
HAL Id: hal-02124164
https://hal.science/hal-02124164v1

Submitted on 10 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A Lightweight Toolchain to Validate, Visualize, Analyze,
and Deploy ETSI NFV Topologies

Philippe Merle, Adja Ndeye Sylla, Meryem Ouzzif, Frédéric Klamm, Karine
Guillouard

To cite this version:
Philippe Merle, Adja Ndeye Sylla, Meryem Ouzzif, Frédéric Klamm, Karine Guillouard. A Lightweight
Toolchain to Validate, Visualize, Analyze, and Deploy ETSI NFV Topologies. NetSoft 2019 - The 5th
IEEE International Conference on Network Softwarization, Jun 2019, Paris, France. �10.1109/NET-
SOFT.2019.8806632�. �hal-02124164�

https://hal.science/hal-02124164v1
https://hal.archives-ouvertes.fr


A Lightweight Toolchain to Validate, Visualize,
Analyze, and Deploy ETSI NFV Topologies*

Philippe Merle∗, Adja Ndeye Sylla†, Meryem Ouzzif†, Frédéric Klamm†, Karine Guillouard†
∗Spirals project-team, Inria Lille - Nord Europe, Lille, France

Email: philippe.merle@inria.fr
†TGI/OLN, Orange Labs, Rennes, France

Email: {adjandeye.sylla, meryem.ouzzif, frederic.klamm, karine.guillouard}@orange.com

Abstract—We demonstrate a lightweight toolchain for validat-
ing descriptors of network functions compliant with the latest
ETSI NFV standards, visualizing these descriptors in the form
of various diagrams (i.e. network-oriented, function-oriented, and
UML2-based), analyzing these descriptors formally with the Alloy
Analyzer, and deploying these virtualized network functions on
OpenStack.

Index Terms—ETSI NFV, Validation, Visualization, Analysis,
Deployment, OpenStack.

I. OVERVIEW: MOTIVATION AND PROPOSITIONS

Network function virtualization (NFV) [1] is the current
trend for virtualizing network functions, particularly in 5G
and IoT contexts, with the IT virtualization technologies.
The European Telecommunications Standards Institute (ETSI)
defines standards, called ETSI NFV, to foster the portability
of virtual network functions (VNFs) and the interoperability
between VNF platforms. In particular, ETSI NFV defines a
standard data format [2] based on the OASIS’s TOSCA Simple
Profile in YAML [5] to describe VNFs. Several open source and
commercial NFV platforms (e.g. ONAP, OPNFV, Cloudify, to
name a few) should support the latest ETSI NFV standards
soon. However, DevOps teams also need standalone/offline
tools to understand, validate, analyze, and deploy their VNFs
easily, i.e. without running a heavy NFV platform. To address
this, we demonstrate a lightweight toolchain to 1) validate
VNFs descriptors compliant with the latest ETSI NFV/OASIS
TOSCA standards, 2) visualize these VNFs descriptors in
the form of various diagrams (i.e. network-oriented, function-
oriented, and UML2-based), 3) verify and analyze VNFs de-
scriptors formally with the Alloy Analyzer [13], and 4) deploy
virtualized network functions and services on OpenStack [14],
a world-wide used open source cloud management tool.

II. USE-CASE NETWORK SERVICE

To illustrate our toolchain, we use an early release of
the Wireless Edge Factory (WEF) [6] developed by the IRT
b<>com [7]. This version, previously called Universal Gate-
way (UGW) [8] and shown in Fig. 1, is a 4G virtualized core
network framework to support multiple access types.

* This work is funded by Orange Labs in the context of the <I/O Lab>
joint research laboratory. The authors would like to express their gratitude to
the members of the IRT b<>com who provided the necessary source code
and information of the UGW use-case, particularly Emmanuel Gouleau and
Philippe Bertin.

Fig. 1: UGW network service.

The core network control part is made of six network
functions running in virtual machines:

• Authentication, Authorization & Accounting (AAA),
• Dynamic Host Control Protocol (DHCP),
• Home Subscriber Server (HSS),
• Mobility Management Entity (MME),
• Serving & PDN Gateway Control plane (S/PGW-C),
• SDN Controller (SDN-Ctlr) of S/PGW user plane (GW-

U).
As input for our toolchain, we beforehand describe and

package the UGW framework in compliance with the latest
ETSI NFV standards [2]–[4]. Thus, the UGW is described as
an ETSI compliant network service (NS) composed of the six
VNFs aforementioned and one physical network function (i.e.
PNF GW-U). The ultimate output of the toolchain is the UGW
deployment using OpenStack.

III. TOOLCHAIN ARCHITECTURE

Fig. 2 depicts the architecture of our ETSI NFV compliant
toolchain providing four main features implemented by five
components:

a) Validation: As input, the PARSER component accepts
network service, virtual network function, and physical net-
work function descriptors (NSD, VNFD, and PNFD, respec-
tively, as specified in [2]). The PARSER component is set
with ETSI NFV types (specified in [2]) and our own JSON
Schema [9] of OASIS’s TOSCA Simple Profile in YAML [5].
This schema allows us to validate NSD/VNFD/PNFD with
respect to the syntax and typing of the TOSCA language. As



Fig. 2: Toolchain Architecture.

output, the PARSER component builds an in-memory hierar-
chical structure representing ETSI NFV descriptors, which is
consumed by the generators described below.

b) Visualization: In order to better understand ETSI
NFV descriptors, the DIAGRAM GENERATOR generates five
kinds of visual diagrams: 1) Network Diagram represents
the network interconnecting the different entities (see Fig.
3), 2) TOSCA Diagram represents how TOSCA nodes of
network services/functions are interconnected throught their
requirements and capabilities (see Fig. 4), 3) UML2 Class
Diagram represents network service and function types (see
Fig. 5), 4) UML2 Component Diagram gives a component-
oriented view of network services/functions (see Fig. 6), and
5) UML2 Deployment Diagram gives a deployment-oriented
view of network services/functions (see Fig. 7). We use the
nwdiag tool [10] to generate network diagrams, the dot tool
[11] to generate TOSCA diagrams, and the PlantUML tool
[12] to generate UML2 diagrams.

Fig. 3: Network Diagram for UGW NS.

Fig. 4: TOSCA Diagram for DHCP VNF.

Fig. 5: UML2 Class Diagram for HSS VNF.

c) Analysis: In order to formally analyze network func-
tion/service descriptors, the ALLOY GENERATOR component
generates Alloy specifications from ETSI NFV descriptors.
Alloy is a lightweight formal specification language based on
a first order relational logic [13]. Alloy specifications can be
automatically analyzed with the Alloy Analyzer, a relational
solver using SAT solvers. Then, DevOps teams can easily
express and run various formal analysis on their ETSI NFV
descriptors.

d) Deployment: The HOT GENERATOR component gen-
erates OpenStack Heat templates automatically. Then, the
HOT2ALLOY component allows DevOps teams to translate
these generated Heat templates into Alloy specifications in
order to run Heat template specific analysis. Finally, DevOps
teams can deploy the generated Heat templates on their
OpenStack platform.

IV. PLANNED DEMONSTRATION

The demonstration consists in applying our ETSI NFV
compliant toolchain on the UGW descriptors presented in



Fig. 6: UML2 Component Diagram for MME VNF.

Fig. 7: UML2 Deployment Diagram for AAA VNF.

Section II:
1) We run validation of the UGW descriptors and show

several examples of detected lexical/syntactic/typing er-
rors.

2) We generate all the diagrams for the UGW use case
and show the five kinds of supported diagrams, i.e.
network diagrams (see Fig. 3), TOSCA diagrams (see

Fig. 4), UML2 Class/Component/Deployment diagrams
(see Fig. 5, 6, 7, respectively).

3) We generate Alloy specifications and run various anal-
yses with the Alloy Analyzer.

4) We generate Heat templates from UGW descriptors.
5) We generate Alloy specifications from generated Open-

Stack Heat templates and run various Alloy-based analy-
ses, for instance two virtual machines that are connected
to the same port.

6) We deploy generated Heat templates on an OpenStack
platform and show the deployed UGW service with the
OpenStack dashboard.

V. CONCLUSION

We have demonstrated a lightweight toolchain compliant
with the latest ETSI NFV standards [2]–[4]. This toolchain
allows DevOps teams to validate ETSI NFV descriptors of
their network services and functions, visualize their descrip-
tors as network-oriented, TOSCA-oriented, and UML2-based
diagrams, analyze their descriptors formally with the Alloy
Analyzer [13], and deploy their network services and functions
on OpenStack [14].

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
R. Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” IEEE Communications Surveys & Tutorials,
18(1):236-262, 2016.

[2] ETSI, “Network Functions Virtualisation (NFV) Release 2; Protocols
and Data Models; NFV descriptors based on TOSCA specification,”
ETSI GS NFV-SOL 001 v2.5.1, Dec. 2018.

[3] ETSI, “Network Functions Virtualisation (NFV) Release 2; Protocols
and Data Models; VNF Package specification,” ETSI GS NFV-SOL 004
v2.5.1, Sep. 2018.

[4] ETSI, “Network Functions Virtualisation (NFV) Release 2; Protocols
and Data Models; Network Service Descriptor File Structure Specifica-
tion,” ETSI GS NFV-SOL 007 v2.5.1, Dec. 2018.

[5] OASIS, “TOSCA Simple Profile in YAML Version 1.2,” OASIS Stan-
dard, Jan. 2019.

[6] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, P. Bertin, A. Kerbellec, “On
Evaluating Different Trends for Virtualized and SDN-ready Mobile
Network,” 6th IEEE International Conference on Cloud Networking
(CloudNet 2017), Prague, Czech Republic, Sep. 2017.

[7] b<>com, “Wireless Edge Factory,” 2019. [online] https://b-com.com/
en/bcom-wireless-edge-factory.

[8] F. Guillemin, “Network function virtualization: some design and perfor-
mance issues for network operators,” Nov. 2017. [online] https://www.
irt-systemx.fr/wp-content/uploads/2017/07/04-Fabrice-Guillemin.pdf.

[9] A. Wright, H. Andrews, “JSON Schema: A Media Type for Describing
JSON Documents,” IETF Internet Draft, Mar. 2018. [online] https:
//json-schema.org.

[10] T. Komiya, “nwdiag - simple network-diagram image generators,”
[online] http://blockdiag.com/en/nwdiag.

[11] E. R. Gansner, S.C. North, “An open graph visualization system and its
applications to software engineering,” Software - Practice and Experi-
ence, 30(11):1203-1233, 2000. Available at https://www.graphviz.org.

[12] “PlantUML,” [online] http://plantuml.com.
[13] D. Jackson, “Software Abstractions: Logic, Language, and Analysis,”

MIT press, 2012.
[14] O. Sefraoui, M. Aissaoui, M. Eleuldj, “OpenStack: Toward an Open-

Source Solution for Cloud Computing,” International Journal of
Computer Applications, 55(3):38-42, 2012. Available at https://www.
openstack.org.


