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ABSTRACT

This paper proposes an efficient implementation of the blind Self-
Adaptive Decision Feedback Equalizer (SA-DFE) presented in [1].
This innovative low-complexity equalizer has the particularity of
adjusting its structure with the difficulty of the channel. The equal-
izer switches to a linear recursive equalizer when the channel is very
dispersive and to a decision-directed DFE when the output of the
equalizer presents reliable decisions. This paper gives details about
the two structures of the SA-DFE and justifies why these structures
are relevant. However, this paper focuses more particularly on the
transition between the two different modes of the SA-DFE. Indeed,
simulations show that if the transition from one mode to another
is not well-implemented, the equalizer can oscillate between the
two structures involving a major loss of convergence rate. Several
means to obtain smooth transitions are proposed and simulation re-
sults are presented and analyzed. This unsupervised self-adaptive
equalizer has been widely tested in the case of underwater com-
munications and shows good ability in practice to deal with severe
frequency-selective and quickly time-varying channel.

1. INTRODUCTION

D
ata transmission over frequency-selective channels requires
equalization techniques to remove intersymbol interference

(ISI). When the channel is characterized by strong ISI and high vari-
ations in time, adaptive equalization is commonly used in order to
face high computational complexity. Most of the adaptive equaliz-
ers commonly implemented use the criterion of the Minimum Mean
Square Error (MMSE) between the equalizer output and the trans-
mitted data sequence in order to adjust its filter coefficients. During
a learning phase, a data sequence appropriately chosen and known
by the receiver is transmitted in order to initialize the filter coeffi-
cients. This learning phase creates a loss of data rate that can con-
siderably slow down data transmission.
Several methods have been designed to recover the signal without
using a training sequence. One of the simplest and most effective
blind equalization algorithms, called the Constant Modulus Algo-
rithm (CMA) [2], [3] employs the high order statistical properties
of the signal to recover the transmitted data.
A self-adaptive equalizer has been proposed in [1], [15] which
is able, using blind algorithms, to deal with severe quickly time-
varying and high-order frequency selective channels with an adap-
tive and reversible structure. The main characteristic of the unsu-
pervised equalizer presented in [1] is its ability to modify its struc-
ture on its own when the channel becomes too constraining or, on
the contrary, to improve the performance of the equalization us-
ing a decision structure in the feedback loop when the output of
the equalizer presents reliable decisions. This adaptative structure
provides this equalizer with a fast convergence rate and low resid-
ual Mean Square Error (MSE). The Self-Adaptative equalizer (SA-
DFE) has two distinct modes in order to fight ISI: the starting-up
or convergence mode where the structure of the equalizer is recur-
sive linear, and the tracking mode where the structure of the equal-
izer is a DFE. This modification of the structure is possible because
the filters of the equalizer are similar in the two modes when the
SA-DFE presents a sufficiently low BER at its output. However,
the change of structure can be done by evaluating some measure of

performance such as the estimated MSE reaching an appropriately
chosen threshold J0. When the threshold is reached, we note that
a badly-implemented SA-DFE equalizer can oscillate between the
two structures for a long time before reaching a steady state. The
aim of this paper is to show how to avoid these undesired oscilla-
tions by proposing a apppropriate implementation of the SA-DFE
equalizer.
In the second section, we will introduce the context and present the
SA-DFE. We will consider a baseband communication, assuming
that time synchronization is accomplished perfectly. In the third
section, we will describe how to make the transition between the
two structure of equalizer without creating undesired oscillation and
without using an hysteresis on the decision threshold. Finally, per-
formance of various implementations of the SA-DFE equalizer will
be shown on frequency selective channels.

2. CONTEXT AND PRESENTATION OF THE SA-DFE

We consider here only the Single Input-Single Output (SISO) con-
text, in discrete-time baseband communications with complex sym-
bols dk being independent, identically distributed (i.i.d) with zero-
mean and transmitted on time-invariant channels. The signal re-
ceived by the equalizer can be approximated by

s[k] =
P

∑
p=0

h[p]d[k− p]+η[k], (1)

where d[k] is the transmitted data and η[k] is a zero-mean, white
Gaussian random process with variance σ 2

η . Symbols are sent
through baseband QPSK modulation, through a discrete transmis-
sion channel H(z):

H(z) =
P

∑
p=0

h[p]z−p. (2)

As mentionned above, the equalizer has two structures, depending
on the difficulty of the channel. When the equalizer is in conver-
gence mode, the structure is linear recursive, and when the equalizer
is in tracking mode, the structure is a DFE. A detailed description
of the two structures and a discussion of the choice of this adaptive
structure is given here.

Figure 1: SA-DFE in Convergence (or Starting-up) Mode: Recur-
sive Linear Equalizer



2.1 Convergence or Starting-up mode

Figure 1 shows the structure of the equalizer in the convergence
mode. This equalizer is made up of four main parts, indicated in fig-
ure 1: the Gain Control (GC), the Recursive Part (R) , the Transver-
sal Part (T)and the Phase Rotator (PR).
The notations are given for the signal at the various places in the
cascade. Buffers T, U are of length L + 1 and buffer Y is of length
N.
These buffers are the practical implementation of the vectors UN ,
UL+1, T and Y used for the adaptation of the filter coefficients. At
each symbol time k, we have:

A = [a1, . . . ,aN−1,aN ]T (3)

B = [b0, . . . ,bL−1,bL]T (4)

T[k] = [t [k] , . . . ,t [k−L]]T (5)

UN [k−1] = [u [k−1] , . . . ,u [k−N]]T (6)

UL+1[k] = [u [k] ,u [k−1] , . . . ,u [k−L]]T (7)

Y[k] = [y [k−1] , . . . ,y [k−N]]T , (8)

with N,L > 0 and N roughly equal or greater than the length of the
channel. According to the notations of figure 1, we have:

t[k] = gs(k) (9)

u[k] = t[k]−AT UN [k−1] (10)

y[k] = BT UL+1[k] e− jθ̂ [k]. (11)

where A, B are the vectors of the adaptive filters and g is a fac-
tor used to operate a gain control on the signal s[k]. We note that
only the buffer U is useful in the convergence mode of the equalizer.
However, buffers T and Y need to be updated at each symbol time
in order to be ready for a potential transition from the convergence
mode to the tracking mode. This is a necessary and important con-
dition to have smooth transitions from one structure to another. We
suggest in the following sections blind criteria of optimality that can
be used for the four devices GC, R, T, PR and we give a brief jus-
tification why these criteria are relevant. More details about these
criteria can be found in [1].

2.1.1 Gain Control

We set the power level u(k) at a particular value, for instance σ 2
d .

An unsupervised criterion of optimality for GC is:

JGC(g) = E
{

|u [k]|2
}

= σ2
d (12)

In a simulation context, σ 2
d is often set to 1. For practical imple-

mentation of the equalizer where the mathematical operations do
not exeed 1, σ2

d will be set to a value lower than 1, for example σ 2
d

= 0.25.

2.1.2 Recursive Part

It is known [7], [1] that for an infinite-length equalizer the recursive
part R of the recursive linear filter (figure 1) is precisely what the
DFE structure (figure 2) needs in its feedback parts, which is the
structure used by the SA-DFE equalizer for the tracking mode. We
note that this result is proven for equalizers of infinite length, which
is not the case of the SA-DFE equalizer. It is known [8] that for
a finite length DFE, assuming filters of sufficient length, the ideal
solution of the infinite-length equalizer can be almost reached.
In order to satisfy this condition, the recursive part R must be a
whitening filter, meaning that the spectral density of the recursive
filter output is constant. Such a filter is obtained by minimizing

E
{

|u [k]|2
}

and requires R to be placed before the transversal part

T.
Thus, the optimal prediction vector minimizes the function:

JRP(A) = E
{

|u [k]|2
}

(13)

Using an adaptive recursive filter at the entry of an equalizer has
been often criticized [4], [5] for its possible instability or wrong
convergence. Effectively, if the zeros of ((1+A(z)) are close to
the unit circle, or the step size is too large, or the length of the
recursive filter is badly estimated, the adaptive recursive filter can
become unstable or converge to a local minimum. Nevertheless,
the power of the noise σ 2

w is never equal to zero and consequently
the zeros of (1 + A(z)) are fairly distant from the unit circle, which
gives good robustness to the adaptive recursive filter. Besides, a
step size lower than 0.003 and a number of coefficients greater than
P-1 gives excellent results. Since the maximum delay spread of the
channel is roughly known for a given transmission environment,
the latter constraint can easily be respected. This blind adaptive
recursive filter was widely tested with success in real and simulated
time variant contexts without visible instability.

2.1.3 Transversal Part

The Godard criterion [3] or CMA [2] allows blind deconvolution of
nonminimum phase channels. It is proven in [9], [10], [11] that a
finite-length equalizer with the CMA criterion converges towards a
solution close to the Decision-Directed MMSE (DD-MMSE) solu-
tion up to a complex gain factor. Thus, the adaptation criterion of
the transversal part minimizes the function:

JG(B) = E
{

[

|v [k]|p −Rp
]2

}

,Rp =
E

{

|d[k]|2p
}

E
{

|d[k]|2
} . (14)

We only investigate the classical case where p = 2. We notice that
the signal u[k] at the input of the transversal part T is uncorrelated
by the recursive part R. As a result, the autocorrelation matrix of
the signal u[k] is well-conditionned. This property improves the
convergence rate of T. We observe that the CMA normalizes the
modulus of the signal at the output of T but does not correct its
phase. Consequently, the phase rotator part PR has to be cascaded
at the output of T.

2.1.4 Phase Rotator

In order to correct the phase error introduced by the channel and

the demodulator, a phase rotation e− jθ̂ [k] is required, where θ̂ [k]
is an estimate of the phase error between the modulating and the
demodulating carrier waves. To adjust θ̂ [k], a possible criterion is
to minimize the DD-MMSE:

JPR(θ̂) = E

{

∣

∣

∣
v[k]e− jθ̂ [k]− d̂k

∣

∣

∣

2
}

. (15)

This criterion is associated with a Phase Locked Loop (PLL) of
order 2. We note that, since the statistics of QAM signals are un-
affected by any particular rotation, there is still a phase ambiguity
in an unsupervised approach. This problem is classically solved by
differential encoding.

2.2 Tracking mode

Figure 2 shows the structure of the equalizer in the tracking mode.
The structure used here is the classical DFE equalizer [14], [7] with
a gain control at the entry. The equalizer is also divided into four
parts: GC, T, PR, R. The criterion of optimality used here for the
adaption of the recursive and the transversal filter is DD-MMSE
(15). In this configuration, GC and T are redundant, so the coeffi-
cient g[k] can be held at a fixed value g.
We note that, contrary to figure 1, the buffer U is not represented in



figure 2. This is because U is not used in this mode. The buffers
UL+1 and UN are filled progressively at each symbol time with a
zero sample. The purpose of this operation is to erase the oldest
memory of the buffer that is no more useful to the adaptive filter
and to keep updated the other coefficients in order to be prepared
for an eventual transition from the tracking mode to the convergence
mode. In the simulation part, computations were made to compare
this implementation with the case where the buffer UL+1 is not re-
freshed.

Figure 2: SA-DFE in Tracking Mode: DFE

We propose here a solution for the update of the buffers when the
equalizer is in tracking mode. For the purpose of the illustration, we
assume here that the equalizer was in convergence mode from time
0 to k− 1 and has a transition to the tracking mode at the time k.
The following equations show how the buffers are filled at symbol
time k:

T[k] = [t [k] , . . . ,t [k−L]]T (16)

UN [k−1] = [0,u [k−2] , . . . ,u [k−N]]T (17)

UL+1[k] = [0,u [k−1] ,u [k−1] , . . . ,u [k−L]]T (18)

Y[k] =
[

d̂ [k−1] ,y[k−2], . . . ,y [k−N]
]T

. (19)

Until the equalizer was in convergence mode, the buffer Y was filled
with the estimated data y[k] (8). But when the equalizer is in track-
ing mode, the estimated data are assumed to be sufficiently reliable
and it is possible to work with the decided data. Buffer Y is then
filled with the decided data d̂[k].

2.3 Transition between convergence and tracking mode

Following the notations of figure 2, we have:

t[k] = gs[k] (20)

y[k] = (BT T[k])e− jθ̂ [k] (21)

w[k] = y[k]−AT Y[k] (22)

2.3.1 Switching Rule

To control the running mode (convergence or tracking mode), some
performance measures are required. The decision of the mode of
the equalizer at each symbol time k could be performed by com-
paring the BER (Bit Error Rate) to a threshold previously chosen.
When the equalizer reaches the threshold, the estimated data are
considered as sufficiently reliable. An exact value of the BER is
not available at the output of the equalizer each symbol time k, but
we note that this value has connection with the MSE. We can have
an estimation of the MSE that will be re-estimated each symbol
time from the estimated data. We call the estimate of the MSE the
Decision-Directed MSE (DDMSE).
When the MSE is low, DDMSE and MSE are mainly the same.
When the MSE is high, the MSE and DDMSE are different but the
MSE tends to be higher than the DDMSE. We define JDD(k) as the
DDMSE of the system at time k. We have:

JDD(k) = λJDD(k−1)+(1−λ )
∣

∣d̂(k)−w(k)
∣

∣

2
(23)

where λ is the forgetting factor of the MSE estimator (DDMSE).
The parameter λ is important for the design of the self-adaptive
equalizer. If the reactivity of the MSE estimator is too fast, the
equalizer could switch unnecessarily between the two modes of the
equalizer On the contrary, if the estimator responds slowly, the con-
vergence time to reach the tracking mode will increase. A good
behavior is obtained for λ = 0.99.
Finally, the commutation rule will be given by:
• JDD(k) > J0: convergence mode
• JDD(k) < J0: tracking mode

where J0 is the threshold of the system. The choice of J0 appears
to be a crucial point when designing the SA-DFE equalizer. It is
important for the threshold to match with a sufficient low BER (Bit
Error Rate) in order to avoid a pathological behavior of the DFE: the
threshold must be small enough to ensure that the estimated MSE
and the true MSE are roughly the same. For example, J0 = -6 dB
appears to be a good choice in practice for the QPSK case.

2.3.2 How to have smooth transitions

Observing the behavior of the equalizer, we note the presence of
oscillations between the two structures. These oscillations are com-
mon and do not affect the convergence rate of the SA-DFE when
the program is well implemented. However it can slow down the
convergence rate of the equalizer considerably when the transitions
are not well managed and in particular, as indicated in what follows,
when the internal buffers of the equalizer are not updated in an ap-
propriate way.
A possible and immediate solution to this problem is to compute
in parallel the output of both modes of the equalizer at each sym-
bol time. Then, a decision is made to take the output of one mode
or the other, depending on the value of the current estimated MSE.
However, it is not always possible to compute both structures of the
SA-DFE equalizer in parallel in the context of a real-time communi-
cation on an embedded system, due to its computational complexity.
Another solution is to implement hysteresis on the threshold J0. For
example it is possible to have a threshold of J1= -5dB for the transi-
tion of the tracking mode to the convergence mode and a threshold
J2= -6dB for the transition of the convergence mode to the tracking
mode. As will be seen in the simulation sections, this solution can
give mediocre results in practice, especially on real channels.
In order to have a reliable and stable equalizer, attention has to be
paid to how to manage the internal buffers of the equalizer. We con-
sider the three buffers successively and we propose different config-
urations for each of them, including the one proposed previously.
• Buffer T

The solution proposed in Eq. (5) and (16) in this paper is to
inject t[k] in buffer T at each symbol time k for the convergence
and the tracking mode. (Configuration T.1)
A worse solution would be to neglect to update the buffer at
each symbol time when the equalizer is in convergence mode,
and update it only in the tracking mode. (Configuration T.2)

• Buffer U
The solution previously proposed in Eq. (6), (7), (17) and (18) is
to update the buffer U when the equalizer is in tracking mode by
shifting the data at each sample time and filling the buffer with
zero. At each iteration, we suppose u[k] = 0, which completely
erases the memory of buffer U in N iterations. (Configuration
U.1)
A worse solution proposed here is to leave the buffer U in the
same state when the equalizer is in tracking mode. When the
equalizer performs a transition from the tracking mode to the
convergence mode, the samples in buffer U come from the pre-
vious transition, and are not in the actual context of the equal-
izer.(Configuration U.2)

• Buffer Y
The solution previously proposed in Eq. (8) and (19) is to up-
date the buffer at each symbol time, filling the buffer with y[k]
when the equalizer is in convergence mode and with d̂[k] when
the equalizer is in tracking mode. (Configuration Y.1)



A worse solution that may occur when the equalizer is not well-
implemented would be to omit to update buffer Y when the
equalizer is in convergence mode and to adapt the coefficients
of filter A using the vector Y, filled with the decided data only
when the equalizer is in convergence mode.(Configuration Y.2)

3. SIMULATION RESULTS

3.1 Simulation over time invariant channels

Simulation results are given for the MSE on the time-invariant chan-
nel: h = [2−0.4 j,1.5+1.8 j,1,1.2−1.3 j,0.8+1.6 j]T .
For the simulation context, we have J0 = −6 dB, L = 21, N = 10,
ES/N0 = 15 dB, σ2

d = 1.
The step size used for the adaptation algorithms are set at the value:
µA = µB = 0.003, µG = 0.01.
Because of the unsupervised character of the equalizer, the initial-
ization of the parameters are crucial for a good convergence of the
equalizer. We have here:
A = [a1, . . . ,aN ]T , with ai = 0 0 ≤ i ≤ L and:
B = [b0, . . . ,bR, . . . ,bL]T with bR = 1, R = 16, bi = 0, 0 ≤ i≤ L, i 6=
R.
We note that the internal buffers are initialized before each simula-
tion, and are never reinitialized during a simulation. As a matter of
comparison, the curve of the Data Aided DFE and of the blind Lin-
ear Equalizer (LE) were reported on the same figure. The simulation
context is the same for the two curves exept that the linear equal-
izer is composed of only a transversal filter with 31 coefficients.
The estimated MSE (23) of the SA-DFE equalizer is computed for
different implementations of the buffers, described previously. For
each of the 3 buffers, 2 implementations are proposed, the first is
the optimal one, the second is the non-optimal configuration. For
each configuration of the SA-DFE equalizer, Monte-Carlo simula-
tions were performed, using 100 different runs.
Firstly, we note that for a well-designed SA-DFE (i.e configuration
T.1 & U.1 & Y.1), the convergence rate is very fast and the residual
MSE is roughly the same as the supervised data-aided DFE.
Using configuration U.2 (resp. Y.2) rather U.1 (resp Y.1) does not
change the convergence rate of the equalizer significantly. But a
worse implementation of buffer T can drastically slow down the
convergence rate of the SA-DFE. We can see that the line slope is
very smooth compared to the optimal configuration, meaning that
oscillations between the two modes last a long time.
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Figure 3: Plot of the MSE versus symbol number over a time-
invariant channel. The figure shows results for the optimal imple-
mentation of the SA-DFE (T.1 U.1 Y.1) and the three other imple-
mentations proposed. The curves of the conventional DFE Data-
Aided equalizer optimized with the MMSE criterion and the linear
blind equalizer optimized with the Godard criterion are plotted as a
reference.

3.2 Simulation over real channels

We dedicate the second part of the simulation to the underwater
acoustic channel. The transmission simulated here is a sample of a
large database collected by GESMA in collaboration with SERCEL
and ENST Bretagne, during a series of measures in a sea environe-
ment. The channel chosen here is highly frequency-selective and
is subject to large variations in time. The communication flow is
approximately 10kbps. [12].
The SA-DFE used here is a generalization of the SA-DFE equalizer
to Single Input-Multiple Output (SIMO) channels, which introduces
spatial diversity. A detailled description of this equalizer is made in
[13]. The filters of the SA-DFE equalizer are configured as follows:
L= 25, N= 25, used with 4 different sensors. The initialization of the
filters of the SA-DFE are the same as for the time invariant channel.
The step sizes of the filters are the same as in Section III.A.
Two different implementations of the equalizers were tested over
this channel: configuration T.1 U.1 Y.1 which is the implementa-
tion proposed throughout this paper, and configuration T.2 U.2 Y.2,
which is the worst implementation, described above. For each con-
figuration, simulations were performed on equalizers configured ei-
ther with hysteresis (J1 = -5 dB, J2 = -6 dB), or without hysteresis
(J0 = -6 dB).
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The results of the simulations on time-varying channels show (fig-
ure 4) that adding hysteresis to a badly-implemented SA-DFE
equalizer (T2,U2, Y2) will introduce instability: in our example,
the transversal equalizer coefficients go to infinity. We can also
note that a badly implemented equalizer does not manage to go into
tracking mode, because of the difficulty of the channel.
Results given with well-implemented equalizer (T1, U1, Y1) on
the same channel will give far better results than those given by



an equalizer badly implemented. On the other hand, implementing
additional hysteresis will not improve the performance of the SA-
DFE equalizer notably (figure 5).
The simulation example shows here that implementing hysteresis
is not a necessary solution for a device that will be implemented
in a real system. Moreover, it shows the importance of having a
well-implemented equalizer for the case of difficult and non-time
invariant channels.
We note that the transition from tracking mode to convergence
mode can introduce a modification in the equalizer delay and con-
sequently a loss of symbols in the case of particularly severe fre-
quency selective channels, typically the channel that is presented
here. This loss of one or several symbols can seriously compromise
the performance of the whole communication system, and more par-
ticularly when the system includes channel coding. Further investi-
gations have to be done to solve this issue.

4. CONCLUSION

In the present paper a presentation of a fast converging Self-
Adaptive DFE is given and an efficient implementation of this
equalizer is proposed. A justification of the self adaptive structures
is proposed and several implementations of the equalizers are evalu-
ated and compared to the initial one. This paper should clarify some
details of the implementation of the SA-DFE equalizer necessary to
obtain a reliable device. Performance of the SA-DFE is superior to
that of the classical blind linear equalizer optimized with the Godart
criterion, in particular regarding its convergence rate.
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