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Abstract: Femtosecond laser-induced spatial redistribution of silver species (ions, clusters, 
and hole centers) in a silver-containing phosphate glass is investigated by correlative means 
of near-field scanning optical microscopy (NSOM) images, numerical simulations, chemical 
micro-probe analysis, and nanoscale spatial profiles after soft etching. In particular, we found 
that the chemical etching selectivity for nanoscale patterning is strongly dependent upon the 
irradiation of femtosecond laser due to the spatial redistribution of silver species within the 
affected area. These results strongly indicate that controlling the distribution of silver species 
by femtosecond laser irradiation may open new routes for surface nanoscale chemical and/or 
spatial patterning for the fabrication of 2D surface photonic crystals. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Femtosecond (fs) laser modification technology of materials has made tremendous progress 
over the past decade, to access a large panel of applications that require special optical, 
physical and/or chemical properties associated with integrated bulk or surface functionalities 
[1]. While considering laser-induced element redistribution, most of the reported literature 
deals with processes in thermal regime with temperature increase above glass fusion [2,3]. 
Additional potentialities rely on the innovative synthesis of prepared materials with 
photosensitive agents [4]. In this framework, controlling the photosensitive agents under laser 
irradiation in a non-thermal regime, as well as the spatial redistribution and chemical 
evolution due to activated chemical reactivity, is of prime importance to achieve reliable 
nano- and micro-scale material changes with high optical quality. Such control and 
understanding is highly challenging since it involves multi-scale material changes, which 
requires correlative investigation approaches. 

In this work, we present the correlative description of fs laser-induced spatial 
redistribution of silver species of our photosensitive silver-containing phosphate glasses, 
based on near-field scanning optical microscopy (NSOM) images, chemical micro-probe 
analysis, spatial profile after soft etching, and numerical simulations of the silver species 
redistribution. These results corroborate each other, and have led us to retrieve for the first 
time the nanoscale spatial profile of soft chemical etching rate of laser-induced modifications. 

2. Experimental methods: glass preparation, laser irradiation and analyses 

We have developed a silver-containing zinc phosphate glass 55ZnO/40P2O5/4Ag2O/1Ga2O3 
(in mol. %), as previously detailed [5]. Direct laser writing (DLW) was carried out with a Yb 
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element distribution (blue curve, from [11]) and the present non-resonant NSOM 
measurement interpreted as the refractive index spatial distribution (red curve), independently 
revealing the presence of the three same laser-affected areas. 

 

Fig. 4. (a) Experimental topological profile (blue curve) and simulated etching-induced 
topological profile (red curve) adjusted by optimizing the normalized etching rate distribution 
(green curve). (b) Silver element distribution by micro-probe measurement (blue curve, from 
[9]) and NSOM measurement (red curve, from Fig. 3(d)) with respect to the optimized 
normalized etching rate distribution (green curve). 

Indeed, the NSOM measurements of silver element accumulation and cluster creation 
correlate with a very low etching rate (radius between 1 to 1.8 μm). Moreover, the silver 
reservoir depletion is independently shown by NSOM and electron micro-probe. Finally, the 
estimation of a very strong on-axis etching rate (240 nm, FWHM, green curve) corroborates 
the very narrow on-axis silver depletion (sub-200 nm, FWHM, blue curve), which may even 
be seen in the on-axis NSOM trace (red curve). Thus, laser-induced index change 
distributions [11] as well as the spatially-distributed etching rate depend here on the local 
concentration and nature of silver species [14], and on additional glass matrix rearrangements 
such as release of molecular oxygen to ensure charge compensation and material stabilization, 
as reported in thermal poling [15] or for glass irradiations in a thermal regime [16]. 

4. Conclusion 

In conclusion, we have reported for the first time the correlative description of laser-induced 
silver redistribution in terms of chemical micro-probe, NSOM and numerical modeling. The 
results significantly strengthen the understanding of material modifications in such glasses in 
a non-thermal interaction regime. In particular, it has been found that the spatial distribution 
of species in silver-containing glasses produced by femtosecond laser irradiation has a 
significant effect on chemical etching selectivity. This should help for future development of 
nanoscale surface chemical patterning, such as for 2D photonics crystal applications [17]. 
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