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Possibilistic Markov Decision Processes offer a compact and tractable way to represent and
solve problems of sequential decision under qualitative uncertainty. Even though appealing
for its ability to handle qualitative problems, this model suffers from the drowning effect
that is inherent to possibilistic decision theory. The present1 paper proposes to escape the 
drowning effect by extending to stationary possibilistic MDPs the lexicographic preference
relations defined by Fargier and Sabbadin [13] for non-sequential decision problems. We

propose a value iteration algorithm and a policy iteration algorithm to compute policies
that are optimal for these new criteria. The practical feasibility of these algorithms is then
experimented on different samples of possibilistic MDPs.

1. Introduction

The classical paradigm for sequential decision making under uncertainty is the expected utility-based Markov Decision 
Processes (MDPs) framework [3,21], which assumes that the uncertain effects of actions can be represented by probability 
distributions and that utilities are additive. But the EU model does no suit problems where uncertainty and preferences are 
ordinal in essence.

Alternatives to the EU-based model have been proposed to handle ordinal preferences/uncertainty. Remaining within the 
probabilistic, quantitative, framework while considering ordinal preferences has led to quantile-based approaches [15,18,27,
29,33]. Purely ordinal approaches to sequential decision under uncertainty have also been considered. In particular, possi-
bilistic MDPs [1,6,22,24] form a purely qualitative decision model with an ordinal evaluation of plausibility and preference. 
In this model, uncertainty about the consequences of actions is represented by possibility distributions and utilities are also 
ordinal. The decision criteria are either the pessimistic qualitative utility or its optimistic counterpart [9]. Such degrees can 
be either elicited from experts, or by automatic learning approaches [23]. However, it is now well known that possibilistic 
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decision criteria suffer from a drowning effect [13]: plausible enough bad or good consequences may completely blur the 
comparison between policies, that would otherwise be clearly differentiable.

In [13], Fargier and Sabbadin have proposed lexicographic refinements of possibilistic criteria for the one-step decision case, 
in order to remedy the drowning effect. This work has recently been extended for (finite horizon) possibilistic decision trees 
[4]. In the present paper, we propose to study the interest of the lexicographic preference relations to stationary possibilistic 
Markov Decision Processes, a model that is more compact than decision trees and not limited to a finite horizon.

The paper is structured as follows: The next Section recalls the background about possibilistic decision theory and sta-
tionary possibilistic MDPs, including the drowning effect problem. Section 3 defines the lexicographic comparison of policies 
and presents a value iteration algorithm which computes a nearly optimal strategy in a limited number of iterations. Then, 
Section 4 proposes a lexicographic value iteration algorithm and a lexicographic policy iteration algorithm using approxima-

tion of utility functions. Lastly, Section 5 presents our experimental results.

2. Background and notations

2.1. Basics of possibilistic decision theory

Most of available decision models refer to probability theory for the representation of uncertainty [20,25]. Despite its 
success, probability theory is not appropriate when numerical information is not available. When information about un-
certainty cannot be quantified in a probabilistic way, possibilistic theory [8,34] is a natural field to consider. The basic 
component of this theory is the notion of possibility distribution. It is a representation of a state of knowledge of an agent 
about the state of the world. A possibility distribution π is a mapping from the universe of discourse S (the set of all the 
possible worlds) to a bounded linearly ordered scale L exemplified (without loss of generality) by the unit interval [0, 1], 
we denote the function by: π : S → [0, 1].

For state s ∈ S , π(s) = 1 means that realization s is totally possible and π(s) = 0 means that s is an impossible state. It 
is generally assumed that there exists at least one state s which is totally possible: π is then said to be normalized.

In the possibilistic framework, extreme forms of knowledge can be captured, namely:

• Complete knowledge i.e. ∃ s s.t. π(s) = 1 and ∀ s′ 6= s, π(s′) = 0.

• Total ignorance i.e. ∀s ∈ S, π(s) = 1 (all values in S are possible).

From π one can compute the possibility measure 5(A) and the necessity measure N(A) of any event A ⊆ S:

5(A) = sup
s∈A

π(s)

N(A) = 1− 5( Ā) = 1− sup
s/∈A

π(s)

Measure 5(A) evaluates to which extent A is consistent with the knowledge represented by π while N(A) corresponds 
to the extent to which ¬A is impossible and thus evaluates at which level A is certainly implied by the knowledge.

In decision theory acts are functions f : S 7→ X , where X is a finite set of outcomes. In possibilistic decision making, 
an act f can be viewed as a possibility distribution π f over X [9], where π f (x) = 5( f −1(x)). In a single stage decision 
making problem, a utility function u : X 7→ U maps outcomes to utility values in a totally ordered scale U = {u1, ..., un}. 
This function models the attractiveness of each outcome for the decision-maker.

Under the assumption that the utility scale and the possibility scale are commensurate and purely ordinal (i.e. U = L), 
Dubois and Prade [9,7] have proposed pessimistic and optimistic decision criteria.

First, the pessimistic criterion was originally proposed by Whalen [30] and it generalizes the Wald criterion [28]. It suits 
cautious decision makers who are happy when bad consequences are hardly plausible. It summarizes to what extent it is 
certain (i.e. necessary according to measure N) that the act reaches a good utility. The definition of the pessimistic criterion 
is as follows [10]:

Definition 1. Given a possibility distribution π over a set of states S and a utility function u on the set of consequences X , 
the pessimistic utility of an act f is defined by:

upes( f ) = min
x j∈X

max(u(x j),1 − π f (x j)),

= min
si∈S

max(u( f (si)),1 − π(si)). (1)

Therefore, we can compare two acts f and g on the basis of their pessimistic utilities:

f ºupes g ⇔ upes( f ) ≥ upes(g).



The second criterion is the optimistic possibilistic criterion originally proposed by Yager [32,31]. This criterion captures 
the behavior of an adventurous decision maker who is happy as soon as at least one good consequence is highly plausible. 
It summarizes to what extent it is possible that an act reaches a good utility. The definition of this criterion is as follows 
[10]:

Definition 2. Given a possibility distribution π over a set of states S and a utility function u on a set of consequences X , 
the optimistic utility of an act f is defined by:

uopt( f ) = max
x j∈X

min(u(x j),π f (x j)),

= max
si∈S

min(u( f (si)),π(si)). (2)

Hence, we can compare two acts f and g on the basis of their optimistic utilities:

f ºuopt g ⇔ uopt( f ) ≥ uuopt(g).

Example 1. Let S = {s1, s2} and f and g be two acts whose utilities of consequences in the states s1 and s2 are listed in the 
following table, as well as the degrees of possibility of s1 and s2:

s1 s2

u( f (s)) 0.3 0.5

u(g(s)) 0.4 0.6

π 1 0.2

Comparing f and g with respect to the pessimistic criterion, we get:

• upes( f ) =min(max(0.3, 0), max(0.5, 0.8)) = 0.3,

• upes(g) =min(max(0.4, 0), max(0.6, 0.8)) = 0.4.

Thus, g ºupes f .

Let us now compare the two acts with respect to the optimistic criterion:

• uopt( f ) =max(min(0.3, 1), min(0.5, 0.2)) = 0.3,

• uopt(g) =max(min(0.4, 1), min(0.6, 0.2)) = 0.4.

Thus, g ºuopt f .

It is important to note that while transition probabilities can be estimated through simulations of the process, transition 
possibilities may not. On the other hand, experts may be involved for the elicitation of the possibility degrees and utilities of 
transitions. In the possibilistic framework, utility and uncertainty levels can be elicited jointly, by comparison of possibilistic 
lotteries, for example (e.g. by using certainty equivalents, as in [11]). Simulation can also be used jointly with expert eval-
uation when the underlying process is too costly to simulate a large number of times: simulation may be used to generate 
samples on which expert elicitation is applied. Another option is to use possibilistic reinforcement learning procedure (for 
more details see [23]), in particular model-based reinforcement learning algorithm. The latter uses a uniform simulation of 
trajectories (with random choice of actions) in order to generate an approximation of the possibilistic decision model.

2.2. Stationary Possibilistic Markov Decision Processes

A stationary Possibilistic Markov Decision Process (5MDP ) [22] is defined by:

• A finite set S of states;

• A finite set A of actions, As denotes the set of actions available in state s;
• A possibilistic transition function: for each action a ∈ As and each state s ∈ S the possibility distribution π(s′|s, a)

evaluates to what extent each s′ is a possible successor of s when action a is applied;
• A utility function µ: µ(s) is the intermediate satisfaction degree obtained in state s.

The uncertainty about the effect of an action a taken in state s is captured by a possibility distribution π(.|s, a). In the
present paper, we consider stationary problems, i.e. problems in which the states, the actions and the transition functions 
do not depend on the stage of the problem. Such a possibilistic MDP may define a graph where states are represented by 
circles and each state “s” is labeled with a utility degree, and actions are represented by squares. An edge linking an action 
to a state denotes a possible transition and is labeled by the possibility of that state given the action is executed.



Fig. 1. The stationary 5MDP of Example 2.

Example 2. Let us suppose that a “Rich and Unknown” person runs a startup company. Initially, s/he must choose between 
Saving money (Sav) or Advertising (Adv) and may then get Rich (R) or Poor (P ) and Famous (F ) or Unknown (U ). In 
the other states, Sav is the only possible action. Fig. 1 shows the stationary 5MDP that captures this problem, formally 
described as follows:

S = {RU , RF , PU },

ARU = {Adv, Sav}, ARF = APU = {Sav},

π(PU |RU , Sav) = 0.2,

π(RU |RU , Sav) = π(RF |RU , Adv) = π(RF |RF , Sav) = π(RU |RF , Sav) = 1,

µ(RU ) = 0.5, µ(RF ) = 0.7, µ(PU ) = 0.3.

Solving a stationary MDP consists in finding a (stationary) policy, i.e. a function δ: S → A which is optimal with respect 
to a decision criterion. In the possibilistic case, as in the probabilistic case, the value of a policy depends on the utility and 
on the likelihood of its trajectories. Formally, let 1 be the set of all policies that can be built for the 5MDP (the set of 
all the functions that associate an element of As to each s). Each δ ∈ 1 defines a list of scenarios called trajectories. Each 
trajectory τ is a sequence of states and actions i.e. τ = (s0, a0, s1, . . . , st−1, at−1, st).

To simplify notations, we will associate the vector vτ = (µ0, π1, µ1, π2, . . . , πt−1, µt) to each trajectory τ , where πi+1 =

π(si+1|si, ai) is the possibility degree to reach the state si+1 at t = i + 1, applying the action ai at t = i and µi = µ(si) is 
the utility obtained in the i-th state si of the trajectory.

The possibility and the utility of trajectory τ given that δ is applied from s0 are defined by:

π(τ |s0, δ) = min
i=1...t

π(si |si−1, δ(si−1)) and µ(τ ) = min
i=0...t

µ(si). (3)

Two criteria, an optimistic and a pessimistic one, can then be used to evaluate δ [24,9]:

uopt(δ, s0) = max
τ

min{π(τ |s0, δ),µ(τ )}, (4)

upes(δ, s0) = min
τ

max{1− π(τ |s0, δ),µ(τ )}. (5)

The policies optimizing these criteria can be computed by applying, for every state s and time step i = 0, ..., t , the 
following counterparts of the Bellman updates [22]:

uopt(s, i) ← max
a∈As

min{µ(s),max
s′∈S

min(π(s′|s,a),uopt(s
′, i + 1))}, (6)

upes(s, i) ← max
a∈As

min{µ(s),min
s′∈S

max(1 − π(s′|s,a),upes(s
′, i + 1))}, (7)

δopt(s, i) ← argmax
a∈As

min{µ(s),max
s′∈S

min(π(s′|s,a),uopt(s
′, i + 1))}, (8)

δpes(s, i) ← argmax
a∈As

min{µ(s),min
s′∈S

max(1− π(s′|s,a),upes(s
′, i + 1))}. (9)

There we set, arbitrarily, uopt(s
′, t + 1)) = 1 and upes(s

′, t + 1)) = 1.

It has allowed the definition of a (possibilistic) value iteration algorithm (see Algorithm 1 for the optimistic variant of this 
algorithm) which converges to an optimal policy in polytime [22].

This algorithm proceeds by iterated modifications of a possibilistic value function Q (s, a) which evaluates the “utility” 
(pessimistic or optimistic) of performing a in s.

Another algorithm, (possibilistic) Policy Iteration (Algorithm 2 for the optimistic variant) is proposed in [22] for solving 
possibilistic stationary, infinite horizon MDPs. Policy Iteration alternates steps of evaluation of the current policy with steps 
of greedy improvement of the current policy.



Algorithm 1: V I-MDP : Possibilistic (Optimistic) Value iteration.
Data: A stationary 5MDP

Result: A policy δ optimal for uopt

1 begin

2 foreach s ∈ S do uopt(s) ← µ(s);

3 repeat

4 foreach s ∈ S do

5 uold(s) ← uopt(s);

6 foreach a ∈ A do

7 Q (s, a) ← min
{

µ(s), maxs′∈S min{(π(s′|s, a), uopt(s
′)}

}

;

8 uopt(s) ← maxa Q (s, a);
9 δ(s) ← argmaxa Q (s, a);

10 until uopt(s) == uold(s) for each s;
11 return δ;

Algorithm 2: P I-MDP : Possibilistic (Optimistic) Policy iteration.
Data: A stationary 5MDP

Result: A policy δ optimal for uopt

1 begin

2 // Initialization of δ and uopt

3 foreach s ∈ S do

4 δ(s) ← choose any as ∈ As;

5 uopt(s) ← µ(s);

6 repeat

7 // Evaluation of δ until stabilization of uopt

8 repeat

9 foreach s ∈ S do

10 uold(s) ← uopt(s);

11 uopt(s) ← min
{

µ(s), maxs′∈S min{π(s′|s, δ(s)).uold(s
′)}

}

;

12 until uopt == uold;

13 // Improvement of δ

14 foreach s ∈ S do

15 δold(s) ← δ(s);

16 δ(s) ← argmaxa∈A min
{

µ(s), maxs′∈S min{π(s′|s, a).uopt(s
′)}

}

;

17 until δ(s) == δold(s) for each s;
18 // stabilization of δ

19 return δ;

2.3. The drowning effect in stationary sequential decision problems

Unfortunately, possibilistic utilities suffer from an important drawback called the drowning effect: plausible enough bad 
or good consequences may completely blur the comparison between acts that would otherwise be clearly differentiated; as 
a consequence, an optimal policy δ is not necessarily Pareto efficient. Recall that a policy δ is Pareto efficient when no other 
policy δ′ dominates it (i.e. there is no policy δ′ such that (i) ∀ s ∈ S, upes(δ

′, s) º upes(δ, s) and (ii) ∃ s ∈ S s.t. upes(δ
′, s) ≻

upes(δ, s)). The following example shows that it can simultaneously happen that δ′ dominates δ and upes(δ) = upes(δ
′).

Example 3. The 5MDP of Example 2 admits two policies δ and δ′:

• δ(RU ) = Sav; δ(PU ) = Sav; δ(RF ) = Sav;

• δ′(RU ) = Adv; δ′(PU ) = Sav; δ′(RF ) = Sav .

Consider a fixed horizon H = 2:

• δ has 3 trajectories:

τ1 = (RU , PU , PU ) with vτ1 = (0.5, 0.2, 0.3, 1, 0.3);
τ2 = (RU , RU , PU ) with vτ2 = (0.5, 1, 0.5, 0.2, 0.3);
τ3 = (RU , RU , RU ) with vτ3 = (0.5, 1, 0.5, 1, 0.5).



• δ′ has 2 trajectories:

τ4 = (RU , RF , RF ) with vτ4 = (0.5, 1, 0.7, 1, 0.7);
τ5 = (RU , RF , RU ) with vτ5 = (0.5, 1, 0.7, 1, 0.5).

Thus uopt(δ, RU ) = uopt(δ
′, RU ) = 0.5. However δ′ seems better than δ since it provides utility 0.5 for sure while δ

provides a bad utility (0.3) in some non-impossible trajectories (τ1 and τ2). τ3 which is good and totally possible “drowns” 
τ1 and τ2: δ is considered as good as δ′ .

3. Bounded iterations solutions to lexicographic finite horizon 5MDPs

Possibilistic decision criteria, especially pessimistic and optimistic utilities, are simple and realistic as illustrated in Sec-
tion 2, but they have an important shortcoming: the principle of Pareto efficiency is violated since these criteria suffer from 
the drowning effect. Indeed, one decision may dominate another one while not being strictly preferred. In order to over-
come the drowning effect, some refinements of possibilistic utilities have been proposed in the non-sequential case such 
as lexicographic refinements, proposed by [12,13]. These refinements are fully in accordance with ordinal utility theory and 
satisfy the principle of Pareto dominance, that is why we have chosen to focus on them.

The present section defines an extension of lexicographic refinements to finite horizon possibilistic Markov decision 
processes and proposes a value iteration algorithm that looks for policies optimal with respect to these criteria.

3.1. Lexi-refinements of ordinal aggregations

In ordinal (i.e. min-based and max-based) aggregation a solution to the drowning effect based on leximin and leximax 
comparisons has been proposed by [19]. It has then been extended to non-sequential decision making under uncertainty 
[13] and, in the sequential case, to decision trees [4]. Let us first recall the basic definition of these two preference relations.
For any two vectors t and t′ of length m built on the scale L:

t ºlmin t
′ iff ∀i, tσ (i) = t′σ (i) or ∃i∗,∀i < i∗, tσ (i) = t′σ (i) and tσ (i∗) > t′σ (i∗), (10)

t ºlmax t
′ iff ∀i, tµ(i) = t′µ(i) or ∃i∗,∀i < i∗, tµ(i) = t′µ(i) and tµ(i∗) > t′µ(i∗), (11)

where, for any vector v (here, v = t or v = t′), vµ(i) (resp. vσ (i)) is the i-th best (resp. worst) element of v .

[13,4] have extended these procedures to the comparison of matrices built on L, defining preference relations ºlmin(lmax)

and ºlmax(lmin):

A ºlmin(lmax) B ⇔ ∀ j,a(lmax, j)
∼= b(lmax, j)

or ∃i s.t. ∀ j > i,a(lmax, j) ∼lmin b(lmax, j) and a(lmax,i) ≻lmin b(lmax,i), (12)

A ºlmax(lmin) B ⇔ ∀ j,a(lmin, j) ∼lmax b(lmin, j)

or ∃i s.t. ∀ j < i,a(lmin, j) ∼lmax b(lmin, j) and a(lmin,i) ≻lmax b(lmin,i), (13)

where a(☎,i) (resp. b(☎,i)) is the i-th largest sub-vector of A (resp. B) according to ☎ ∈ {lmax, lmin}.

Like in (finite-horizon) possibilistic decision trees [4] our idea is to identify the strategies of the MDP with the matrices 
of their trajectories, and to compare such matrices with a ºlmax(lmin) (resp. ºlmin(lmax)) procedure for the optimistic (resp. 
pessimistic) case.

3.2. Lexicographic comparisons of policies

Let us first define lexicographic comparisons of policies over a given horizon E .
A trajectory over horizon E being a sequence of states and actions, any stationary policy can be identified with a matrix 

where each line corresponds to a distinct trajectory of length E . In the optimistic case each line corresponds to a vector 
vτ = (µ0, π1, µ1, π2, . . . , πE−1, µE) and in the pessimistic case to wτ = (µ0, 1 − π1, µ1, 1 − π2, . . . , 1 − πE−1, µE).

This allows us to define the comparison of trajectories using leximax and leximin as follows:

τ ºlmin τ ′ iff (µ0,π1, . . . ,πE ,µE) ºlmin (µ′
0,π

′
2, . . . ,π

′
E ,µ

′
E ), (14)

τ ºlmax τ ′ iff (µ0,1− π1, . . . ,1− πE ,µE ) ºlmax (µ′
0,1− π ′

1, . . .1− π ′
E ,µ

′
E ). (15)

Note that the above preference relations implicitly depend on the horizon E and the same holds for stationary policies 
comparison. We leave aside any reference to E as the dependence will be clear from the context.



Using (14) and (15), we can compare policies by:

δ ºlmax(lmin) δ′ iff ∀i, τµ(i) ∼lmin τ ′
µ(i)

or ∃i∗, ∀i < i∗,τµ(i) ∼lmin τ ′
µ(i) and τµ(i∗) ≻lmin τ ′

µ(i∗), (16)

δ ºlmin(lmax) δ′ iff ∀i, τσ (i) ∼lmax τ ′
σ (i)

or ∃i∗, ∀i < i∗,τσ (i) ∼lmax τ ′
σ (i) and τσ (i∗) ≻lmax τ ′

σ (i∗), (17)

where τµ(i) (resp. τ ′
µ(i)) is the i-th best trajectory of δ (resp. δ′) according to ºlmin and τσ (i) (resp. τ ′

σ (i)) is the i-th worst 
trajectory of δ (resp. δ′) according to ºlmax .

Hence, the utility degree of a policy δ can be represented by a matrix Uδ with n lines, s.t. n is the number of trajectories, 
and m = 2E +1 columns. Indeed, comparing two policies w.r.t. ºlmax(lmin) (resp. ºlmin(lmax)) consists in first ordering the two 
corresponding matrices of trajectories as follows:

• order the elements of each trajectory (i.e. the elements of each line) in increasing order w.r.t. ºlmin (resp. in decreasing
order w.r.t. ºlmax),

• then order all the trajectories. The lines of each policy are arranged lexicographically top-down in decreasing order
(resp. top-down in increasing order).

Then, it is enough to lexicographically compare the two new matrices of trajectories, denoted Uδ (resp. Uδ′ ), element by 
element. The first pair of different elements determines the best matrix/policy. Note that the ordered matrix Uδ (resp. Uδ′ ) 
can be seen as the utility of applying policy δ (resp. δ′) over a length E horizon.

Example 4. Let us consider the Counter-Example 3 with the same 5MDP of Example 2. We consider, once again, the 
policies δ and δ′ defined by:

• δ(RU ) = Sav; δ(PU ) = Sav; δ(RF ) = Sav;

• δ′(RU ) = Adv; δ′(PU ) = Sav; δ′(RF ) = Sav .

For horizon H = 2:

• δ has 3 trajectories:

τ1 = (RU , PU , PU ) with vτ1 = (0.5, 0.2, 0.3, 1, 0.3);
τ2 = (RU , RU , PU ) with vτ2 = (0.5, 1, 0.5, 0.2, 0.3);
τ3 = (RU , RU , RU ) with vτ3 = (0.5, 1, 0.5, 1, 0.5).

The matrix of trajectories is: Uδ =





0.5 0.2 0.3 1 0.3

0.5 1 0.5 0.2 0.3

0.5 1 0.5 1 0.5



 ∼





0.2 0.3 0.3 0.5 1

0.2 0.3 0.5 0.5 1

0.5 0.5 0.5 1 1



.

So, the ordered matrix of trajectories is: Uδ =





0.5 0.5 0.5 1 1

0.2 0.3 0.3 0.5 1

0.2 0.3 0.5 0.5 1



.

• δ′ has 2 trajectories:

τ4 = (RU , RF , RF ) with vτ4 = (0.5, 1, 0.7, 1, 0.7);
τ5 = (RU , RF , RU ) with vτ5 = (0.5, 1, 0.7, 1, 0.5).

The ordered matrix of trajectories is: Uδ′ =

[

0.5 0.7 0.7 1 1

0.5 0.5 0.7 1 1

]

.

Given the two ordered matrices Uδ and Uδ′ , δ and δ′ are indifferent for optimistic utility since the two first (i.e. top-left) 
elements of the matrices are equal i.e. uopt(δ) = uopt(δ

′) = 0.5. For lmax(lmin) we compare successively the next elements 
(left to right then top to bottom) until we find a pair of different values. In particular, we have the second element of the 
first (i.e. the best) trajectory of δ′ is strictly greater than the second element of the first trajectory of δ (0.7 > 0.5). So, the 
first trajectory of δ′ is strictly preferred to the first trajectory of δ according to ºlmin . We deduce that δ′ is strictly preferred 
to δ:

δ′ ≻lmax(lmin) δ since (0.5,0.7,0.7,1,1) ≻lmin (0.5,0.5,0.5,1,1).

The following propositions can be shown, concerning the fixed horizon comparison of stationary policies. Note again that 
the dependence on E is left implicit.



Proposition 1.
If uopt(δ) > uopt(δ

′) then δ ≻lmax(lmin) δ′ .

If upes(δ) > upes(δ
′) then δ ≻lmin(lmax) δ′ .

Proposition 2. ºlmax(lmin) and ºlmin(lmax) satisfy the principle of Pareto efficiency.

Now, in order to design dynamic programming algorithms, i.e. to extend the value iteration algorithm to lexi comparison, 
we show that the comparison of policies is a preorder and satisfies the principle of strict monotonicity defined as follows 
for any optimization criterion O by: ∀δ, δ′, δ′′ ∈ 1,

δ ºO δ′ ⇐⇒ δ + δ′′ ºO δ′ + δ′′,

where δ (resp. δ′) and δ′′ denote two disjoint sets of trajectories and δ + δ′′ (resp. δ′ + δ′′) is the set of trajectories that 
gathers the ones of δ (resp. δ′) and the ones of δ′′ .

Then, adding or removing identical trajectories to two sets of trajectories does not change their comparison by ºlmax(lmin)

(resp. ºlmin(lmax)).

Proposition 3. Relations ºlmin(lmax) and ºlmax(lmin) are complete, transitive and satisfy the principle of strict monotonicity.

Note that uopt and upes satisfy only a weak form of monotonicity since the addition or the removal of trajectories may 
transform a strict preference into an indifference if uopt or upes is used.

Let us define the complementary MDP (S, A, π , µ̄) of a given 5MDP (S, A, π , µ) where µ̄(s) = 1 − µ(s), ∀s ∈ S . The 
complementary MDP simply gives complementary utilities. From the definitions of ºlmax and ºlmin , we can check that:

Proposition 4. τ ºlmax τ ′ ⇔ τ̄ ′ ºlmin τ̄ and δ ºlmin(lmax) δ′ ⇔ δ̄′ ºlmax(lmin) δ̄.

There τ̄ and δ̄ are obtained by replacing µ with µ̄ in the trajectory/5MDP .

Therefore, all the results which we will prove for ºlmax(lmin) also hold for ºlmin(lmax) , if we take care to apply them to 
complementary policies. Since considering ºlmax(lmin) involves less cumbersome expressions (no 1 − ·), we will give the 
results for this criterion. A consequence of Proposition 4 is that the results hold for the pessimistic criterion as well.

This monotonicity of the lmin(lmax) and lmax(lmin) criteria is sufficient to allow us to use a dynamic programming 
algorithm such as value iteration or policy iteration [2]. The algorithms we propose in the present paper perform explicit 
Bellman updates in the lexicographic framework (lines 12–13 of Algorithms 3 and 4, line 11 of Algorithm 5); the correctness 
of their use is proved in Propositions 6 to 10.

3.3. Basic operations on matrices of trajectories

Before going further, in order to give more explicit and compact descriptions of the algorithms and the proofs, let 
us introduce the following notations and some basic operations on matrices (typically, on the matrix U (s) representing 
trajectories issued from state s). Abusing notations slightly, we identify trajectories τ (resp. policies) with their vτ vectors 
(resp. matrices of vτ vectors) when there is no ambiguity. For any matrix U , [U ]l,c denotes the restriction of U to its first l
lines and first c columns and U i, j denotes the element at line i and column j.

• Composition: Let U be a a × b matrix and N1, . . . , Na be a series of a matrices of dimension ni × c (they all share the
same number of columns). The composition of U with (N1, . . . , Na) denoted U × (N1, . . . , Na) is a matrix of dimension

( 6
1≤i≤a

ni) × (b + c). For any i ≤ a, j ≤ n j , the ((6i′<ini′ ) + j)-th line of U × (N1, . . . , Na) is the concatenation of the i-th

line of U and the j-th line of Ni .

The composition of U × (N1, . . . , Na) is done in O (n · m) operations, where n = 6
1≤i≤a

ni and m = b + c. The matrix 

U (s), matrix of trajectories out of state s when making decision a, is typically the concatenation of the matrix U =

((π(s′|s, a), µ(s′)), s′ ∈ succ(s, a)) with the matrices Ns′ = U (s′). This procedure adds two columns to each matrix U (s′), 
filled with π(s′|s, a) and µ(s′) the possibility degrees and the utility of reaching s′; then the matrices are vertically 
concatenated to get the matrix U (s) when making decision a. Then it is possible to lexicographically compare the 
resulting matrices in order to get the optimal action in state s.

• Ordering matrices: Let U be a n ×m matrix, U lmaxlmin is the matrix obtained by ordering the elements of the lines of
U in increasing order and the lines of U according to lmax in decreasing order (see Example 4). This operation allows

to compare matrices of trajectories Q (s, a) of every action in order to compare them and choose the optimal decision.
The complexity of the operation depends on the sorting algorithm: if we use QuickSort then ordering the elements

within a line is performed in O (m · log(m)), and the inter-ranking of the lines is done in O (n · log(n) · m) operations.

Hence, the overall complexity is O (n ·m · log(n ·m)).



• Comparison of ordered matrices: Given two ordered matrices U lmaxlmin and V lmaxlmin , we say that U lmaxlmin > V lmaxlmin

iff ∃i, j such that ∀i′ < i, ∀ j′ , U lmaxlmin
i′, j′

= V lmaxlmin
i′, j′

and ∀ j′ < j, U lmaxlmin
i, j′

= V lmaxlmin
i, j′

and U lmaxlmin
i, j > V lmaxlmin

i, j .

U lmaxlmin ∼ V lmaxlmin iff they are identical (comparison complexity: O (n · m)). Once matrices Q (s, a) are ordered, the 
lexicographic comparison of two decisions is performed by scanning the elements of their matrices, line by line from 
the first one. The first pair of different values determines the best matrix and the best corresponding action a is selected 
(see Example 4).

If the policies (or sub-policies) have different numbers of trajectories, the comparison of two matrices is based on the 
number of trajectories of the shortest matrix. Two cases may arise:

• If we have a strict preference between the two matrices before reaching the last line of the shortest matrix, we get a
strict preference between the policies (or between the sub-policies).

• If we have an indifference up to the last line, the shortest matrix is the best for the lexicographic criterion, since it
expresses less uncertainty in the corresponding policy (or in the sub-policy).

3.4. Bounded iterations lexicographic value iteration

In this section, we propose an iterative value iteration-type algorithm (Algorithm 3). This algorithm follows the same 
principle as in the possibilistic case (Eqs. (6)–(9)). Repeated Bellman updates are performed successively E times. This 
algorithm will provide an approximation of a lexi optimal strategy in the infinite horizon case (by considering the policy 
returned for the first time step). This algorithm is sub-optimal for any fixed E , but we will see in Section 4 that letting E
grow, an optimal lexicographic policy will be obtained for finite E .

We propose two versions of the value iteration algorithm: The first one computes the optimal policy with respect to the 
lmax(lmin) criterion and the second one provides the optimal policy with respect to the lmin(lmax) criterion. In this paper, 
we present and detail only the first algorithm, since the second is very similar.2

Algorithm 3: Bounded iterations lmax(lmin)-value iteration (BI-VI).
Data: A possibilistic MDP and maximum number of iterations E
Result: The δE strategy obtained after E iterations

1 begin

2 e ← 0;

3 foreach s ∈ S do U (s) ← ((µ(s)));

4 foreach s ∈ S, a ∈ A do

5 TU s,a ← T s,a × ((µ(s′)), s′ ∈ succ(s, a));
6 repeat

7 e ← e + 1;

8 foreach s ∈ S do

9 Uold(s) = U (s);

10 Q ∗ ← ((0));

11 foreach a ∈ A do

12 Future ← (Uold(s′), s′ ∈ succ(s, a)); // Gather the matrices provided by the successors of s;

13 Q (s, a) ←
(

TU s,a × Future
)lmaxlmin

;

14 if Q ∗ ≤lmaxlmin Q (s, a) then

15 Q ∗ ← Q (s, a);
16 δ(s) ← a

17 U (s) ← Q ∗(s, δ(s))

18 until e == E;

19 δ(s) ← argmaxaQ (s, a)
20 return δE = δ;

This algorithm is an iterative procedure that performs a prescribed number of updates, E , of the utility of each state, 
represented by a finite matrix of trajectories, using the utilities of the neighboring states.

At stage 1 ≤ e ≤ E , the procedure updates the utility of every state s ∈ S as follows:

• For each action a ∈ A, a matrix Q (s, a) is built to evaluate the “utility” of performing a in s at stage e: this is done by
combining T U s,a (combination of the transition matrix T s,a = π(·|s, a) and the utilities µ(s′) of the states s′ that may

2 Indeed, it just amounts to order and compare the matrices (of the sub-policies) using lmin(lmax) instead of lmax(lmin).



follow s when a is executed) with the matrices Uold(s′) of trajectories provided by these s′ at the previous stage. The 
matrix Q (s, a) is then ordered (the operation is made less complex by the fact that the matrices Uold(s′) have already 
been ordered at e − 1).

• The lmax(lmin) comparison is performed on the fly to memorize the best Q (s, a).
• The value of state s at stage e, U (s), is the one given by the action a which provides the best Q (s, a). δ is updated, U is

memorized (and Uold can be discarded).

Time and space complexities of this algorithm are nevertheless expensive, since it eventually memorizes all the trajecto-
ries. At each step e its size may grow to be · (2 · e + 1), where b is the maximal number of possible successors of an action; 
the overall complexity of the algorithm is O (|S| · |A| · E · bE ), which is a problem.

Algorithm 3 is provided with a number of iterations, E . Does it converge when E tends to infinity? That is, are the 
returned policies identical for any E exceeding a given threshold? Before answering (positively) this question in Section 4.4, 
we are going to define bounded utility matrices solutions to lexicographic possibilistic MDPs. These solution concepts will be 
useful to answer the above question.

4. Bounded utility solutions to lexicographic 5MDPs

We have just proposed a lexicographic value iteration algorithm for the computation of lexicographic policies based on
the whole matrices of trajectories. As a consequence, the spatial/temporal complexity of the algorithm is exponential in the 
number of iterations. This section presents an alternative way to get lexicographic policies. Rather than limiting the size 
of the matrices of trajectories by limiting the number of iterations, we propose to “forget” the less significant part of the 
matrices of utility and to decide only based on the most significant (l, c) sub-matrices – we “bound” the utility matrices. We 
propose in the present section two algorithms based on this idea, namely a value iteration and a policy iteration algorithms.

4.1. Bounded lexicographic comparisons of utility matrices

Recall that, for any matrix U , [U ]l,c denotes the restriction of U to its first l lines and first c columns. Notice now that, 
at any stage e and for any state s [U (s)]1,1 (i.e. the top left value in U (s)) is precisely equal to uopt(s). We have seen that 
making the choices on this basis is not discriminant enough. On the other hand, taking the whole matrix into account is 
discriminant, but exponentially costly. Hence the idea of considering more than one line and one column, but less than the 
whole matrix – namely the first l lines and c columns of U t(s)lmaxlmin; hence the definition of the following preference:

δ ≥lmaxlmin,l,c δ′ iff [δlmaxlmin]l,c ≥ [δ′ lmaxlmin]l,c. (18)

≥lmaxlmin,1,1 corresponds to ºopt and ≥lmaxlmin,+∞,+∞ corresponds to ≥lmaxlmin .

The following proposition shows that this approach is sound and that ≻lmaxlmin,l,c refines uopt :

Proposition 5.

• For any l, l′, c such that l′ > l, δ ≻lmaxlmin,l,c δ′ ⇒ δ ≻lmaxlmin,l′,c δ′ .

• For any l, c δ ≻opt δ′ ⇒ δ ≻lmaxlmin,l,c δ′ .

In other words, the order over the policies is refined for a fixed c when l increases. It tends to ≻lmaxlmin when c = 2.E +1

and l tends to bE .

Notice that the combinatorial explosion is due to the number of lines (the number of columns is bounded by 2 · E + 1), 
hence we shall bound the number of considered lines only.

Up to this point, the comparison by ≥lmaxlmin,l,c is made on the basis of the first l lines and c columns of the full
matrices of trajectories. This does obviously not reduce their size. The important following Proposition allows us to make 
the l, c reduction of the ordered matrices at each step (after each composition), and not only at the very end, thus keeping 
space and time complexities polynomial.

Proposition 6. Let U be a a × b matrix and N1, . . . , Na be a series of a matrices of dimension ai × c. It holds that:

[(U × (N1, . . . ,Na))
lmaxlmin]l,c = [(U × ([Nlmaxlmin

1 ]l,c, . . . , [N
lmaxlmin
a ]l,c))

lmaxlmin)]l,c.

4.2. Bounded utility lexicographic value iteration

It is now easy to design a generalization of the possibilistic algorithm of value iteration (Algorithm 1) by keeping a 
submatrix of each current value matrix – namely the first l lines and c columns. We call this algorithm Bounded Utility Value 
Iteration (BU -V I) (see Algorithm 4).



Algorithm 4: Bounded Utility Lmax(lmin) Value Iteration (BU-VI).
Data: A possibilistic MDP, bounds (l, c); δ, the policy built by the algorithm, is a global variable
Result: A policy δ optimal for ºlmaxlmin,l,c

1 begin

2 foreach s ∈ S do U (s) ← ((µ(s)));

3 foreach s ∈ S, a ∈ A do

4 TU s,a ← T s,a × ((µ(s′)), s′ ∈ succ(s, a));
5 repeat

6 until U (s) == Uold(s) for each s;
7 foreach s ∈ S do

8 Uold(s) ← U (s);

9 Q ∗ ← ((0));

10 foreach a ∈ A do

11 Future ← (Uold(s′), s′ ∈ succ(s, a)); // Gather the matrices provided by the successors of s;

12 Q (s, a) ← [
(

TU s,a × Future
)lmaxlmin

]l,c ;

13 if Q ∗ ≤lmaxlmin Q (s, a) then

14 Q ∗ ← Q (s, a);
15 δ(s) ← a

16 U (s) ← Q ∗(s, δ(s))

17 δ(s) ← argmaxaQ (s, a);
18 U (s) ← maxa Q (s,a)

19 return δ;

When the horizon of the MDP is finite this algorithm provides in polynomial time a policy that is always at least as good 
as the one provided by uopt (according to lmax(lmin)) and tends to lexicographic optimality when c = 2 · E + 1 and l tends 
to bE .

Let us now study the time complexity. The number of iterations is bounded by the size of the set of possible ma-

trices of trajectories which is in O (|S| · |A| · E). One iteration of the algorithm requires composition, ordering and com-

paring operations on b matrices of size (l, c). Since the composition and comparison of matrices are linear operations, 
the complexity of one iteration in worst case is in b · (l · c) · log(l · c). Therefore, the complexity of the algorithm is in 
O (|S| · |A| · E · b · (l · c) · log(l · c)).

When the horizon of the MDP is not finite, equations (16) and (17) are not enough to rank-order the policies. The 
length of the trajectories may be infinite, as well as their number. This problem is well known in classical probabilistic 
MDPs where a discount factor is used to attenuate the influence of later utility degrees – thus allowing the convergence 
of the algorithm [21]. On the contrary, classical 5MDPs do not need any discount factor and Value Iteration, based on the 
evaluation for l = c = 1, converges for infinite horizon case [22]. In a sense, this limitation to l = c = 1 plays the role of a 
discount factor – but a very drastic one. Extending the comparison by using ≥lmaxlmin,l,c with larger (l, c) as shown below 
allows to use a less drastic discount.

In other terms, ≥lmaxlmin,l,c can be used in the infinite case, as shown by the following proposition.

Proposition 7 (Bounded utility lmax(lmin)-policy evaluation converges). Let U t(s) be the matrix issued from s at instant t when a 
strategy δ is executed. It holds that:

∀ l, c,∃ t, such that ∀ t′ ≥ t, (U t)lmaxlmin
l,c (s) = (U t′)lmaxlmin

l,c (s) ∀s.

Hence there exists a stage t , where the value of a policy becomes stable if computed with the bounded utility lmax(lmin) 
evaluation algorithm. This criterion is thus soundly defined and can be used in the infinite horizon case (and of course in 
the finite horizon case).

The number of iterations of Algorithm 4 is not explicitly bounded but the convergence of the algorithm is guaranteed – 
this is a direct consequence of Proposition 7.

Corollary 1 (Bounded utility lmax(lmin)-value iteration converges). ∀ l, c, ∃ t such that, ∀ t′ ≥ t, (U t)lmaxlmin
l,c

(s) = (U t′ )lmaxlmin
l,c

(s)

∀s.

The overall complexity of bounded utility lmax(lmin)-value iteration (Algorithm 4) is bounded by O (|S| · |A| · |L| · b · (l · c) ·
log(l · c)) since the number of iterations is O (|S| · |A| · |L| and all matrices are of size (l, c).



4.3. Bounded utility lexicographic-policy iteration

In Ref. [17], Howard shows that a policy often becomes optimal long before the convergence of the value estimates. 
That is why Puterman [21] has proposed a policy iteration algorithm. This algorithm has been adapted to possibilistic MDPs 
by [22].

Likewise, we propose a (bounded utility) lexicographic policy iteration algorithm (Algorithm 5), denoted here BU -P I that 
alternates improvement and evaluation phases, as any policy iteration algorithm.

Algorithm 5: Lmax(lmin)-Bounded Utility Policy Iteration.
Data: A possibilistic MDP, bounds (l, c)
Result: A policy δ∗ optimal when l, c grows

1 begin

2 // Arbitrary initialization of δ on S

3 foreach s ∈ S do δ(s) ← choose any as ∈ As;

4 repeat

5 // Evaluation of δ

6 foreach s ∈ S do U (s) ← µ(s);

7 repeat

8 foreach s ∈ S do

9 Uold(s) ← U (s);

10 // Gather the matrices of the successors of s given δ

11 Future ← (U (s′), s′ ∈ succ(s, δ(s)));

U (s) ←
[
(

T U s,δ(s) × Future
)lmaxlmin

]

l,c
;

12 until U (s) == Uold(s) for each s;
13 δold ← δ;

14 // Improvement of δ

15 foreach s ∈ S do

16 // Compute the utility of the strategy playing a (for each a), given what was chosen for the
other states

17 foreach a ∈ A do

18 Future ← (U (s′), s′ ∈ succ(s, δold(s)));

Q (s, a) ←
[(

TU s,a × Future
)]lmaxlmin

l,c

19 // Update the choice of an action for S

20 δ(s) ← argmax
lmax(lmin)
a∈A Q (s, a)

21 until δ == δold;

22 return δ;

In line 3 of Algorithm 5, an arbitrary initial policy is chosen. The algorithm then proceeds by evaluating the current 
policy, through successive updates of the value function (lines 8 to 11); the convergence of this evaluation is easily derived 
from that of the bounded utility lmax(Lmin)-value iteration algorithm. Then the algorithm enters the improvement phase: 
Lines 17–18 compute Q (s, a), the (bounded lexicographic) utility of playing action a in state s and then applying policy 
δold in subsequent states (the policy computed during the last iteration); as usual in Policy Iteration style algorithms, the 
updated policy (δ) is then obtained by greedily improving the current action, which is done in line 20. Since the actions 
considered at line 20 do include the one prescribed by δold , either nothing is changed, and the algorithm stops, or the new 
policy, δ, is better than the previous one δold .

Proposition 8. Bounded utility lmax(lmin)-policy iteration converges to an optimal policy for ºlmaxlmin,l,c in finite time.

Policy iteration (Algorithm 5) converges and is guaranteed to find a policy optimal for the (l, c) lexicographic criterion 
in finite time and usually in a few iterations. As for the algorithmic complexity of the classical, stochastic, policy iteration 
algorithm (which is still not well understood [16]), a tight bound worst-case complexity of lexicographic policy iteration is 
hard to obtain. Therefore, we provide an upper-bound of this complexity.

The policy iteration algorithm never visits a policy twice: in the worst case, the number of trial iterations before con-
vergence is exponential but it is dominated by the number of distinct policies. So, the complexity of this algorithm is 
dominated by (|A||S|). Besides, each iteration has a cost, the evaluation phase relying on a bounded utility value itera-
tion algorithm that costs O (|S| · |A| · |L| · b · (l · c) · b · log(l · c)) when many actions are possible at a given step, and cost 
O (|S| · |L| · b · (l · c) · b · log(l · c)) here because one action is selected (by the current policy) for each state. Thus, the overall 
complexity of the algorithm is in O (|A||S| · |S| · |L| · b · (l · c) · b · log(l · c)).

Thus, the overall complexity of the algorithm is in O (|A||S| · |L| · (l · c)2 · |S| · b · log(l · c)).



4.4. Back to lexicographic-value iteration: from finite to infinite horizon 5-MDPs

The bounded iterations algorithm defined in section 3 (Algorithm 3, (B I-V I)) can be used for both finite horizon and 
infinite horizon MDPs, because it fixes a number of iterations E; if E is low, the policy reached in not necessarily optimal – 
the algorithm is an approximation algorithm.

Now, exploiting the above propositions, we are able to show that the bounded iterations Lmax(lmin) value iteration 
algorithm (Algorithm 3) converges when E tends to infinity. To do so, we first prove the following proposition:

Proposition 9. Let an arbitrary stationary 5MDP be given. Then, there exist two positive natural numbers (l∗, c∗), such that for any 
pair (δ, δ′) of arbitrary policies and any state s ∈ S, and for any pair (l, c) such that l ≥ l∗ and c ≥ c∗ ,

δ(s) ≻lmaxlmin,l∗,c∗ δ′(s) ⇔ δ(s) ≻lmaxlmin,l,c δ′(s)

Now, this proposition can be used to prove the convergence of the bounded iterations Lmax(lmin)-value iteration algo-

rithm. For this, let us define ≻lmaxlmin=def ≻lmaxlmin,l∗,c∗ , the unique preference relation between policies that results from 
Proposition 9.

Proposition 10. If we let δE be the policy returned by Algorithm 3 for any fixed E, we can show that the sequence (δE) converges and 
that there exists a finite E∗, such that:

lim
E→∞

δE = δE∗ .

Furthermore, δE∗ is optimal with respect to ≻lmaxlmin .

The sequence of policies obtained for (B I-V I) (Algorithm 3) when E tends to infinity converges. Furthermore, the limit is 
attained for a finite (but unknown in advance) E∗ . Alternately, it is also attained for the (BU -V I) and (BU -P I) algorithms, 
with finite but unknown (l∗, c∗).

Now, let us summarize the theoretical results that we have obtained so far. We have shown that possibilistic utilities 
(optimistic and pessimistic) are special cases of bounded lexicographic utilities, which can be represented by matrices. 
Possibilistic utilities are obtained when l = c = 1.

The possibilistic value iteration and policy iteration algorithms can be extended to compute policies which are optimal 
according to ≻lmaxlmin,l,c .

Finally, if infinite horizon lexicographic optimal policies are defined as the limiting policies obtained from a non-bounded 
lexicographic value-iteration algorithm, we have shown that such policies can be computed by applying our bounded utility 
lmax(lmin) value iteration algorithm and that only a finite number of iterations (even though not known in advance) is 
required.

5. Experiments

In order to evaluate the previous algorithms, we propose, in the following, two experimental analyses: in the first one
we will compare the bounded iterations algorithm of value iteration (Algorithm 3) with the bounded utility one and in 
the second we propose to compare the bounded utility lexicographic policy iteration algorithm with the bounded utility 
lexicographic value iteration one. The algorithms have been implemented in Java and the experiments have been performed 
on an Intel Core i5 processor computer (1.70 GHz) with 8GB DDR3L of RAM.

5.1. Bounded utility vs bounded iterations value iteration

Experimental protocol. We now compare the performance of bounded utility lexicographic value iteration (BU -V I) as an 
approximation of lexicographic value iteration (B I-V I) for finite horizon problems, in the Lmax(lmin) variant. Because the 
horizon is finite, the number of steps of (B I-V I) can be set equal to the horizon and the algorithm provides a solution 
optimal according to Lmax(lmin). (BU -V I) on the other side limits the size on the matrices, and can lead to sub-optimal

solutions.

We evaluate the performance of the algorithms by carrying out simulations on randomly generated finite horizon 
5MDPs with 25 states – we generate five series of problems, letting E varying form 5 to 25. The number of actions 
in each state is equal to 4. The output of each action is a distribution on two states randomly sampled (i.e. the branching 
factor is equal to 2). The utility values are uniformly randomly sampled in the set L = {0.1, 0.3, 0.5, 0.7, 1}. Conditional 
possibilities relative to decisions should be normalized. To this end, one choice is fixed to possibility degree 1 and the 
possibility degree of the other one is uniformly sampled in L. For each experience, 100 5MDPs are generated. The two 
algorithms are compared w.r.t. two measures: (i) CPU time and (ii) Pairwise success rate (Success) i.e. the percentage of 
optimal solutions provided by BU -V I with fixed (l, c) w.r.t. the lmax(lmin) criterion in its full generality. The higher Success, 



Fig. 2. Bounded utility lexicographic value iteration vs lexicographic value iteration.

Table 1

Average CPU time (in seconds) and average number of iterations.

Bounded utility policy iteration

(l, c) (2,2) (4,4) (6,6) (10,10)

CPU time (s) 0.029 0.042 0.064 0.091

Average number of iterations 3.2 4.33 5.6 9.7

Bounded utility value iteration

(l, c) (2,2) (4,4) (6,6) (10,10)

CPU time (s) 0.03 0.052 0.082 0.1

Average number of iterations 6.75 9.25 16.11 20.2

the more important the effectiveness of cutting matrices with BU -V I; the lower this rate, the more important the drowning 
effect.

Results. Fig. 2(a) presents the average execution CPU time for the two algorithms. Obviously, for both B I-V I and BU -V I , 
the execution time increases with the horizon. Also, we observe that the CPU time of BU -V I increases according to the 
values of (l, c) but it remains affordable, as the maximal CPU time is lower than 1 s for MDPs with 25 states and 4 actions 
when (l, c) = (40, 40) and E = 25. Unsurprisingly, we can check that the BU -V I (regardless of the values of (l, c)) is faster 
than B I-V I especially when the horizon increases: the manipulation of l, c-matrices is obviously less expensive than the 
one of full matrices. The saving increases with the horizon.

As with the success rate, the results are described in Fig. 2(b). It appears that BU -V I provides a very good approximation 
especially when increasing (l, c). It provides the same optimal solution as the B I-V I in about 90% of cases, with an (l, c) =
(200, 200). Moreover, even when the success rate of BU -V I decreases (when E increases), the quality of approximation is 
still good: never less than 70% of optimal actions returned, with E = 25. These experiments conclude in favor of bounded 
value iteration: the quality of its approximated solutions are comparable with those of the unbounded version for high (l, c)
and increases when (l, c) increase, while it is much faster.

5.2. Bounded utility lexicographic policy iteration vs bounded utility lexicographic value iteration

Experimental protocol. In what follows we evaluate the performances of bounded utility lexicographic policy iteration
(BU -P I) and bounded lexicographic value iteration (BU -V I), in the lmax(lmin) variant. We evaluate the performance of the 
algorithms on randomly generated 5MDPs as those of Section 5.1 with |S| = 25 and |As| = 4, ∀s.

We ran the two algorithms for different values of (l, c) (100 5MDPs are considered in each sample). For each of the 
two algorithms we measure the CPU time needed to converge. We also measure the average number of value iterations for 
(BU -V I) and the average number of policy iterations for (BU -P I).

Results. Table 1 presents the average execution CPU time and the average number of iterations for the two algorithms.

Obviously, for both BU -P I and BU -V I , the execution time increases according to the values of (l, c) but it remains 
affordable, as the maximal CPU time is lower than 0.1 s for MDPs with 25 states and 4 actions when (l, c) = (10, 10). It 
appears that BU -P I (regardless of the values of (l, c)) is slightly faster than BU -V I .

Consider now the number of iterations. At each iteration, BU -P I considers one policy, explicitly, and updates it at 
line 20. And so does value iteration: for each state, the current policy is updated at line 15. Table 1 shows that BU -P I

always considers fewer policies than BU -V I . This experiment provides an empirical evidence in favor of policy iteration
over value iteration, as the former converges to the approximate solution faster. However, this conclusion may vary with the 
experiments, so both algorithms are worth considering when tackling a given problem.



6. Conclusion

In order to overcome the drowning effect in possibilistic stationary sequential decision problems, we have proposed two 
lexicographic criteria, initially introduced by Fargier and Sabbadin in [13] for non-sequential problems, that compare policies 
based on their corresponding matrices of trajectories. We have shown that these decision criteria satisfy the principle of 
efficiency and strict monotonicity.

Because the sizes of the matrices of trajectories grow exponentially with the number of iterations, such comparisons 
cannot lead to a finite time algorithm except if the horizon of the problem is finite. That is why we have proposed bounded 
utility lexicographic algorithms as approximations of the full lexicographic ones.

First, we have proposed a Lexicographic Value Iteration algorithm for stationary 5MDPs with two variants: (i) an algo-
rithm that compare full matrices but halts in a finite number of steps, (ii) an algorithm which bounds the size of the saved 
matrices and refines the possibilistic criteria, whatever the choice of the bounds.

Then, we have proposed a bounded Lexicographic Policy iteration algorithm and we have shown that this algorithm con-
verges in a finite number of iterations.

The convergence of these algorithms has been shown and their efficiency has been assessed experimentally. In particular, 
the algorithm of Policy Iteration appears to be experimentally faster than the algorithm of Bounded Utility Value Iteration 
(which is also usual in the stochastic case [16]).

Future work includes two research tracks. First, as far as the infinite horizon case is concerned, other types of lexico-
graphic refinements could be proposed. One of these options could be to avoid the duplication of the set of transitions that 
occur several times in a single trajectory and only record once the observed transitions.

A second line of research of this work will be to define reinforcement learning [26] type algorithms for 5MDPs. Such 
algorithms would use observed samples (s, a, s′, π , µ) of the trajectories to compute an approximate lexicographic policy, 
instead of using full dynamic programming over all possible trajectories. This would offer an alternative to existing quantile-
based reinforcement learning approaches [14] for ordinal MDPs.

Appendix A. Proofs of propositions

Proof of Proposition 1.

• We prove that ºlmax(lmin) refines ºuopt in stationary 5MDP . We consider two policies δ and δ′ .

If uopt(δ, s0) > uopt(δ
′, s0)

⇔ max
τ∈δ

min{π(τ |s0, δ), u(τ )} > max
τ ′∈δ′

min{π(τ ′|s0, δ′), u(τ ′)}

⇒ max
τ∈δ

min{min
i=1..h

π(si |si−1, δ(si−1)), min
i=1..h

u(si)} > max
τ ′∈δ′

min{min
i=1..h

π ′(si |si−1, δ′(si−1)), min
i=1..h

u′(si)}

⇒ max
τ∈δ

min(µ0, π1, µ1, π2, . . . , πh−1, µh) > max
τ ′∈δ′

min(µ′
0, π

′
1, µ

′
1, π

′
2, . . . , π

′
h−1

, µ′
h
).

Since min(µ0, π1, µ1, π2, . . . , πh−1, µh) > min(µ′
0, π

′
1, µ

′
1, π

′
2, . . . , π

′
h−1

, µ′
h
)

⇒ (µ0, π1, µ1, π2, . . . , πh−1, µh) ≻lmin (µ′
0, π

′
1, µ

′
1, π

′
2, . . . , π

′
h−1

, µ′
h
) (as leximin ordering refines min ordering), then

τλ(1) ≻lmin τ ′
λ(1) ⇒ δ ≻lmax(lmin) δ′ where τλ(1) (resp. τ ′

λ(1)) is the best trajectory of δ (resp. δ′) according to ºlmin .

Using the definition of ºlmax(lmin) (Eq. (16)) we have δ ≻lmax(lmin) δ′ . Thus, ºlmax(lmin) refines ºuopt .

• We prove in the same way that ºlmin(lmax) refines ºupes . Considering two policies δ and δ′ s.t. upes(δ, s0) > upes(δ
′, s0)

⇔ min
τ∈δ

max{1 − π(τ |s0, δ), u(τ )} > min
τ ′∈δ′

max{1 − π(τ ′|s0, δ′), u(τ ′)}

⇔ min
τ∈δ

max{min
i=1..h

(1 − π(si |si−1, δ(si−1))), min
i=1..h

u(si)} > min
τ ′∈δ′

max{min
i=1..h

(1 − π ′(si |si−1, δ′(si−1))), min
i=1..h

u′(si)}

⇔ min
τ∈δ

max{min(µ0, 1 − π1, µ1, 1 − π2, . . . , 1 − πh−1, µh)} > min
τ ′∈δ′

max{(µ′
0, 1 − π ′

1, µ
′
1, 1 − π ′

2, . . . , 1 − π ′
h−1

, µ′
h
)}.

Since max(µ0, 1 − π1, µ1, 1 − π2, . . . , 1 − πh−1, µh) > max(µ′
0, 1 − π ′

1, µ
′
1, 1 − π ′

2, . . . , 1 − π ′
h−1

, µ′
h
)

⇒ (µ0, 1 −π1, µ1, 1 −π2, . . . , 1 −πh−1, µh) ≻lmax (µ′
0, 1 −π ′

1, µ
′
1, 1 −π ′

2, . . . , 1 −π ′
h−1

, µ′
h
) (as leximax ordering refines

max ordering).
Then τσ (1) ≻lmax τ ′

σ (1) ⇒ δ ≻lmin(lmax) δ′ where τσ (1) (resp. τ ′
σ (1)) is the worst trajectory of δ (resp. δ′) according to 

ºlmax . So, by definition of ºlmin(lmax) (Eq. (17)) we have δ ≻lmin(lmax) δ′ . We deduce that ºlmin(lmax) refines ºupes . ✷

Proof of Proposition 2. (i) We prove that ºlmax(lmin) satisfy the principle of Pareto efficiency. So, suppose that δ ºlmax(lmin) δ′ . 
Two cases arise:

• if ∀N , δN ∼lmax(lmin) δ′
N i.e. ∀i, τλ(i) ∼lmin τ ′

λ(i) and then δ ∼lmax(lmin) δ′ ,

• if ∀N , δN ºlmax(lmin) δ′
N and ∃N∗, δN∗ ≻lmax(lmin) δ′

N∗ i.e. if ∃i∗ , s.t. ∀i < i∗ , τλ(i) ∼lmin τ ′
λ(i) and τλ(i∗) ≻lmin τ ′

λ(i∗)
. Then,

τλ(i∗) ≻lmin τ ′
λ(i∗)

implies that there exist a pair of different (βi∗,k, β ′
i∗,k

), where βi∗,k (resp. β ′
i∗,k

) is an element of τλ(i∗)

(resp. τ ′
λ(i∗)

), that determines the best policy. Here we get βi∗,k > β ′
i∗,k

i.e. τλ(i∗) ≻lmin τ ′
λ(i∗)

and thus δN∗ ≻lmax(lmin) δ′
N∗

then δ ≻lmax(lmin) δ′ .



In summary, if we have δ ºlmax(lmin) δ′ and ∃i∗ , s.t. τλ(i∗) ≻lmin τ ′
λ(i∗)

we get δ ≻lmax(lmin) δ′ which expresses exactly the 
principle of Pareto efficiency in the case ºlmax(lmin) .

(ii) Let us prove ºlmin(lmax) satisfy the principle of Pareto efficiency. When considering the ºlmin(lmax) order, the same

kind of result can be obtained.
So, suppose that δ ºlmin(lmax) δ′ . Two cases arise:

• if ∀N , δN ∼lmin(lmax) i.e. ∀i, τσ (i) ∼lmax τ ′
σ (i) and then δ ∼lmin(lmax) δ′ ,

• if ∀N , δN ºlmin(lmax) δ′
N and ∃N∗, δN∗ ≻lmax(lmin) δ′

N∗ i.e. ∃i∗ , s.t. ∀i < i∗ , τσ (i) ∼lmax τ ′
σ (i) and τσ (i∗) ≻lmax τ ′

σ (i∗)
. Then,

τσ (i∗) ≻lmax τ ′
σ (i∗)

implies that there exist a pair of different (βi∗,k, β ′
i∗,k

), where βi∗,k (resp. β ′
i∗,k

) is an element of τσ (i∗)

(resp. τ ′
σ (i∗)

), determining the best policy. We get βi∗,k > β ′
i∗,k

i.e. τσ (i∗) ≻lmax τ ′
σ (i∗)

and thus δ ≻lmin(lmax) δ′ .

In summary, if we have δ ºlmin(lmax) δ′ and ∃i∗ , s.t. τσ (i∗) ≻lmax τ ′
σ (i∗)

we get δ ≻lmin(lmax) δ′ which expresses exactly the
principle of Pareto efficiency in the case of ºlmin(lmax) . ✷

Proof of Proposition 3.

• Completeness. It is a consequence of the completeness of ºlmax and ºlmin .

• Transitivity. We prove that ºlmax(lmin) is transitive. The proof relies on the transitivity of ºlmin . Let us consider three
policies, δ, δ′ and δ′′ and assume δ ºlmax(lmin) δ′ and δ′ ºlmax(lmin) δ′′ . Since δ ºlmax(lmin) δ′ and δ′ ºlmax(lmin) δ′′ , then we

are in either following cases:
1. ∀i, τλ(i) ∼lmin τ ′

λ(i) ∼lmin τ ′′
λ(i) . This happens when δ ∼lmax(lmin) δ′ ∼lmax(lmin) δ′′ . And then, by transitivity of ºlmin , we 

have ∀i, τλ(i) ∼lmin τ ′′
λ(i) ⇔ δ ∼lmax(lmin) δ′′ .

2. When either δ ≻lmax(lmin) δ′ or δ′ ≻lmax(lmin) δ′′ , then, by definition of ºlmax(lmin) , there exists i∗ , such that:
(a) ∀i < i∗, τλ(i) ∼lmin τ ′

λ(i) ∼lmin τ ′′
λ(i) ,

(b) τλ(i∗) ºlmin τ ′
λ(i∗)

ºlmin τ ′′
λ(i∗)

and

(c) either τλ(i∗) ≻lmin τ ′
λ(i∗)

or τ ′
λ(i∗)

≻lmin τ ′′
λ(i∗)

, or both.
Then, once again by transitivity of ºlmin , τλ(i∗) ≻lmin τ ′′

λ(i∗)
.

So, δ ≻lmax(lmin) δ′′ .

So, points 1 and 2 imply, together, that δ ºlmax(lmin) δ′ and δ′ ºlmax(lmin) δ′′ imply δ ºlmax(lmin) δ′′ .

• Similarly, it can be checked that ºlmin(lmax) is transitive. Let us consider three policies, δ, δ′ and δ′′ and assume

δ ºlmin(lmax) δ′ and δ′ ºlmin(lmax) δ′′ . Since δ ºlmin(lmax) δ′ and δ′ ºlmin(lmax) δ′′ , then we are in either following cases:
1. ∀i, τσ (i) ∼lmax τ ′

σ (i) ∼lmax τ ′′
σ (i) .

This happens when δ ∼lmin(lmax) δ′ ∼lmin(lmax) δ′′ . And then, by transitivity of ºlmax , we have ∀i, τσ (i) ∼lmax τ ′′
σ (i) ⇔

δ ∼lmin(lmax) δ′′ .

2. When either δ ≻lmin(lmax) δ′ or δ′ ≻lmin(lmax) δ′′ , then, by definition of ºlmin(lmax) , there exists i∗ , such that:
(a) ∀i < i∗, τσ (i) ∼lmax τ ′

σ (i) ∼lmax τ ′′
σ (i) ,

(b) τσ (i∗) ºlmax τ ′
σ (i∗)

ºlmax τ ′′
σ (i∗)

and

(c) either τσ (i∗) ≻lmax τ ′
σ (i∗)

or τ ′
σ (i∗)

≻lmax τ ′′
σ (i∗)

, or both.
Then, once again by transitivity of ºlmax , τσ (i∗) ≻lmax τ ′′

σ (i∗)
.

So, δ ≻lmin(lmax) δ′′ .

So, points 1 and 2 imply, together, that δ ºlmin(lmax) δ′ and δ′ ºlmin(lmax) δ′′ imply δ ºlmin(lmax) δ′′ .

• Monotonicity. δ + δ′′ contains two disjoint sets of trajectories (i.e. vectors): the ones of δ and the ones of δ′′ (and

similarly for δ′ + δ′′).

Then, adding or removing identical trajectories (i.e. vectors) to two sets of trajectories does not change their comparison

by ºlmax(lmin) (resp. ºlmin(lmax)) – while it may transform a strict preference into an indifference if uopt (resp. upes) were

used.

To be more precise, assume, for example, that δ ≻lmax(lmin) δ′ .

Then, ∃i∗ , ∀i < i∗, τλ(i) ∼lmin τ ′
λ(i) and τλ(i∗) ≻lmin τ ′

λ(i∗)
. The trajectories corresponding to δ′′ are composed of trajectories

which rank before τλ(i∗) , and after τλ(i∗) . Obviously, the ones that rank before τλ(i∗) are added to both lists of trajectories,
and thus simply delay i∗ while not inducing a new preference. And the ones that rank after τλ(i∗) are not taken into
consideration in the comparison of δ + δ′′ and δ′ + δ′′ . In the same way, by definition of ºlmin(lmax) we get δ ≻lmin(lmax) δ′

i.e. ∃i∗ , ∀i < i∗, τσ (i) ∼lmax τ ′
σ (i) and τσ (i∗) ≻lmax τ ′

σ (i∗)
. The same result as for τλ(i∗) handles for τσ (i∗) . Thus, ºlmax(lmin)

and ºlmin(lmax) are strictly monotonic. ✷

Proof of Proposition 4. It is sufficient to show that:

δ ºMDP

lmax(lmin) δ′ ⇔ δ′ ºMDP inv

lmin(lmax) δ, (19)



where ºMDP
inv

lmin(lmax)
is the pessimistic lexicographic comparison of policies in the MDP where the utilities of all states have 

been reversed (u′(N) = 1 − u(N)).

For any two policies δ and δ′:

• If δ ≻MDP
lmax(lmin)

δ′ then ∃i∗, ∀i ≤ i∗, τλ(i) ∼lmin τ ′
λ(i)

and τλ(i∗) ≻lmin τ ′
λ(i∗)

⇔ (µ0, π1, µ1, π2, . . . , πh−1, µh) ≻lmin (u′
0, π

′
1, µ

′
1, π

′
2, . . . , π

′
h−1

, µ′
h
).

Now let inverse each degree in both trajectories, we get:

((1− µ0), (1 − π1), (1 − µ1), (1 − π2), . . . , (1 − πh−1), (1 − µh)) ≺lmax

((1− µ′
0), (1 − π ′

1), (1 − µ′
1), (1 − π ′

2), . . . , (1 − π ′
h−1), (1 − µ′

h))

⇔ (µ0, (1 − π1),µ1, (1 − π2), . . . , (1 − πh−1),µh) ≺lmax (µ′
0, (1 − π ′

1),µ
′
1, (1 − π ′

2), . . . , (1 − π ′
h−1),µ

′
h)

i.e. τσ (i∗) ≺lmax τ ′
σ (i∗)

which is the ºlmax relation when considering MDP inv . We get δ′ ºMDP
inv

lmin(lmax)
δ.

• If δ ∼MDP
lmax(lmin)

δ′ then ∀i, τλ(i) ∼lmin τ ′
λ(i) ⇔ (µ0, π1, µ1, π2, . . . , πh−1, µh) ∼lmin (µ′

0, π
′
1, µ

′
1, π

′
2, . . . , π

′
h−1

, µ′
h
).

If we inverse each degree in both trajectories, we get:

((1− µ0), (1 − π1), (1 − µ1), (1 − π2), . . . , (1 − πh−1), (1 − µh)) ∼lmax

((1− µ′
0), (1 − π ′

1), (1 − µ′
1), (1 − π ′

2), . . . , (1 − π ′
h−1), (1 − µ′

h))

⇔ (µ0, (1 − π1),µ1, (1 − π2), . . . , (1 − πh−1),µh) ∼lmax ((1 − π ′
1), . . . , (1 − π ′

h),µ
′
h)

i.e. τσ (i) ∼lmax τ ′
σ (i) . We get δ′ ∼MDP

inv

lmin(lmax)
δ. ✷

Proof of Proposition 5.

• Note that, for any t , s, we have:

[

U t(s)lmaxlmin
]

l,c
has the form


















. . .

π(s′i |s,a),u(s′i)

. . .

π(s′i |s,a),u(s′i)

∣
∣
∣
∣
∣
∣

U t−1(s′i)
lmaxlmin

. . .









lmaxlmin









l,c

Formally,

[

U t(s)lmaxlmin
]

l,c
= [((π(s′1|s,a),u(s′1)) ⊗ U t−1(s′1)

lmaxlmin) ⊕ ((π(s′2|s,a),u(s′2)) ⊗ U t−1(s′2)
lmaxlmin)

⊕ ... ⊕ ((π(s′k|s,a),u(s′k)) ⊗ U t−1(s′k)
lmaxlmin)].

Let A be a n ×m matrix, Almaxlmin
(i,x:y) denote the part of the line i, of A, having y − x elements from column x to y s.t. 

x < y ≤m.

Now, note that, if A and B are two matrices with exactly c columns:
[

Almaxlmin
]

l,c
>lmaxlmin

[

Blmaxlmin
]

l,c
if and only if ∃i∗ ≤ l, such that ∀i < i∗, Almaxlmin

(i) =lmin Blmaxlmin
(i) and Almaxlmin

(i∗) >lmin

Blmaxlmin
(i∗)

.

Clearly, in this case replacing A and B with U t(s)lmaxlmin when considering δ and U ′ t(s)lmaxlmin when considering δ′ , if 
such a i∗ ≤ l exists for a given l, the same i∗ works for l′ > l.

Thus, ≻lmaxlmin,l′,c refines ≻lmaxlmin,l,c .

Remark that the property does not hold for c. Increasing c does not refine the order ≻lmaxlmin,l,c,t,s . Indeed, given c < c′ , 
we can find a pair of matrices for which it holds all together that:
– Almaxlmin

(1,1:c) =lmin Blmaxlmin
(1,1:c) ,

– Almaxlmin
(2,1:c) >lmin Blmaxlmin

(2,1:c) and

– Almaxlmin
(1,1:c′)

<lmin Blmaxlmin
(i∗,1:c′)

.

Thus, Almaxlmin ≻lmaxlmin,l=2,c Blmaxlmin and Blmaxlmin ≻lmaxlmin,l=2,c′ Almaxlmin . One can easily build a decision problem and 
two policies corresponding to matrices A and B satisfying the above. Thus, increasing c does not lead to a more refined 
order.



• From the first point, above, it holds that

≻lmaxlmin,l=1,c refines ≻lmaxlmin,l=1,c=1 and that ≻lmaxlmin,l,c refines ≻lmaxlmin,l=1,c.

So, ≻lmaxlmin,l,c refines ≻lmaxlmin,l=1,c=1 , which is equivalent to the order induced by uopt . Thus, optimal solutions of 
≻lmaxlmin,l,c are also optimal for uopt , in all steps of the stationary 5MDP . ✷

Proof of Proposition 6. Note that
[

(U ⊗ (N1, . . . ,Na))
lmaxlmin

]

l,c
= [(U1 ⊗ N1) ⊕ (U2 ⊗ N2) ⊕ ... ⊕ (Uk ⊗ Nk)]

lmaxlmin .

Now, note the two following facts:

Fact 1. (A ⊕ B)lmaxlmin =
(

(A)lmaxlmin ⊕ (B)lmaxlmin
)lmaxlmin

.

The reason is that: Almaxlmin first reorders each line in lmin order, which can be done independently for each line and 
then all ordered lines are ordered through lmax. This second step can be done separately for each submatrix, provided that 
the lines are leximax-reordered once more, which is done by the external lmax(lmin) operator.

Fact 2. 
(

U(i) ⊗ A
)lmaxlmin

=
(

U(i) ⊗ (A)lmaxlmin
)lmaxlmin

.

This second fact holds since adding identical elements to each line of a matrix does not modify the leximin ordering of 
the lines. In the right hand term of the equality, the outer lmaxlmin operator only inserts the terms of U (i) in all lines of 
matrix Almaxlmin .

Now, from Fact 1, we get:

(U ⊗ (N1, . . . ,Na))
lmaxlmin = [(U1 ⊗ N1)

lmaxlmin ⊕ (U2 ⊗ N2)
lmaxlmin ⊕ ...⊕

(Uk ⊗ Nk)
lmaxlmin]lmaxlmin.

And then, from Fact 2:

(U ⊗ (N1, . . . ,Na))
lmaxlmin = [(U1 ⊗ (N1)

lmaxlmin)lmaxlmin ⊕ (U2 ⊗ (N2)
lmaxlmin)lmaxlmin

⊕ ... ⊕ (Uk ⊗ (Nk)
lmaxlmin)lmaxlmin]lmaxlmin.

Now, using Fact 1 again, in the other direction of the equality:

(U ⊗ (N1, . . . ,Na))
lmaxlmin = [(U1 ⊗ (N1)

lmaxlmin)lmaxlmin ⊕ (U2 ⊗ (N2)
lmaxlmin)lmaxlmin

⊕ ... ⊕ (Uk ⊗ (Nk)
lmaxlmin)lmaxlmin]lmaxlmin

=
(

U ⊗ ((N1)
lmaxlmin, . . . , (Na)

lmaxlmin)

)lmaxlmin
(20)

From (20), we have, of course,

[

(U ⊗ (N1, . . . ,Na))
lmaxlmin

]

l,c
=

[
(

U ⊗ ((N1)
lmaxlmin, . . . , (Na)

lmaxlmin)

)lmaxlmin
]

l,c

.

[

(U × (N1, . . . ,Na))
lmaxlmin

]

l,c
=

[
(

U × (Nlmaxlmin
1 , . . . ,Nlmaxlmin

a )

)lmaxlmin
]

l,c

.

Now, notice that:

• the Nlmaxlmin
i are lmax(min)-ordered, as well as the lines 

(

U(i)

)

,

• the Nlmaxlmin
i have exactly c columns and

• since the resulting (reordered) matrix has l lines, it cannot contain more than l lines of any of the Nlmaxlmin
i matrices.

We can safely replace the inner Nlmaxlmin
i matrices with their sub-matrices 

[

Nlmaxlmin
i

]

l,c
and get the result. ✷

Proof of Proposition 7. In bounded utility lexicographic value iteration, at each time step, U t(s) is composed of a set of 
trajectories τ i

t = 〈si0, a
i
0, s

i
1, . . . , s

i
t , a

i
t, s

i
t+1〉, which can be identified with the set of possibilities/utilities of each transition 



(si
t′
, ai

t′
, s′ i

t′+1
) s.t. t ≥ t′ ≥ 0, these are obtained from {〈π i

t′
, ui

t′
〉}t′=0,t . Thus, τ i

t has 2t elements. Let v i,α
t count the number of 

times a level α ∈ V has been obtained by π i
t′
or ui

t′
during the trajectory τ i

t . Statistics < v
i,1
t , . . . , v i,|V |

t > can be maintained

for every trajectory.
As t increases all (v i,α

t ), which are non-decreasing sequences, converge toward a finite or infinite limit. We let

lim(i,α) = lim
t→∞

(v
i,α
t ), s.t. lim(i,α) ∈ N ∪ {+∞}, ∀ τ i

t ,α.

Thus, if we denote U i , the limit of the line vector in U t(s) corresponding to trajectory τ i
t when t tends to infinity, we have:

U i =




α1, . . . ,α1

︸ ︷︷ ︸

lim(i,1)

,α2, . . . ,α2
︸ ︷︷ ︸

lim(i,2)

, . . .




 .

Let us now consider U∗
l,c
, the l × c matrix made from the l first (in leximax order) line vectors [U i]1,c .

Then, obviously,

lim
t→∞

[

U t(s)lmaxlmin
]

l,c
= U∗

l,c .

Thus, bounded utility lexicographic value iteration algorithm converges.
Besides, we show now that if [U t(s)lmaxlmin]l,c = [U t−1(s)lmaxlmin]l,c , thus, ∀ t′ ≥ t , we have [U t′ (s)lmaxlmin]l,c =

[U t(s)lmaxlmin]l,c :

Let us consider the following hypothesis:

H : [U t(s)lmaxlmin]l,c = [U t−1(s)lmaxlmin]l,c.

Considering H , let us calculate [U t+1(s)lmaxlmin]l,c:

Futuret+1 = (U t(s′), s′ ∈ succ(s,a)) = Futuret,

→ Q t+1(s,a) = [
(

T U s,a ⊗ Futuret
)lmaxlmin

]l,c = [
(

TU s,a ⊗ Futuret−1
)lmaxlmin

]l,c = Q t(s,a).

We deduce that, 
(

U t+1
)lmaxlmin

l,c
=

(

U t−1
)lmaxlmin

l,c
. ✷

Proof of Proposition 8. We prove the convergence in two steps:

• We show that for any pair of successive policies (δold, δ) computed by the algorithm, we have:

U δ
l,c(s) ≥lmaxlmin U δold

l,c (s),∀s ∈ S.

As a consequence, and since the set of matrices U l,c is finite, the algorithm converges.

To prove this, just notice that since δ(s) ← argmax
lmax(lmin)
a Q δold

l,c
(s, a), U δ

l,c
(s) ≥lmaxlmin Q δold

l,c
(s, a), ∀a. Thus,

U δ
l,c(s) ≥lmaxlmin Q δold

l,c (s, δold(s)) = U δold

l,c (s).

• In a second step, we show that the fixed-points of Lmax(lmin)-BU -P I are also fixed points of Lmax(lmin)-BU -V I ,

which is enough to prove the correctness of the Lmax(lmin)-BU -P I algorithm (we have already shown the correctness
of Lmax(lmin)-BU -V I).

Let δ be a fixed-point of Lmax(lmin)-BU -P I . We have

δ(s) = argmax
lmax(lmin)
a Q δ

l,c(s,a),∀s and

U δ
l,c(s) = max

lmax(lmin)
a Q δ

l,c(s,a),∀s.

Let us now set U t−1
l,c

= U δ
l,c

in the Lmax(lmin)-BU -V I algorithm, and let us compute U t
l,c
:

U t
l,c(s) = max

lmax(lmin)
a [(T U s,a × Future)lmaxlmin]l,c,∀s.

But, Future =def

(

U t−1
l,c

(s′), s′ ∈ succ(s,a)
)

=
(

U δ
l,c(s

′), s′ ∈ succ(s,a)
)

= Futureδ .



Thus,

U t
l,c(s) = max

lmax(lmin)
a [(T U s,a × Futureδ)lmaxlmin]l,c

= max
lmax(lmin)
a Q δ

l,c(s,a),∀s

= U δ
l,c(s),∀s.

Thus, U δ
l,c

(s) is a fixed-point of Lmax(lmin)-bounded Value Iteration. ✷

Proof of Proposition 9. Note that Proposition 5 proves the right implication (⇒) for any l > l∗ , c > c∗ . Now, since for any 
possibilistic MDP the number of stationary policies is bounded, so is the number of possible different preorderings º over 
the set of bounded matrix utilities of policies in any state.

Thus, for any sequence (ºt) such that ºt+1 (strictly) refines ºt converges in a finite number of iterations. This is the 
case for any sequence 

(

ºt ≡ ºlmaxlmin,lt ,ct

)

with strictly increasing sequences (ct), (lt). Proposition 9 results. ✷

Proof of Proposition 10. From Proposition 9, there exist a pair (l∗, c∗) of finite positive integers, such that, ∀l > l∗, c > c∗ , 
∀δ, δ′, s,

δ(s) ºlmaxlmin,l,c δ′(s) ⇔ δ(s) ºlmaxlmin,l∗,c∗ δ′(s).

Now, if we focus on the bounded iterations lmax(lmin) Value iteration algorithm, then for any E > 0, there obviously exist 
(lE , cE ) such that

δ(s) ºlmaxlmin,E δ′(s) ⇔ δ(s) ºlmaxlmin,lE ,cE δ′(s).

It is enough to take lE as the maximum number of possible trajectories of length E for any policy and starting state, and to 
choose cE = 2E + 1, as the length of trajectories.

Note that (lE ) and (cE ) can be chosen as strictly increasing functions of E . Thus, for the above defined pair (l∗, c∗), there 
exist E∗ such that, ∀E > E∗ , lE > lE∗ > l∗ and cE > cE∗ > c∗ .

Thanks to Proposition 9, we get that, ∀E > E∗ ,

δ(s) ºlmaxlmin,E δ′(s) ⇔ δ(s) ºlmaxlmin,l∗,c∗ δ′(s).

This means that the bounded iterations lmax(lmin) value iteration algorithm converges after a finite number of steps (E∗ , 
here). ✷
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