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GALERKIN METHOD FOR TIME FRACTIONAL SEMILINEAR
EQUATIONS

YAMINA OUEDJEDI, ARNAUD ROUGIREL, KHALED BENMERIEM

Abstract. This paper gathers the tools for solving Riemann-Liouville time fractional
non-linear reaction-diffusion equations by the Galerkin method. As a model problem,
existence and uniqueness is proved for semilinear heat equations with polynomial growth
at infinity.

1. Introduction

The Galerkin approximation method in an efficient and robust tool for solving partial
differential equations (see for instance [Tem88], [Lio69], [Rou05]). In that paper, only
low order Riemann-Liouville time fractional derivatives are considered; that is to say, the
order of the fractional derivatives is less than 1. In order to implement this method for
solving time fractional non-linear problems, three tools have to be developed: (i) a suitable
functional framework; (ii) time fractional inequalities; (iii) an Aubin-Lions theory. Let us
introduce these elements.

Usually, fractional Gagliardo-Sobolev spaces are used. However, they are not very suit-
able for time fractional problems since the connection between these spaces and time frac-
tional derivatives is not straightforward. The consequence is that a trivial initial condition
is needed. Moreover, these spaces are quite complicated to handle.

Recently, suitable and simpler fractional spaces appear in the literature. See for instance
[DR18], [LL18b], [dF19]. These spaces are natural generalizations of the spaces involved
in the integer case. See Section 3 for details.

By time fractional inequalities, we means for example

1

2
Dα

0,t

∫
Ω

u(t, x)2 dx ≤
∫

Ω

Dα
0,tu(t, x)u(t, x) dx. (1.1)

According to the integer setting, we cannot expect such an relationship to hold without
imposing a zero initial condition. Under some smoothness conditions, (1.1) is proved in
[Zac12, Theorem 2.4], and in [LL18b, Proposition 2.18] by a simple and smart convexity
argument. In order to apply (1.1) to nonlinear problems, we have relaxed the smoothness
assumptions by a density argument: see Corollary 3.3 and Proposition 3.4 where a integral
version of (1.1) is featured. We refer also to [dF19], where time fractional inequalities hold
for hilbert valued functions. However,

Aubin-Lions theory allows to get point-wise convergence by compactness arguments,
and to pass to the limit in non-linear terms. By adapting the arguments of [LL18b], we
obtain the compactness result stated in Corollary 3.5.

Key words and phrases. Riemann-Liouville derivatives, Galerkin method, Fractional semilinear
equations.
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In the two forcoming sections, we recall or develop the tools for solving fractional equa-
tions. The Galerkin method is implemented in section 4 for solving time fractional semi-
linear heat equations.

2. Preliminaries

As far as integrable functions are concerned, convolution is a basic tool in fractional
calculus. However, in order to obtain a density result, namely Theorem 3.1, we will need
to make the convolution of non absolutely integrable functions. That can be achieved
following [GS77], for causal functions.

Let (X, ‖.‖) be a real Banach space, and T be a positive number. Let us recall that
f ∈ L1

loc(R;X) is said to be causal if f = 0 a.e. on (−∞, 0).

Definition 2.1. Let f ∈ L1
loc(R;X), g ∈ L1

loc(R) be causal functions. Then the convolution
of f and g is the causal function of L1

loc(R;X) defined, for a.e. t ∈ R, by

g ∗ f(t) =

∫
R
g(t− y)f(y) dy.

Classically, fractional derivatives involve another kind of convolution, since the functions
are defined on [0, T ].

Definition 2.2. Let f ∈ L1(0, T ;X) and g ∈ L1(0, T ). Then the convolution of g and f
is the element of L1(0, T ;X) defined, for a.e. t ∈ [0, T ], by

g ∗T f(t) :=

∫ t

0

g(t− y)f(y) dy.

Of course these two definitions are consistent. Indeed, the following result hods true.

Proposition 2.1. Let f ∈ L1
loc(R;X) and g ∈ L1

loc(R) be causal functions. Then

g|[0,T ]
∗T f|[0,T ]

= (g ∗ f)|[0,T ]
in L1(0, T ;X).

Above, f|[0,T ]
denotes the restriction of f to [0, T ]. The elementary proof of that propo-

sition is omitted. Owing to the above result, we will write g ∗ f instead of g ∗T f , if no
confusion can occur.

The following standard inequality will be useful. Let I = [0, T ] or R. If f ∈ Lp(I;X)
with 1 ≤ p ≤ ∞, and g ∈ L1(I) then g ∗ f belongs to Lp(I;X) and

‖g ∗ f‖Lp(I;X) ≤ ‖g‖L1(I)‖f‖Lp(I;X). (2.1)

Let us turn our attention to fractional derivatives. The following kernels are of funda-
mental importance in the theory of fractional derivatives. For α ∈ (0,∞), we denote by
gα the causal function of L1

loc(R) defined, for a.e. t > 0, by

gα(t) =
1

Γ(α)
tα−1.

These Kernels satisfy the following semi-group property : for α > 0, β > 0,

gα ∗ gβ = gα+β in L1
loc(R). (2.2)

Now, we are able to introduce the fractional Riemann-Liouville derivative of vector-
valued functions. In the sequel, α ∈ (0, 1) will denote the fractional order of differentiation.
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Definition 2.3. Let 1 ≤ q < ∞ and u ∈ Lq(0, T ;X). We say that u admits a fractional
derivative of order α in Lq(0, T ;X) if

g1−α ∗ u ∈ W 1,q(0, T ;X).

In this case, the fractional derivative of order α of u is the function of Lq(0, T ;X) defined
by

Dα
0,tu :=

d

dt
{g1−α ∗ u}.

Above, W 1,q(0, T ;X) denotes the space of functions belonging to Lq(0, T ;X) whose first
order derivative (in the sense of distributions) belongs to Lq(0, T ;X).

Proposition 2.2. Let 1 ≤ q <∞, α ∈ (0, 1) and u ∈ Lq(0, T ;X). If u admits a fractional
derivative in Lq(0, T ;X) then

u = (g1−α ∗ u)(0)gα + gα ∗Dα
0,tu in Lq(0, T ;X). (2.3)

Moreover, if α ≤ 1− 1
q
then (g1−α ∗ u)(0) = 0.

Any function u satisfying the assumptions of Proposition 2.2 has, in some sense, a weak
singularity at t = 0. Indeed, let us assume that u = vgβ where v ∈ X \ {0} and β > 0.
Then by (2.2), u belongs to Lq(0, T ;X) and has a α-derivative in Lq(0, T ;X) iff β > 1− 1

q

or β = α.

Proof of Proposition 2.2. Equality (2.3) is well known (see for instance [DR18, Proposition
3.4]). In order to prove the second assertion, we observe that gα does not belong to Lq(0, T )
if α ≤ 1− 1

q
. Thus we must have (g1−α ∗ u)(0) = 0.

�

Let us now focus on weak fractional derivative of vector-valued functions. The starting
point is the following standard integration by-part formula.

Proposition 2.3. [DR18, Proposition 3.1] Let α ∈ (0, 1), f ∈ L1(0, T ;X) and ψ ∈
C1([0, T ]). Assume that f admits a derivative of order α in L1(0, T ;X). Then∫ T

0

Dα
0,tf(t)ψ(t) dt = −

∫ T

0

f(t)Dα
t,Tψ(t) dt+

[
g1−α ∗ f ψ

]T
0

in X, (2.4)

where

Dα
t,Tψ(t) :=

∫ T

t

g1−α(y − t)ψ′(y) dy, ∀t ∈ [0, T ],

and ψ′ := d
dt
ψ denotes the derivative of ψ. Moreover, if in addition, ψ(0) = ψ(T ) = 0 then∥∥∥∫ T

0

f(t)Dα
t,Tψ(t) dt

∥∥∥ ≤ g2−α(T )‖f‖Lq(0,T ;X)‖ψ′‖L∞(0,T ). (2.5)

That property allows us to define fractional derivative in the sense of distributions.
Indeed, (2.5) shows that the linear map

D(0, T )→ X, ϕ 7→ −
∫ T

0

f(t)Dα
t,Tϕ(t) dt

is a vector-valued distribution, whose order is (at most) 1. The set of distributions with
values in X is denoted by D′(0, T ;X). That allows us to set this definition.
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Definition 2.4. Let α ∈ (0, 1), q ∈ [1,∞) and f ∈ Lq(0, T ;X). Then the weak derivative
of order α of f is the vector-valued distribution, denoted by Dα

0,tf , and defined, for all
ϕ ∈ D(0, T ), by

〈Dα
0,tf, ϕ〉 = −

∫ T

0

f(t)Dα
t,Tϕ(t) dt in X.

If we want to highlight the duality taking place in the above bracket, we will write

〈Dα
0,tf, ϕ〉D′(0,T ;X),D(0,T )

instead of 〈Dα
0,tf, ϕ〉.

Clearly, weak fractional derivatives is a natural extension of (first order) weak derivatives,
also called derivatives in the sense of distribution.

Of course, the concept of weak derivative extends that of fractional derivative given in
Definition 2.3. See [DR18, Proposition 3.2] for details. Finally, we recall a proposition
useful for passing to the limit in fractional derivatives.

Proposition 2.4. [DR18, Proposition 3.3] Let α ∈ (0, 1), V be a real Banach space,
q ∈ [1,∞), and f ∈ Lq(0, T ;V ′). We assume that f admits a derivative of order α in
Lq(0, T ;V ′). Then, for each v in V , 〈f, v〉V ′,V admits a derivative of order α in Lq(0, T )
and

〈Dα
0,tf(·), v〉V ′,V = Dα

0,t

{
〈f, v〉V ′,V

}
, in Lq(0, T ). (2.6)

Here, V ′ denotes the dual space of V and 〈·, ·〉V ′,V the corresponding duality bracket.

3. Fractional spaces

In this section, we introduce the functional framework for solving fractional semilinear
equations. Let X, Y be real Banach spaces such that X is continuously embedded into Y .
Also, let T > 0, α ∈ (0, 1) and p, q ∈ [1,∞). Then we introduce the following space

Wα
p,q(0, T ;X, Y ) :=

{
u ∈ Lp(0, T ;X) : Dα

0,tu ∈ Lq(0, T ;Y )
}

(3.1)

and

0W
α
p,q(0, T ;X, Y ) := {u ∈ Wα

p,q(0, T ;X, Y ) : (g1−α ∗ u)(0) = 0 in Y
}
. (3.2)

W 1
p,q(0, T ;X, Y ) is the standard Sobolev space used for solving non-linear PDE’s by the

Galerkin method (see for instance [Rou05]). Therefore, Wα
p,q(0, T ;X, Y ) is the “simplest”

spaces we can think of when solving (4.1).
In (3.1), Dα

0,tu is understood in the sense of distribution, i.e. in the sense of Definition
2.4. Alternatively, Wα

p,q(0, T ;X, Y ) may be defined trough Definition 2.3, as the set of
functions in Lp(0, T ;X) which admits a fractional derivative in Lq(0, T ;Y ).

Equipped with the norm

‖u‖Wα :=
(
‖u‖2

Lp(0,T ;X) + ‖Dα
0,tu‖2

Lq(0,T ;Y )

)1/2
, (3.3)

it is clear that Wα
p,q(0, T ;X, Y ) and 0W

α
p,q(0, T ;X, Y ), are Banach spaces.

We start by a density result. As far as the above fractional spaces are considered, such
results are quite uncommon in the literature (see however [dF19, Theorem 39]). This
Theorem allows to extend the coercivity result of [LL18b] from an hilbertian setting into
Banach setting.
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Theorem 3.1. Let X, Y be real Banach spaces such that X is continuously embedded into
Y and, for p, q ∈ [1,∞),

u ∈ 0W
α
p,q(0, T ;X, Y ). (3.4)

Then there exists a sequence (un)n≥1 in C∞([0, T ];X) such that un(0) = 0 for each n, and

un → u, in 0W
α
p,q(0, T ;X, Y ). (3.5)

To prove this theorem we use the following lemma, whose proof can be found in [Oue].

Lemma 3.2. Let T > 0 and u ∈ L1
loc(R;X) be a causal function such that u|[0,T ]

belongs
0W

α
p,q(0, T ;X, Y ). Then, for each h > 0, u(· − h) lies in 0W

α
p,q(0, T ;X, Y ) and

u(· − h) −−→
h→0

u, in Wα
p,q(0, T ;X, Y ).

Proof of Theorem 3.1. By lemma 3.2 we may assume that there exists h > 0 such that
u = 0 a.e. on [0, h]. For each integer n ≥ 1, let us choose ρn : R → R to be a mollifier
function such that

supp ρn ⊆ [0, h], ∀n ≥ 1, (3.6)
where supp ρn denotes the support of ρn. Let

ũ :=

{
u on [0, T ]

0 elsewhere
, (3.7)

and define
un := ρn ∗ ũ ∈ Lp(R, X). (3.8)

We observe that un ∈ C∞(R;X) and un(0) = 0 by (3.6). Firstly, it is well known that the
restriction of un converges towards u in Lp(0, T ;X). Secondly, let us show that

Dα
0,t

(
un|[0,T ]

)
→ Dα

0,tu in Lq(0, T ;Y ). (3.9)

For, let

F :=

{
Dα

0,tu on [0, T ]

0 elsewhere
.

For each n ≥ 1, the function
vn := ρn ∗ gα ∗ F (3.10)

lies in L1
loc(R;Y ) and satisfies, according to [LL18a, Lemma 2.2] or [GS77, Chap I.5],

g1−α ∗ vn = g1−α ∗ ρn ∗ gα ∗ F
= g1−α ∗ gα ∗ ρn ∗ F
= g1 ∗ ρn ∗ F.

Recalling that g1 is the causal function equal to 1 a.e. on [0,∞), we get by differentia-
bility

d

dt
{g1−α ∗ vn} = ρn ∗ F in Lq(R;Y ). (3.11)

Whence, since F = Dα
0,tu on [0, T ],

Dα
0,t

(
vn|[0,T ]

)
=

d

dt
{g1−α ∗ vn}|[0,T ]

−−−→
n→∞

Dα
0,tu in Lq(0, T ;Y ). (3.12)

Besides, since gα ∗ F is supported in [0,∞[, one has for a.e. t ∈ [0, T ],

vn(t) =

∫ t

0

ρn(t− y)(gα ∗ F )(y) dy,
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and, by definition of F ,

(gα ∗ F )|[0,T ]
= gα ∗Dα

0,tu = u in Lq(0, T ;Y ),

thanks to Proposition 2.2 and the fact that (g1−α ∗ u)(0) = 0, since u = 0 a.e. on [0, h].
Thus, in view of (3.8),

vn|[0,T ]
= un|[0,T ]

;

so that (3.9) follows from (3.12). That completes the proof of the theorem. �

Let us now turn to time fractional inequalities. For, let X be a real Banach space densely
and continuously embedded into a real Hilbert space H. Then X is a Banach subspace of
its dual space X ′ and

〈v, ·〉X′,X = (v, ·)H , ∀v ∈ X,
where the bracket denotes the duality between X ′ and X, and (·, ·)H the inner product of
H. By [LL18b, Proposition 2.18], any u in W 1,1(0, T ;H) with u(0) = 0, satisfies

1

2
g1−α ∗ ‖u(·)‖2

H(t) ≤
∫ t

0

(
Dα

0,tu(s), u(s)
)
H

ds, ∀t ∈ [0, T ]. (3.13)

Then combining Theorem 3.1 and (3.13), we get easily the following result.

Corollary 3.3. For X, H as above, let p ≥ 2 whose conjugate exponent is denoted by p′.
Assume that

u ∈ 0W
α
p,p′(0, T ;X,X ′). (3.14)

Then, for each t ∈ [0, T ],

1

2
g1−α ∗ ‖u(·)‖2

H(t) ≤
∫ t

0

〈
Dα

0,tu(s), u(s)
〉
X′,X

ds. (3.15)

That corollary will be useful to get uniqueness results. Regarding existence, the following
proposition will be used.

Proposition 3.4. Let X, H as above, α ∈ (0, 1) and p ≥ 2 be such that α > 1/p′. Assume

u ∈ Wα
p,p′(0, T ;X,X ′), (3.16)

and (g1−α ∗ u)(0) ∈ X. Then∫ T

0

〈
Dα

0,tu(t), u(t)− (g1−α ∗ u)(0)gα(t)
〉
X′,X

dt ≥ 0.

Proof. Set for simplicity v := (g1−α ∗ u)(0). Since α > 1/p′, the function u − vgα belongs
to Lp(0, T ;X). Moreover, for each t ∈ [0, T ], there holds

g1−α ∗ (u− vgα)(t) = g1−α ∗ u(t)− v −−−→
t→0+

0, in X ′.

Hence, u(t)− vgα lies in 0W
α
p,p′(0, T ;X,X ′) and Dα

0,t(u− vgα) = Dα
0,tu. Then the assertion

follows from Corollary 3.3. �

The following compactness result is proved in [LL18b] for Caputo’s derivatives. We just
adapt their proof to our framework.

Corollary 3.5. Let X ⊂ X0 ⊂ Y be Banach spaces such that X is compactly embedded
into X0. Let α ∈ (0, 1) and p > 1. Then Wα

p,1(0, T ;X, Y ) is compactly embedded into
Lr(0, T ;X0), for all r ∈ [1, p).
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Proof. Let B(0, R) denote the closed ball of Wα
p,1(0, T ;X, Y ) with radius R > 0 and center

0. Since B(0, R) is bounded in Lp(0, T ;X), it is enough to prove, according to classical
Simon’s result [Sim87, Theorem 6], that for each τ ∈ (0, T ) and h ∈ [0, T − τ ],

sup
u∈B(0,R)

‖u(·+ h)− u(·)‖L1(0,τ ;Y ) −−→
h→0

0 (3.17)

For, by Proposition 2.2, we have

u = gα(·) g1−α ∗ u(0) + gα ∗Dαu in L1(0, T ;Y ).

Thus, for all h ∈ [0, T − τ ] such that h ≤ 1, one has, for a.e. t ∈ [0, τ ],

u(t+ h)− u(t) =
(
gα(t+ h)− gα(t)

)
g1−α ∗ u(0)

+

∫ t

0

(
gα(t+ h− y)− gα(t− y)

)
Dαu(y) dy

+

∫ t+h

t

gα(t+ h− y)Dαu(y) dy. (3.18)

Let us estimate the first term in the right hand side of the above equation. Since
W 1,1(0, T ;X, Y ) is embedded into C([0, T ], Y ), we have

‖g1−α ∗ u(0)‖2
C([0,T ],Y ) ≤ C‖g1−α ∗ u‖2

L1(0,T,X) + C‖Dαu‖2
L1(0,T,Y ).

With (2.1) and u ∈ B(0, R), we get

‖g1−α ∗ u(0)‖C([0,T ],Y ) ≤ C
(
‖g1−α‖2

L1(0,T ) + 1)1/2R.

Besides, ∫ τ

0

∣∣gα(t+ h)− gα(t)
∣∣ dt = gα+1(τ)− gα+1(τ + h) + gα+1(h)

≤ gα+1(h),

since gα+1 is increasing. There result that the first term is bounded in L1(0, τ, Y ) by
C(R)gα+1(h), for some constant C(R) independent of u and h.

Regarding the second term, its L1(0, τ, Y )-norm is bounded by∫ τ

0

∫ t

0

∣∣gα(t+ h− y)− gα(t− y)
∣∣‖Dαu(y)‖Y dy dt

≤
∫ τ

0

‖Dαu(y)‖Y dy

∫ τ

y

gα(t− y)− gα(t+ h− y) dt,

by Fubini’s Theorem. Moreover,∫ τ

y

gα(t− y)− gα(t+ h− y) dt = gα+1(τ − y)− gα+1(τ + h− y) + gα+1(h)

≤ gα+1(h),

since gα+1 is increasing. Thus second term is bounded in L1(0, τ, Y ) by Rgα+1(h).
We proceed in the same way for the third term of (3.18). Its L1(0, τ, Y )-norm is bounded

by ∫ τ+h

0

‖Dαu(y)‖Y dy

∫ y

y−h
gα(t+ h− y) dt ≤ Rgα+1(h).

Finally, (3.17) holds which completes the proof of the theorem. �



8 YAMINA OUEDJEDI, ARNAUD ROUGIREL, KHALED BENMERIEM

4. Time fractional semilinear heat equations

Let n be a positive integer, Ω be a bounded open subset of Rn, T > 0, and 0 < α < 1.
The problem under consideration is

Find u : [0, T ]× Ω→ R such that
Dα

0,tu−∆u+ f(u) = 0 on [0, T ]× Ω

u = 0 on [0, T ]× ∂Ω

(g1−α ∗ u)(0, ·) = v on ∂Ω.

(4.1)

Here v : Ω → R is the initial condition and f : R → R is a non-linear function with
polynomial growth at infinity. We will assume that f has the convenient sign at ±∞ in
order to avoid blow-up phenomena and get global in time solutions. These assumptions
on f are standard in pattern formation equations (see [Tem88]).

We will solve (4.1) by the Galerkin method. In the standard case where α = 1, that
method consists in solving first a finite dimensional approximated problem, and then pass
to the limit. In the fractional case, it turns out that some extra condition is needed for
the solvability of the approximated problem. Roughly speaking, that condition looks like
a growth condition on the derivative of f (see [Oue]). However, it is not needed to pass to
the limit. Also such assumption is not needed in the case α = 1.

In order to avoid that extra assumption, we truncate the non-linear term f . Then we
solve the truncated fractional PDE by projecting onto a finite dimensional space. Finally,
we pass to the limit in the truncated problem. Hence, we will first solve (4.1) for sub-linear
f . The general case will be investigated in the second subsection.

4.1. The hilbertian case. When f : R→ R has a sub-linear growth, we may work with
Hilbert spaces. Thus we have only to control the fractional derivative. More precisely, we
will assume that there exists a positive constant C such that∣∣f(u)− f(v)

∣∣ ≤ C
∣∣u− v∣∣ (4.2)

f(u)u ≥ −C, ∀u, v ∈ R. (4.3)

Recalling the notation (3.1) for fractional spaces, the problem under consideration is then
Find u ∈ Wα

2,2

(
0, T ;H1

0 (Ω), H−1(Ω)
)

such that

Dα
0,tu−∆u+ f(u) = 0 in L2

(
0, T ;H−1(Ω)

)
(g1−α ∗ u)(0) = v in L2(Ω).

(4.4)

Theorem 4.1. Assume v ∈ H1
0 (Ω) and f satisfies (4.2), (4.3).

(i) If α ∈ (1
2
, 1) then (4.2) has a unique solution.

(ii) If α ∈ (0, 1
2
] then

(a) if v 6= 0 then (4.2) has no solution;
(b) if v = 0 then (4.2) has a unique solution.

Proof. By Proposition 2.2, we derive that (4.4) has no solution if α ≤ 1/2 and v 6= 0.
On the other hand, if v = 0 then the solvability of (4.4) can be achieved as in the case
α ∈ (1

2
, 1). Thus we will only consider in the sequel the case where α > 1/2.

Existence of a solution. We will implement the Galerkin approximation method. For,
let us introduce some notation. Denote by (·, ·)0 the inner product of L2(Ω) and

A : H1
0 (Ω)→ H−1(Ω), u 7→ −∆u.
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For k = 1, 2, . . . , let (wk, λk) ∈ H1
0 (Ω)× (0,∞) be a kth mode of A such that (wk)k≥1 forms

an hilbertian basis of L2(Ω). For n = 1, 2, . . . , we denote by Fn the vector space generated
by w1, . . . , wn. Finally, we decompose the initial condition v, by writing

v =
∑
k≥1

bkwk in H1
0 (Ω),

and we set

vn :=
n∑
k=1

bkwk. (4.5)

Whence vn ∈ Fn and vn → v in H1
0 (Ω).

(i) An approximated problem . For each integer n ≥ 1, our approximated problem takes
the form

Find un ∈ L2(0, T ;Fn) such that Dα
0,tun ∈ L2(0, T, Fn)(

Dα
0,tun, w)0 +

(
∇un,∇w)0 +

(
f(un), w)0 = 0 in L2(0, T ), ∀w ∈ Fn

(g1−α ∗ un)(0) = vn.

(4.6)

Thanks (4.2), we may show by standard methods in fractional calculus (see [Oue] for
details) that the ordinary fractional differential equation (4.6) is uniquely solvable.

(ii) Estimates. Since α > 1/2 and vn ∈ H1
0 (Ω), w := un − gαvn is a suitable test-function

for (4.6), hence(
Dα

0,tun, un − gαvn)0 +

∫
Ω

|∇un|2 dx+

∫
Ω

f(un)un dx

= gα

∫
Ω

∇un∇vn dx+

∫
Ω

f(un)gαvn dx,

in L2(0, T ). Since un belongs to Wα
2,2(0, T ;L2(Ω), L2(Ω)), Proposition 3.4 yields that the

time integral of the term involving the fractional derivative is non negative. Then, using
(4.2), (4.3) and the boundedness of (vn) in H1

0 (Ω), we derive by standard estimates

‖un‖L2(0,T ;H1
0 (Ω)) ≤ C (4.7)

‖Dα
0,tun(t)‖L2(0,T ;H−1(Ω)) ≤ C (4.8)

‖f(un)‖L2(0,T ;L2(Ω)) ≤ C. (4.9)

(iii) Passage to the limit. According to (4.7), there exists u ∈ L2(0, T ;H1
0 (Ω)) such that

up to a subsequence
un ⇀ u in L2(0, T ;H1

0 (Ω))-weak.
Moreover, by Corollary 3.5, Wα

2,1(0, T ;H1
0 (Ω), H−1(Ω)) is compactly embedded into to

L1(0, T ;L2(Ω)). Thus, up to a subsequence,

un → u a.e on [0, T ]× Ω.

Then, by continuity of f ,

f(un)→ f(u) a.e on [0, T ]× Ω.

Thus, using also (4.9), Lion’s Lemma [Lio69, lemma I-1.3] yields

f(un) ⇀ f(u) in L2(0, T ;L2(Ω)).
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(iv) Solvability of the equation of (4.4). Let us show that

Dα
0,tu−∆u+ f(u) = 0 in L2(0, T ;H−1(Ω)).

For, let k ≥ 1 be fixed and n ≥ k. For each ϕ ∈ D(0, T ), we derive from (4.6),
Proposition 2.4 and Proposition 2.3 that〈 ∫ T

0

−un(t)Dα
t,Tϕ(t) +

(
Aun − f(un)

)
ϕ(t) dt, wk

〉
H−1(Ω),H1

0 (Ω)
= 0.

Passing to the limit in n and using Definition 2.4, we get

Dαu+ Au+ f(u) = 0 in D′(0, T ;H−1(Ω)).

Since Au and f(u) belong to L2(0, T ;H−1(Ω)), we derive that u lies in
Wα

2,2

(
0, T ;H1

0 (Ω), H−1(Ω)
)
and

Dαu+ Au+ f(u) = 0 in L2
(
0, T ;H−1(Ω)

)
. (4.10)

(v) Initial condition. Let 1 ≤ k ≤ n and ψ ∈ H1(0, T ) with ψ(T ) = 0. Then, starting from
(4.10) and using Proposition 2.4 and Proposition 2.3, we derive

−
∫ T

0

(
u(t), wk

)
0
Dα
t,Tψ(t) dt−

(
(g1−α ∗ u)(0), wk

)
0
ψ(0)

+

∫ T

0

〈Au,wk〉H−1(Ω),H1
0 (Ω)ψ(t) dt+

∫ T

0

(
f(u(t)), wk

)
0
ψ(t) dt = 0. (4.11)

Besides, going back to the equation of (4.6) and proceeding in the same way, we get

−
∫ T

0

(un(t), wk)0Dα
t,Tψ(t) dt−

(
(g1−α ∗ un)(0), wk

)
0
ψ(0)

+

∫ T

0

〈Aun, wk〉H−1(Ω),H1
0 (Ω)ψ(t) dt+

∫ T

0

(
f(un(t)), wk

)
0
ψ(t) dt = 0.

We pass to the limit to get

−
∫ T

0

(u(t), wk)0Dα
t,Tψ(t) dt− (v, wk)0ψ(0)

+

∫ T

0

〈Au,wk〉H−1(Ω),H1
0 (Ω)ψ(t) dt+

∫ T

0

(
f(u(t)), wk

)
0
ψ(t) dt = 0. (4.12)

Comparing (4.11) with (4.12), we deduce that (g1−α ∗ u)(0) = v.

Uniqueness for Problem (4.4). Let u1, u2 be two solutions to (4.4). Then u := u1 − u2

satisfies

Dα
0,tu−∆u+ f(u1)− f(u2) = 0 in L2(0, T ;H−1(Ω)) (4.13)

(g1−α ∗ u)(0) = 0. (4.14)

Let τ ∈ (0, T ]. Testing (4.13) with u, we derive with the Lipschitz assumption (4.2)∫ τ

0

〈Dα
0,tu(t), u(t)〉H−1(Ω),H1

0 (Ω) dt ≤ C

∫ τ

0

‖u(t)‖2
L2(Ω) dt. (4.15)
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By (4.14), u lies in 0W
α
2,2(0, T ;H1

0 (Ω), H−1(Ω)). Then Corollary 3.3 yields

g1−α ∗ ‖u(.)‖2
L2(Ω)(τ) ≤ 2C

∫ τ

0

‖u(t)‖2
L2(Ω)dt. (4.16)

If there exists τ ∈ (0, T ] such that u = 0 a.e. on [0, τ ] then we set

t0 := sup{τ ∈ (0, T ] : u = 0 a.e. on [0, τ ]}.
Otherwise, we put t0 := 0. Now, in order to get uniqueness, it is enough to show that
t0 = T . Arguing by contradiction, let us assume that t0 ∈ [0, T ). Then for each τ ∈ (t0, T ],
we have ∫ τ

t0

‖u(t)‖2
L2(Ω) dt =

∫ τ

0

‖u(t)‖2
L2(Ω) dt 6= 0.

Then going back to (4.16) and using the decay of g1−α, we derive

g1−α(τ − t0)

∫ τ

t0

‖u(t)‖2
L2(Ω) dt ≤ 2L

∫ τ

t0

‖u(t)‖2
L2(Ω)dt.

The condition
∫ t
t0
‖u(y)‖2

L2(Ω) dy 6= 0 leads to the boundedness of τ 7→ g1−α(τ−t0) on (t0, T ].
That impossibility shows that t0 = T . The proof of the theorem is now completed. �

4.2. The polynomial growth case. We will assume that the reaction term f has a
polynomial growth at infinity. Thus we cannot work no more with fractional Hilbert
spaces. However, our functional framework remains, in some sense hilbertian, since the
initial condition is constrained to stay in a subspace of L2(Ω).

Let n be a positive integer, Ω be a bounded open subset of Rn, and 0 < α < 1. Let
f : R→ R satisfy, for some positive constants C, c and p

f(u)u ≥ c|u|p+1 − C (4.17)
|f(u)| ≤ C|u|p + C, ∀u ∈ R (4.18)
f is non decreasing on some neighborhood of −∞ and ∞ (4.19)

f ∈ W 1,1
loc (R). (4.20)

The latter condition means that f is a locally Lipschitz function on R. Also, (4.19) means
that there exists some M0 ∈ (0,∞) such that f is non decreasing on (−∞,−M0] and on
[M0,∞).

Let us denote by (p+ 1)′ the conjugate exponent of p+ 1 i.e. (p+ 1)′ ∈ (1,∞) and

(p+ 1)′ :=
p+ 1

p
⇐⇒ 1

(p+ 1)′
+

1

p+ 1
= 1.

The problem under consideration is
Find u ∈ L2

(
0, T ;H1

0 (Ω)
)
∩ Lp+1

(
0, T ;Lp+1(Ω)

)
such that

Dα
0,tu ∈ L2

(
0, T ;H−1(Ω)

)
+ L(p+1)′

(
0, T ;L(p+1)′(Ω)

)
Dα

0,tu−∆u+ f(u) = 0 in L2
(
0, T ;H−1(Ω)

)
+ L(p+1)′

(
0, T ;L(p+1)′(Ω)

)
(g1−α ∗ u)(0) = v.

(4.21)

Let us notice that (4.21) is a natural extension of the standard case where α = 1. See
for instance [Tem88], [Lio69] or [Chi00].

Moreover, for each
u ∈ Lp+1

(
0, T ;Lp+1(Ω)

)
,
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(4.18) and the Hölder inequality yield that

f(u) ∈ L(p+1)′
(
0, T ;L(p+1)′(Ω)

)
. (4.22)

Hence the three terms involved in the equation of Problem (4.21) belong to

L2
(
0, T ;H−1(Ω)

)
+ L(p+1)′

(
0, T ;L(p+1)′(Ω)

)
.

If p ≥ 1 and

u ∈ L2
(
0, T ;H1

0 (Ω)
)
, Dα

0,tu ∈ L2
(
0, T ;H−1(Ω)

)
+ L(p+1)′

(
0, T ;L(p+1)′(Ω)

)
then u has a fractional derivative in L(p+1)′(0, T ;H−1(Ω) + L(p+1)′(Ω)). Hence g1−α ∗ u
lies in C([0, T ];H−1(Ω) + L(p+1)′(Ω)). Therefore the initial condition in Problem (4.21) is
meaning full.

Now, we may state our main result.

Theorem 4.2. Let us assume the following.
(i) α ∈ (0, 1), p ∈ [1,∞);
(ii) v ∈ H1

0 (Ω) ∩ Lp+1(Ω);
(iii) f satisfies (4.17)-(4.20).
Then
(a) if α > p

p+1
then (4.21) has a unique solution;

(b) if α ≤ 1
p+1

then
(b-1) if v 6= 0 then (4.21) has no solution;
(b-2) if v = 0 then (4.21) has a unique solution.

For sake of simplicity, we set

Vp := H1
0 (Ω) ∩ Lp+1(Ω), (4.23)

and denote its dual space by V ′p .

Proof of Theorem 4.2. Let α ≤ 1
p+1

and u be a solution to (4.21). Since p ≥ 1, we have
(p+ 1)′ ≤ 2. Thus u and Dαu belong to L(p+1)′(0, T ;V ′p). Hence Proposition 2.2 yields

(g1−α ∗ u)(0)gα ∈ L(p+1)′(0, T ;V ′p).

Since gα 6∈ L(p+1)′(0, T ), the initial condition v must be trivial. In that case, existence and
uniqueness may be achieved as in the case α > p

p+1
. So, in the sequel of that proof, we will

assume that α > p
p+1

.
Existence of a solution. (i) A truncated problem . For all positive integer M , we define

fM : R→ R by

fM(u) =


f(u) if |u| ≤M

f(M) if u > M

f(−M) if u < −M.

(4.24)

By (4.17), one has
fM(u)u ≥ −C, ∀u ∈ R, (4.25)
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where C is the constant appearing in (4.17). Then, according to Theorem 4.1, the following
truncated problem

Find uM ∈ Wα
2,2

(
0, T ;H1

0 (Ω), H−1(Ω)
)

such that

Dα
0,tuM −∆uM + fM(uM) = 0 in L2(0, T ;H−1(Ω))

(g1−α ∗ uM)(0) = v in L2(Ω).

(4.26)

has a unique solution since α > p
p+1
≥ 1/2. Observe that fM converges toward f uniformly

on compact sets of R. Thus it is expected that, in the limit M →∞, uM gives a solution
to (4.21).

(ii) Estimates. Arguing as in the proof of Theorem 4.1, we get, using in particular Propo-
sition 3.4∫ T

0

∫
Ω

|∇uM |2 dx+ fM(uM)uM dx dt ≤ C + C

∫ T

0

∫
Ω

fM(uM)gαv dx dt.

Young inequality and Lemma 4.3 below lead to∣∣fM(uM)gαv
∣∣ ≤ ε

∣∣fM(uM)
∣∣(p+1)′

+ Cε
∣∣gαv∣∣p+1

≤ εC0fM(uM)uM + εC0 + Cε
∣∣gαv∣∣p+1

, ∀M ≥M0,

where C0 and M0 are the constants appearing in Lemma 4.3. Thus∫ T

0

∫
Ω

|∇uM |2 + fM(uM)uM dx dt ≤ C. (4.27)

Also, by (4.27) and Lemma 4.3 again,∫ T

0

∫
Ω

|fM(uM)|(p+1)′ dx dt ≤ C. (4.28)

Let us now show that the sequence (DαuM)M≥0 remains bounded in L1(0, T, V ′p). Indeed,
testing (4.26) with w ∈ Vp, and using Hölder inequality, we arrive to∣∣〈DαuM , w〉H−1(Ω)

∣∣ ≤ ‖uM‖H1
0 (Ω)‖w‖H1

0 (Ω) + ‖fM(uM)‖L(p+1)′ (Ω)‖w‖Lp+1(Ω).

Moreover, by density, H−1(Ω) is a subspace of V ′p . Thus, with (4.27) and (4.28)∫ T

0

‖DαuM‖V ′p dt ≤ C, ∀M ≥M0. (4.29)

(iii) Passage to the limit. According to (4.27) and (4.28), Corollary 3.5 yields the existence
of some u ∈ L1(0, T ;L2(Ω)) such that up to a subsequence,

uM −−−−→
M→∞

u a.e. on [0, T ]× Ω. (4.30)

Since fM converges toward f uniformly on compact sets of R, there holds fM(uM)→ f(u)
a.e. on [0, T ]× Ω. Thus, using also (4.25) and (4.27), Fatou’s Lemma leads to∫ T

0

∫
Ω

f(u)u dx dt ≤ C.

Thus, with (4.17), we get that u ∈ Lp+1(0, T ;Lp+1(Ω)), and (see (4.22)) that f(u) lies in
L(p+1)′(0, T ;L(p+1)′(Ω)). Then Lion’s Lemma yields

fM(uM) ⇀ f(u) in L(p+1)′(0, T ;L(p+1)′(Ω)).
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For any w ∈ Vp and ϕ ∈ D(0, T ), testing (4.26) with wϕ and using Proposition 2.4, we
get in a standard way

Dα
0,tu−∆u+ f(u) = 0 in L2

(
0, T ;H−1(Ω)

)
+ L(p+1)′

(
0, T ;L(p+1)′(Ω)

)
. (4.31)

(v) Initial condition. Since (p + 1)′ ≤ 2, (4.31) holds in L1(0, T ;V ′p). Then testing (4.31)
with wψ for any w ∈ Vp and ψ ∈ H1(0, T ) such that ψ(T ) = 0, we derive, by applying
Proposition 2.4 in L1(0, T ;V ′p),

−
∫ T

0

〈u(t), w〉V ′p ,VpD
α
t,Tψ(t) dt− 〈(g1−α ∗ u)(0), w〉V ′p ,Vpψ(0)

+

∫ T

0

〈Au,w〉H−1(Ω),H1
0 (Ω)ψ(t) dt+

∫ T

0

∫
Ω

f
(
u(t)

)
wψ(t) dx dt = 0. (4.32)

On the other hand arguing as in the proof of Theorem 4.1, we obtain

−
∫ T

0

(u(t), w)0Dα
t,Tψ(t) dt− (v, w)0ψ(0)∫ T

0

〈Au,w〉H−1(Ω),H1
0 (Ω)ψ(t) dt+

∫ T

0

∫
Ω

f
(
u(t)

)
wψ(t) dx dt = 0. (4.33)

Comparing (4.32) with (4.33), we deduce that (g1−α ∗ u)(0) = v.

Uniqueness for Problem (4.21). We proceed as in the proof of Theorem 4.1. The
nonlinear term is controlled in a usual way, by using the following property. There exists
M > 0 such that (

f(u)− f(v)
)
(u− v) ≥ 0, ∀|u| ≥M, ∀v ∈ R.

See [Oue] for details. The proof of the theorem is now completed. �

If p > 1 then the theorem tells nothing when 1
p+1

< α ≤ p
p+1

. More regularity on Dα
0,tu

allows to fill that gap. Indeed, let α ≤ p
p+1

and u be a solution to (4.21) such that

Dα
0,tu ∈ Lp+1

(
0, T ;H−1(Ω) + L(p+1)′(Ω)

)
.

Then, according to the proof of Theorem 4.2, v = 0; so that (4.21) has a unique solution
for v = 0 and α ≤ p

p+1
.

The following result is used in the proof of Theorem 4.2. We refer to [Oue] for its proof.

Lemma 4.3. Let f : R → R satisfy (4.17), (4.18) with p > 0 and fM defined by (4.24).
Then there exist M0 > 0 and C0 > 0 such that

|f(u)|
p+1
p ≤ C0fM(u)u+ C0, ∀u ∈ R, ∀M ≥M0.
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