing the Fangaia pool (F), the Bocca Grande fumarole (BG), and the Pisciarelli
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presented in Figure 1b.
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image, soil CO2 flux, and self-potential. The Pr1 cross section is roughly W-E oriented, 1.2 km long, and passes
through the main structures as the Fangaia mud pool, the hummocks area, the Bocca Grande fumarole, then
finally crosses the Solfatara eastern rim and reaches the Pisciarelli fumarole. The Pr2 cross section is N-S
oriented, 800 m long, and crosses the Solfatara cryptodome, the hummocks area, and finally the Mount
Olibano lava dome. Location of the two resistivity cross sections, Pr1 and Pr2, are represented by purple
lines in Figure 7e together with the geological map after Isaia et al. (2015). Both cross sections have an
investigation depth of 150–200 m below the surface. The corresponding electrical resistivity sensitivity

Figure 8. Resistivity section Pr2 (see Figure 7e for location), crossing from north to south the Solfatara cryptodome and Mount Olibano draped with (a) surface tem-
perature (°C) and (b) self-potential (mV) maps (black dots indicate themeasurements location). Principal units are “a” = liquid-saturated, and or clay-rich area, “c” = area
of formation, and circulation of condensate, “g” = gas-dominated reservoir; black arrow = gas flow, and white arrow = liquid-dominated flow. Black dotted lines
indicate at the surface the main faults/fractures (as in Figure 1b) and their prolongation at depth. The sensitivity of the 3-D cross section is represented in Figure 8c.
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maps are shown in Figures 7d and 8c. The sensitivity is optimal around the Bocca Grande fumarole with
values higher than 10�3. For values below 10�6, the resistivity model can be considered as poorly
constrained, and consequently, the resistivity cross section has been cut out according to this threshold.

4.4. Hydrothermal Structures

Our resistivity model highlights several hydrothermal structures denoted by lowercase letters in Figures 7
and 8. The cross section Pr1 shows a resistive structure of 20–40Ωm labeled “g” (as gas dominated). This unit
is located 60 m beneath the Bocca Grande fumarole and is directly connected to the vent by a ~10 m thick
resistive channel. On the same profile, the Fangaia mud pools and Pisciarelli are both imaged as conductive
bodies. At Pisciarelli, a conductive “p” unit (as plume) of 5–10Ωm reaches the surface on the eastern flank of
the Solfatara crater. It is located in a high diffuse degassing area, near the Pisciarelli vent (Figure 3c). The
Fangaia mud pool area appears as the most conductive region within the Solfatara crater, with resistivity
ranging between 1 and 5 Ωm, and is denoted by “a” (as Fangaia aquifer). At its surface, a 5 Ωm conductive
layer extends over ~400 m2 and surrounds hot acidic mud pools. We used isovalues of electrical resistivity to
image this 3-D structure beneath the Fangaia (Figure 9). It reveals a fairly symmetrical conical shape enlarging
at depth toward the northwestern side, whose resistivity values progressively decrease in the central part and
at depth reach a minimal value of 1 Ωm. On Pr1, a 1–10Ωm inclined layer labeled “c” (condensate flow) lies
between the Bocca Grande fumarole and the Fangaia. Using a 7 Ω m resistivity isovalue, we delineate a
~20-m-thick cylindrical channel sloping toward the Fangaia. This “c” unit is also connected to two other
intense degassing areas in the inner east and south crater flank (Figure 9).

Comparing the resistivity tomograms with the geological map (Figure 10a) allows us to distinguish two
volcanic structures presented in Pr2 and Pr1 cross sections. The first resistive structure of 50–150 Ω m is
located in the S-SE part of the Solfatara crater on Pr2 (Figure 8) and corresponds to the ancient Mount
Olibano lava dome. The latter extends from the surface down to 50 m bsl, at the bottom boundary of the
model. Thermal anomalies are observed in the northern part of Mount Olibano, where there are buried faults.
A second structure, with similar electrical resistivity values (50–100Ωm), is found in the N-E part of the crater
on Pr2 and represents the shallow part of the Solfatara cryptodome (Isaia et al., 2015).

On Pr1, an intermediate resistivity structure (20–50Ωm) of ~30 m thickness, labeled “e” unit (eruptive depos-
its), lies on the top of the crater rim and vegetated areas (Figures 7 and 10). This region does not display any
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thermal or gas flux anomalies but clearly corresponds to the recent Solfatara and Astroni tephra deposits
(Isaia et al., 2015). Two movies slicing the 3-D electrical resistivity model from west to east, and as a
function of depth, are available in the supporting information (Movies S1 and S2). Both movies are
combined with the surface temperature map of the crater.
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5. Discussion
5.1. Alteration and Low Resistivity at the Solfatara Crater

Geology at Solfatara is mainly composed of tephra deposits and ancient lava domes (Isaia et al., 2015;
Petrosino et al., 2012). These two types of volcanic materials generally display distinct resistivity signatures.
For instance, at Vulcano and Stromboli volcanoes, the electrical resistivity of massive lava ranges between
2,000 and 5,000 Ω m, which is 1–2 orders of magnitude higher than the tephra deposits one measured on
the same volcanoes (Finizola et al., 2009; Revil et al., 2008). Here we observe lower electrical resistivity values
(50–150 Ωm) at the Solfatara cryptodome and Mount Olibano lava dome, which can probably be explained
by the presence of fluids, and possibly be associated to host rock hydrothermal alteration. Indeed, the
Solfatara crater has been hosting a sustainable hydrothermal system for the last ~4,000 years without
eruptions (Isaia et al., 2009). Chemical weathering and leaching produced by the circulation of hot acid hydro-
thermal fluids, and meteoric water infiltration, are well-known processes with the capacity to almost comple-
tely alter volcanic rocks (e.g., Keller, 1980; Thien et al., 2015).

5.2. Resistive Gas-Dominated Reservoir Feeding Bocca Grande Fumarole

The resistive “g” structure of 20–40Ωm, is located at 60m below the Bocca Grande fumarolic area (Figures 7a
and 10a) and intersects several faults at the Bocca Grande vent (Figure 8a), where soil temperature and soil
CO2 diffuse degassing are very high (>98°C and >15,000 g m�2 d�1, respectively). We suggest that it repre-
sents a gas-dominated reservoir feeding the Bocca Grande fumarole, for the following reasons:

1. The depth of “g” unit is consistent with vapor-dominated conditions, considering a hydrostatic pressure at
its top (6 bars) with a temperature larger than the vent (165°C).

2. The higher resistivity of this unit can be explained by the presence of steam in a porous medium, as the
resistivity depends on fluid saturation of pore space (Milsch et al., 2010; Roberts et al., 2001). Indeed, we
calculated an increase of electrical resistivity from ~1Ωm to 24Ωm, when pore liquid fluid is substituted
by a partial gas -saturation at 165°C (see Text S4).

3. A ~10 m thick resistive channel directly connects the gas-dominated reservoir to the vent. This conduit
could be a fluid-filled fracture discharging at Bocca Grande fumarole. It is important to note that due to
the dense ERT measurements in this area, the model resolution is sufficiently high to resolve this channel
(Figure 7d).

4. The minimum of self-potential distribution in the crater (�150 mV) is correlated with the Bocca Grande
fumarole (Figures 7c, 8b, and S4). Here these negative streaming potential anomalies at fumaroles and
the Fangaia mud pools are explained by a positive zeta-potential (Revil & Pezard, 1998) (Text S1), as the
soil shows acidic pH (<2) (Figures 6a and S4). Hence, in this case, an upwelling of fluids can generate
negative self-potential values.

Using 2-D ERT surveys, Byrdina et al. (2014) recognized a resistive body underneath the Bocca Grande
fumarole, as well as Troiano et al. (2014) with MT soundings (a comparison between MT and ERT models is
presented in Figure S5). We confirm this structure to be a gas-dominated reservoir as our present 3-D model
is able to prove its connection to Bocca Grande fumarole (Figure 7). The location of the conduit is consistent
with the maximum soil temperature, CO2 flux, and negative self-potential anomalies. The volume of this
vapor-dominated reservoir can be estimated to be around 25,000 m3 using the 24 Ω m resistivity isovalue
(see Text S4). According to Fournier (2006), gas-dominated regions are underpressurized with respect to
the local hydrostatic gradient. Thus, a narrow low-permeability “barrier” is needed at the top of the gas
reservoir to separate the vapor static from the hydrostatic overlying region (Ingebritsen & Sorey, 1988), as
observed in this study.

5.3. Channel of Condensate Water Inferred from Electrical Resistivity

Although the emitted gas is mainly released into the atmosphere, a significant part of steam condenses at the
Solfatara crater (few thousands of tons) when approaching the surface, due to atmospheric cooling (Chiodini
et al., 2004). The presence of water at the surface is obvious at the Fangaia mud pool and at the Pisciarelli
fumarole and was recently observed in the inner N-E side of the crater (Figure 3b). Interestingly, no observa-
tions of such condensed water have been ever identified, so far, in Bocca Grande area. However, lying
between the resistive gas-dominated reservoir “g”, and the surface, a conductive “c” unit (1–10 Ω m) could
represent a liquid-saturated layer formed by steam condensation. It should be noted that for a given
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temperature, the conductivity of this “c” unit can be attributed to either
surface conductivity or fluid saturation and salinity.

Here the very low soil CEC values (<2meq 100 g�1, Figure 6b) measured in
the crater prove the surface conductivity represents a minor contribution
with respect to the fluid conductivity. According to the power law relation-
ship between CEC and surface conductivity (Revil et al., 2017b), the CEC of
the “c” unit corresponds to surface conductivities lower than 10�3 S m�1.
This value is 1 or 2 orders of magnitude lower that the measured electrical
conductivity at the Solfatara (10�2 S m�1 up to 1 S m�1). Consequently,
the low resistivity values of the “c” unit cannot be directly attributed to
high-surface conductivity.

The absence or the low content of such clay minerals was already attested
at the Solfatara crater (Mayer et al., 2016; Zimbelman et al., 2005). Indeed,
in very acidic environments (pH < 2), such as the Bocca Grande fumarole

and the Fangaia mud pool (Figure 6a), the formation of conductive clays is limited or does not take place, the
alteration products being rather alunite and amorphous silica (Zimbelman et al., 2005). Hence, we demon-
strate here that the shallow resistivity variations of the central zone of the Solfatara crater are essentially
related to fluid content and temperature changes.

Consequently, we suggest that electrical resistivity contrasts between “g” and “c” units are related to a sharp
phase transition between a vapor-dominated area and a liquid-saturated zone. In absence of surface conduc-
tivity, the minimum electrical resistivity calculated for a full water saturation of tuff rocks at 105°C is about
~2.5Ωm (see Text S4). The resistivity observed near the Bocca Grande fumarole is consistent with this value
(Figure 7). By choosing a higher resistivity (7Ωm) as an isovalue of its boundaries, we highlight the shape of a
pipe-like structure channelizing the condensate (Figure 9). This channel, of ~30% slope, drives the condensed
water produced in the vicinity of the hottest degassing areas toward the Fangaia mud pool (Figure 10b).
Interestingly, the channel is precisely oriented along a NW-SE buried fault inferred by Isaia et al. (2015)
(Figure 8a), taking advantage of this high-permeability zone.

In order to study the condensate flow evolution along this channel, we extracted the “c” unit resistivity values
from the Pr1 resistivity cross section (Figure 7). Results show the electrical resistivity increases as the conden-
sate flows downward to the Fangaia (Figure 11). Therefore, to investigate if these resistivity variations could
be due to an increase of temperature and gas content along the path, we have calculated the gas saturation
associated to the extracted electrical resistivity values (equations given in Text S4), considering the following
assumptions: (i) The fluid inside the condensed channel “c” is characterized by saturation temperature of
water (considering hydrostatic pressure) due to the buffering effect of steam present at boiling point. This
hypothesis is physically necessary to explain a two-phase region indirectly inferred previously and (ii) the tuff
properties remain homogeneous along the “c” units.

Near the Bocca Grande fumarole, results indicate that the condensate flow (at 105°C) is liquid saturated. Then,
gas proportion increases in the downward channel to reach a saturation value of 0.5, close to the Fangaia.
This increase in gas saturation together with the high diffuse soil CO2 flux measured at the surface
(Figure 11) likely indicates that hot gases percolate through the channel. In addition, self-potential measure-
ments along the profile show a decrease from the Bocca Grande area (�110 mV) toward the Fangaia
(�80 mV). This positive variation of 30 mV is interpreted as a downward fluid flow from the Bocca Grande
fumarole to the Fangaia.

5.4. Hummocks Structures

In the central region of the crater, several hummocks (“h” units) are characterized by high temperature and
soil CO2 flux (>80°C and>5,000 g m�2 d�1 respectively, Figures 7a and 7b). An intense hydrothermal altera-
tion has been identified in this area by Mayer et al. (2016), with formation of a thin (few centimeters thick)
layer of secondary minerals, including alunite and amorphous silica. The secondary mineralization, due to
self-sealing processes, leads to a decrease of the permeability, which in turn impedes the degassing. This
interpretation is confirmed by field observations: when a hole created by an electrode crosses this narrow
impermeable layer (usually a few centimeters are necessary), a small fumarole appears and lasts a few

Figure 11. Change in gas saturation along the condensate unit “c” shown in
Figures 7, 9, and 10 calculated from the electrical conductivity of the model
assuming the temperature follows the saturation temperature curve versus
depth (see section 5.3 for explanations and Text S4 for equations).
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hours, suggesting that a certain amount of gas was trapped at a shallow depth below alunite layers.
Therefore, we suggest that the intermediate electrical resistivity values observed within the hummock unit
(25–70 Ω m) are related to a partially gas-saturated porous rock. Since this resistive area is also the site of
the main thermal and soil CO2 flux anomalies, we suggest a positive correlation between the presence of
impermeable secondary minerals and gas-saturated area.

5.5. The Fangaia Plume

The Fangaia mud pool collects distinct sources of condensed and meteoric water. First, the condensate flow
is mainly produced at the Bocca Grande fumarolic area, but it also originates from the Fangaia area itself,
caused by high diffuse degassing. Second, rainwater flows inside the Solfatara crater and carries altered
deposits which converge in the Fangaia topographical depression. Over time, this last process has created
a flat area characterized by the lowest soil permeability identified inside the volcano (10�15 to 10�16 m2).
The presence of altered deposits at Fangaia raises here the question about the origin of low electrical resis-
tivity values (<5Ωm). A liquid-saturated plume was proposed by Byrdina et al. (2014) to explain such values;
however, the statement whether electrical resistivity is associated either to clay or to fluid content was not
really assessed. New evidences clearly characterize the Fangaia mud pool as a liquid-dominated plume.
Indeed, the negative self-potential anomalies demonstrate the upwelling of fluids (Figure 7). Moreover, the
3-D conical shape of the Fangaia mud pool (Figure 9) perfectly matches the mud pool location, high soil tem-
perature and diffuse CO2 flux area (>50°C and>5,000 g m�2 d�1, respectively). The electrical conductivity of
themud pool water (~1 Sm�1) is comparable with the values observed in the central part of the conical struc-
ture. This conductive area cannot be directly related to the presence of high-surface conductivity (usually
associated with the presence of high CEC-clay minerals) because of the very low CEC and pH values
(0.1–0.5meq 100 g�1, and pH< 2, Figure 6). Our interpretation of a liquid plume is also consistent with results
of Serra et al. (2016) who performed a 3-D active seismic tomography in the Fangaia area. The abrupt attenua-
tion of Swave in the eastern part of the Fangaia was interpreted as a sharp transition between an unsaturated
medium and the Fangaia liquid-saturated plume. The latter was also identified by De Landro et al. (2017) with
3-D P wave velocity model, and by Pilz et al. (2017) using noise-based Rayleigh and Love wave 3-D inversion.
It is worth noting that the deep structure of the Fangaia conical plume is shifted to the west compared to the
surface degassing structure and points to the lowest elevations of the crater rim (Figure 10b), indicating that
fluid flow is driven by the topography.

5.6. Pisciarelli Area

The Pisciarelli fumarole has a lower discharge temperature than the Bocca Grande fumarole (~115°C versus
~164°C) despite its high, almost double, degassing rate. A large amount of steam condenses in this rapidly
evolving fumarole of Campi Flegrei caldera (Figure 3c). Therefore, the conductive structure (5–10 Ω m)
identified at depth can be interpreted as a liquid-dominated plume (Figure 7). No resistive body was found
underneath the fumarole, probably because of the low resolution of the resistivity model near the
Pisciarelli area (20 m interelectrode spacing) and because a temperature of 115°C is too low to form a shallow
gas reservoir.

6. Conclusion

We have performed a high-resolution 3-D electrical resistivity imaging of the Solfatara volcano with 43,432
transfer resistance measurements. For the first time, we have imaged together the Solfatara crater with the
Pisciarelli fumarolic area and highlighted the main geological structures, lava domes, and tephra deposits
(Figure 10b). The metric resolution obtained around Bocca Grande fumarole allowed us to accurately
decipher its shallow anatomy. This vent is connected through a ~10 m thick conduit to a gas-dominated
reservoir at 60 m depth, whose volume can be estimated ~25,000 m3. The intense degassing activity around
the fumaroles produces a large amount of condensed water, which flows inside a buried NW-SE fault toward
the Fangaia mud pool. The Fangaia and the Pisciarelli areas appear as two conductive liquid-dominated
plumes where a significant quantity of water condenses, explaining the presence of mud pools.

We solved a long-discussed ambiguity concerning the nature of the shallow low conductive body below the
Solfatara crater. Indeed, the low soil CEC values measured in the crater suggest a negligible contribution of
surface conductivity, mainly attributed to clay-rich sediments. This interpretation is supported by low soil
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pH value (<2) measured within the crater, as alteration processes cannot lead to the formation of conductive
clay minerals in such an acidic environment. Hence, we conclude that the shallow variations of electrical resis-
tivity are mainly related to fluid content and temperature.

At larger depths, from 0 to 50 m bsl, the globally conductive area (<5 Ω m) underneath the Solfatara could
correspond to a clay-rich cap rock, common on geothermal areas. Indeed, in this anoxic region, H2S cannot be
oxidized into sulfuric acid. Consequently, pH values should be higher and conductive clay minerals can be
formed. This conductive layer at depth could be similar to the maar-diatreme structure of the Suoana crater
(Myakejima volcano, Japan) revealed by Geshi et al. (2011). In this study, authors identified an hydrothermally
altered zone at 200 m below the crater that could be interpreted as a clay-rich region, as we suppose for the
Solfatara crater.

The present study highlights the complex multiphase 3-D structure of the shallow Solfatara hydrothermal
system. The approach used in our work is relevant to better understand the dynamics of hydrothermal
systems in calderas and brings new insights into modeling and assessing the present volcanic unrest at
the Campi Flegrei caldera.
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