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This paper presents the results of the second edition of the Wind Farm Layout Optimization Competition, which was 
held at the 22nd Genetic and Evolutionary Computation COnference (GECCO) in 2015. During this competition, 
competitors were tasked with optimizing the layouts of five generated wind farms based on a simplified cost of energy 
evaluation function of the wind farm layouts. Online and offline APIs were implemented in Cþþ, Java, Matlab and 
Python for this competition to offer a common framework for the competitors. The top four approaches out of eight 
participating teams are presented in this paper and their results are compared. All of the competitors' algorithms use 
evolutionary computation, the research field of the conference at which the competition was held. Competitors were 
able to downscale the optimization problem size (number of parameters) by casting the wind farm layout problem as a 
geometric optimization problem. This strongly reduces the number of evaluations (limited in the scope of this 
competition) with extremely promising results.

1. Introduction

Wind farm design is a complex task and the recent trend of
larger farm sizes has greatly increased demands on designers.
Traditionally, a small, well-connected, land area is divided into

smaller cells and turbine placement among cells is decided through
a simple search algorithm with a pre-specified cost function. This
function is usually limited to minimizing inter-turbine wake in-
terferences and thus maximizing energy capture. Few approaches
consider additional factors such as operation and maintenance
costs, turbine costs, or cable layout.

Modern farms cover large areas and boast hundreds, and
sometimes even thousands, of turbines. The layout design process
is iterative, computationally expensive, burdened with global and
local constraints, and ultimately controlled by subjective assess-
ments due to the involvement of a variety of stakeholders. During
each step, designers must either refine an incremental layout or
propose a new layout which they have generated by incorporating
new constraints. Additionally, evaluating a layout requires varied
multi-disciplinary models and sub-modules that are extremely
computationally expensive.
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The wind farm layout optimization problem is the identification
of turbine positions in a 2-D plane such that the energy capture is
maximized while costs associated with a number of other factors
are minimized. The energy capture for a turbine takes into account
the wind scenario (wind force distribution and terrain), the tur-
bines' power curve (power generated by the turbine in function of
the wind input) and wake effects (inter-turbine interferences) [1].

When optimizing both the position and the number of turbines
to build, genetic algorithms (GAs) are commonly used to optimize
wind farm layout. The farm area is discretized with a grid [2e8].
The GA optimizes a binary genome in which each gene represents
the presence or absence of a turbine in each cell of the grid,
therefore both optimizing the number of turbines and their discrete
placement. Other techniques have been evaluated using particle
swarm optimization [9e11] and local modification with different
optimization algorithms [12,13].Wilson et al. have also proposed an
innovative interactive approach based on cell-based developmental
model in Ref. [14]. Interested readers can find overviews of existing
methods for wind farm layout optimization in Khan et al. [15] and
Samorani [16].

In this paper, we report on a competition we ran at the Genetic
and Evolutionary Computation Conference 2015 (GECCO 2015)
during which experts from the evolutionary computation com-
munity optimized wind farm layouts. Eight teams participated and
proposed innovative algorithms, all evaluated in the same context:
the samewind scenarios, power curve and wake effect models. This
paper presents the results of the top 4 participants and is organized
as follows. Section 2 presents the rules and the framework used
during the competition. Section 3 details the top 4 algorithms of the
competition, which are then compared with a standard binary GA
in section 4. Finally, this article discusses these algorithms and
opens novel questions that could be addressed using evolutionary
algorithms in this domain of research.

2. Competition rules and framework

2.1. Competition rules

Whereas the first edition of the wind farm layout optimization
competition, held at the 2014 Genetic and Evolutionary Computa-
tion COnference (GECCO), consisted in only optimizing the wake
free ratio (actual energy output over potential output without
wake), the second edition focuses on the economical viability of the
produced layouts. Layouts generated by the competitors' algo-
rithms are evaluated in the cloud on 5 unknown wind scenarios
(wind rose, layout shape and obstacles, turbine specifications, etc.)
using the cost function presented below. In order to keep the
computation cost acceptable, the competitors have a finite number
of possible evaluations: they can only call the evaluation function
10,000 times for all 5 scenarios combined. This limited amount of
evaluation credits aims to represent the CPU cost of layout evalu-
ation and to promote efficient algorithms. This metric was
preferred to CPU time because the computation was held on a
shared research cluster with no exclusive access guaranteed. In
order to develop their algorithms, competitors also have access to
20 known scenarios, 10 without obstacles and 10 with obstacles, all
different from the ones used during the competition.

Based on the best layouts submitted, the competing algorithms
are compared on each scenario to optimize the cost of energy

function. The algorithms are ranked on each scenario with a point
system provided in Table 1.

Places below 6th receive 0 points. The winner of the competi-
tion is the competitor that has the highest number of points among
the 5 scenarios.

2.2. Layout evaluation

For each layout generated, the goal of the competitors is to
minimize the cost of energy f calculated as follows:
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where ct is the turbine cost, cs is the price of a substation, m is the
number of turbines per substation, r is the interest rate, y is the
farm lifetime in years, cOM is the operation and maintenance costs,
n is the number of turbines of the layout, P is the layout's energy
output. The last term of the fitness function rewards layouts with
more turbines: without this term, smaller layouts would be more
optimal, which would be counterproductive with regard to the
optimization.

This cost function corresponds to the production price of a
kilowatt: the competitors must produce the layout that minimizes
the cost of energy with respect to the scenario provided. Table 2
provides the constant values used in the previous equation.

Note that a set of constraints must be fulfilled by a wind farm
layout to be valid. First, all the turbines must be located inside the
terrain where the wind farm will be deployed, i.e. all turbine po-
sitions must be smaller than a maximum x and y provided in each
scenario. Second, the distance between turbines must be larger
than a given security threshold, which is called Dmin and in our
studies was set to 8 times the turbine rotor radius.

To evaluate the energy output of the wind farm, Kusiak's model
has been used [1]. It provides the energy output P of the layout
generated by the competitor optimizers.

2.3. Inter-turbine interference model

The energy capture for a turbine takes into account the
following:

' Wind Scenario: Wind speed, v, represented as a random variable
with a Weibull distribution that is a summary of wind speed at
that location for a period of time. This is given by pvðv; c; kjqÞ,
where c and k are Weibull shape and scale parameters and q is a
wind directional bin. Thewind speed distribution is different for
different directional bins, q. Additionally, wind flows from a
certain directionwith some probability pðqÞ. Together pvðv; c; kjqÞ

and pðqÞ are referred to as wind resource/scenario in this paper.

Table 1

Point system.

Position 1st 2nd 3rd 4th 5th 6th

Points 10 6 4 3 2 1

Table 2

Constant values used in the calculation of the cost of
energy.

Constant Value

ct $750,000
cs $8,000,000
m 30
r 3%
y 20 years
cOM $20,000 per year
Dmin 308m



' Power curve: A function hðvÞ, known as a power curve, gives the
power generated by a turbine for the given wind speed v. The
power curve is dependent on the turbine make and model.

' Wake effects: In a particular directional bin, for a given turbine i

located at xi; yi a number of other turbines affect the wind it
experiences. This is called wake effect. Given the other turbines'
locations xj; yj for all j2f1…i# 1; iþ 1…ng, the turbines that
affect the particular turbine are determined using awakemodel.
This is documented in Ref. [1]. If a turbine located at xi; yi is in
the wake of another turbine located at xj; yj in a given direction,
the wind speed distribution experienced by the turbine is
modified by changing the parameter c resulting in a turbine
specific cijq. The value ci < c is reduced in proportion to the
Euclidean distance between i and j.

To evaluate the energy capture, the objective function needs the
expected value of the energy capture for a given wind resource and
turbine positions. For a single turbine at position ðxi; yiÞ, it first
determines its modified wind resource for each directional bin
based on other turbine positions and then calculates its energy
capture using:

E ¼

Z

q

pðqÞ

Z

v

pq
v
ðv; ci; kijqÞhðvÞ: (2)

Equation (2) evaluates the overall average energy over all wind
speeds for a given wind direction, and then averages this energy
over all wind directions. Energy is calculated for every turbine and
then summed together to give global energy capture.

2.4. Framework

In order to reduce the competitors' development efforts, we
have developed an open-source API, called WindFLO, that imple-
ments the cost function (and the inter-turbine interference model)

in multiple languages (Cþþ, Java, Matlab and Python).1 The API
provides a simple GA as an example of use of the library.

2.5. Wind scenarios

Fig. 1 depicts the scenarios (terrain sizes, obstacles and wind
roses) used to evaluate the competitors' algorithms. Wind roses
graphically represent the wind repartition in force and probability
in each direction. These scenarios can be downloaded from the
WindFLO repository.

3. Competitors' algorithms

The second edition of the competition received a total of 8
submissions. This section presents the top four approaches. In our
opinion, they are the most relevant to the wind farm optimization
community and provides the best results in term of quality of
layouts obtained. These four algorithms are available in the
WindFLO API presented above. These algorithms are the following:

1. 3s-MDE: from Carlos Segura, Guillermo L!opez Buenfil, Mario
Ocampo Pineda, Sergio Ivvan Valdez Pe~na, Salvador Botello
Rionda, and Arturo Hern!andez-Aguirre. The 3-Stages Memetic
Differential Evolution (3s-MDE) starts by creating a surrogate
model which approximates the cost function. Then, a memetic
differential evolution is used to pre-optimize the model based
on a geometric distortion of a layout based on rhomboids. The
pre-optimized layout is then refined by locally modifying the
candidate solution. The more accurate model is used only to
evaluate solutions with a promising behaviour in the surrogate
model.

Fig. 1. The 5 unknown scenarios used to evaluate the competitors' algorithms. Obstacles are represented with dark blue rectangles. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

1 This API is available on github: https://github.com/d9w/WindFLO.



2. CMA-ES: from Ilya Loshchilov and Frank Hutter, this second
approach uses the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) to optimize a layout described by 5 variables:
scale (horizontal and vertical), shift from the origin, rotation,
and shift from a given location.

3. SSHH: from Ahmed Kheiri and Ed Keedwell, the Sequence-based
Selection Hyper-Heuristic (SSHH) approach discretized the
layout and then a solution is represented by three integer var-
iables that corresponds to the distance between neighbouring
turbines and a shift factor. A hidden Markov model produces a
sequence of low level heuristics which create the final layout.

4. GM: from Brian Goldman, the Goldman Method (GM) presented
in this paper uses a pair of lattice vectors to calculate turbine
locations. It also uses the cost of substation, which is larger than
the turbine cost itself, to leverage the size of the evaluated
layouts. A deterministic best-improvement local search method
is then used to optimize the lattice vectors.

The source codes of these four algorithms are available on the
competition github: https://github.com/d9w/WindFLO. We now
discuss these approaches in turn.

3.1. Memetic differential evolution with surrogate model and ad-

hoc improvements (3s-MDE)

In this section we present a three-stage optimizer d see
Algorithm 1 d that combines a memetic differential evolution
(MDE) with a novel representation of candidate solutions, a surro-
gatemodel and ad-hoc improvements. This method is referred to as
3S-MDE in the rest of the paper. A detailed flowchart of the scheme
describing the three stages is given in Fig. 2. In this flowchart, the
boxes that perform evaluations in the real simulator d in contrast
to those that use the surrogate model d are shown in gray. The
following sections describe each stage of this optimizer.

3.1.1. First stage: construction of a surrogate model

One of the main difficulties when dealing with complex engi-
neering problems is that evaluating a solution is usually quite an
expensive process. Surrogate models can be used to alleviate this
difficulty [17]. Different ways of building surrogate models have
been proposed. Problem-dependent models rely on ad-hoc
knowledge of the problem, whereas with problem-independent
models, machine learning methods are usually employed [18].

For this optimizer, a problem-dependent surrogate model is
built to approximate the energy generated by a given set of tur-
bines. In order to construct the surrogate model, a set of simple
candidate solutions where only two turbines are placed in the wind
farm are evaluated using the original evaluator. Additionally, one
evaluation with a single turbine is carried out to estimate the
maximum energy that it can generate. For each evaluationwith two
turbines, the penalty on the energy produced in both turbines with
respect to the case where only one turbine is placed in the wind
farm is calculated. Specifically, the following set of distances are
checked: Dmin, 1:5Dmin, 2Dmin, 2:5Dmin, 3Dmin and 3:5Dmin, where
Dmin represents the minimum admissible distance between tur-
bines. For the case in which the distance between turbines is set to
Dmin, 720 equidistributed different angles are checked, whereas in
the remaining cases, 360 different angles are used.

The surrogate model uses the saved data to approximate the
energy generated by layouts that use any number of turbines. The
model assumes that the energy generated by one turbine is not
influenced by any other turbines placed further away than 3:5Dmin.
Thus, for each turbine, the set of conflicting turbines d those at a
distance not greater than 3:5Dmin d is detected and the negative
influence is estimated based on the saved data. Specifically, if for a
given turbine there exists another turbine at a distance D and angle
g, then the four surrounding cases d combining the nearest dis-
tances and angles d are identified and linear interpolations are
used to estimate the negative influence. Note that the computa-
tional complexity of identifying the surrounding cases with values
higher and lower than D and g is constant, so this process is quite
fast. The total energy generated by a given turbine is the estimate of
the maximum attainable energy minus the sum of the estimated
negative influences. The total energy estimated for a given layout is
the sum of the energies estimated for each turbine.

3.1.2. Second stage: memetic differential evolution

In the second stage, one of the most well-known variants of DE is

Fig. 2. 3s-MDE flowchart.

Algorithm 1

Memetic DE with Surrogate Model and Ad-hoc Improvements.

1: Stage 1: Create a Surrogate Model SM.
2: Stage 2: Apply a memetic DE/rand/1/bin using SM with a representation

based on rhomboids.
3: Stage 3: Apply ad-hoc improvements to the best solution obtained in Stage 2.



applied. Specifically, the DE/rand/1/bin is used [19]. This variant has
the property of beingmore explorative than schemes that apply the
“best” strategy. This feature was vitally important due to the small
population size (N) used in the runs. In the current MDE imple-
mentation, a special initialization of the population is used. First,
200 individuals are created; then, the best N individuals are
selected to form the initial population.

One of the keys to designing proper Evolutionary Algorithms
(EAs) is the selection of a suitable encoding of the individuals [20].
Directly encoding the coordinates of the turbines yields too large a
search space, thus an alternative encoding was adopted. Specif-
ically, a solution is encoded with four real-valued parameters,
which establish the geometry of a possibly rotated rhomboid (see
Fig. 3): L1 and L2 are the lengths of the sides of the rhomboid; a is
the angle formed between two sides of the rhomboid; finally, b
rotates the whole rhomboid. This rhomboid is used to establish the
positions where the turbines are deployed, which is illustrated in
Fig. 3. Specifically, the given scenario d green zone d is covered
with a set of rhomboids with the specified geometry and the tur-
bines are positioned at the vertexes of these rhomboids. One of the
vertexes of the rhomboids is placed in the bottom-left corner of the
wind farm. Since some turbines might be too close to one another, a
repairing method is used to remove conflicting turbines. First, the
turbines are randomly shuffled. Then, each turbine is sequentially
examined and is accepted only if it does not conflict with any
previously accepted turbine, i.e. it is accepted if the distance to any
already selected turbine is not smaller than Dmin. Additionally,
when a vertex is inside an obstacle, no turbine is located in such a
vertex.

In order to improve upon the intensification capabilities, DE was
integrated with an adaptive local search, which is applied both in
the creation of the initial population and after the creation of the
offspring. The number of evaluations used in each application of the
local search is set with the local search budget (LSB) parameter. The
adaptive search starts with a given step size (SS) for each parameter
which is progressively decreased linearly with the aim of increasing
the intensification capabilities. The reduction is calculated in such a
way that by the end of the local search the resulting value is 0.
When each neighbor is created, any of the four parameters is
changed with a probability equal to 0.25. Specifically, they are

modified by summing or subtracting the step size corresponding to
the iteration. Note that applying the real evaluator in the local
search would be very expensive. As a result, the adaptive local
search uses the surrogate model and only the best solution ob-
tained after the application of each local search might be evaluated
with the original evaluator. Specifically, the obtained solution is
evaluated with the original evaluator only if it is not worse than
1.20 multiplied by the best so far obtained fitness. Thus, the sur-
rogate model is also used to filter out poor solutions, which is a
typical use of surrogates.

3.1.3. Third stage: ad-hoc improvement

The last stage starts from the best solution identified by the
memetic DE and applies two methods to further improve it. Note
that in this last phase, the surrogate model is not used because
some minor modifications are made to the candidate solutions,
thus making it impossible to properly measure the promising
behaviour of these changes with the surrogate model.

The first method is applied only in the scenarios where obstacles

are included. First, given a budget B for evaluations, B
2 potential

locations are identified. Specifically, at each edge of the obstacles,
B

NOBS&4&2
locations are equidistributed, where NOBS is the number of

obstacles. Then, for each selected location, a new solution is eval-
uated that considers the establishment of a turbine in that position
and the removal of a randomly selected turbine. Themodification is
maintained only if the fitness is improved.

Finally, the remaining evaluations are used to apply a local
search. In the initial version of the local search, neighbors were
generated by slightly moving a single turbine. Specifically, a
maximum step (MS) was establishedd here set to 6.25 unitsd and
in order to generate a neighbor, a turbine was moved S units, where
S was a randomly generated number between 0 and MS. The di-
rection of movement was also randomly generated. Given that the
number of evaluations is very restricted, instead of moving a single
turbine, the local search moves several turbines simultaneously,
following the same method explained above. Distant turbines are
selected using the process below. First, a safety distance (SD) is
established to 6+ Dmin. Then, a turbine present in the current so-
lution is randomly selected and a grid of square cells with a side
length equal to SD is set up in the wind farm in such a way that the
center of a cell is in the position of the selected turbine. Then, for
each cell, the turbine that is closest to the center is selected. In this
way, a set of distant turbines is generated. The new candidate so-
lution is created by moving each selected turbine. Then, the energy
generated in each cell is calculated and the cells where the amount
of energy generated is increased are considered to be promising
moves. Finally, the movements involving unsuccessful cells are
undone and the new candidate solution is reevaluated. If the fitness
of the new solution improves the original solution, it is accepted.
This process is repeated until the budget for the number of evalu-
ations is exhausted.

3.1.4. Parameterization

3S-MDE needs a set of parameters, which were tuned with the set
of instances given in the first part of the contest. Table 3 provides
the parameters used in this competition.

3.2. CMA-ES for layout optimization (CMA-ES)

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[21] is the method of choice when dealing with hard black-box
optimization problems which are nonlinear, multimodal and/or
noisy. The algorithm is invariant to rank-preserving trans-
formations of the objective function and affine transformations ofFig. 3. Encoding of Individuals in MDE.



the search spacewhichmakes it parameter-less in practice. CMA-ES
has repeatedly demonstrated good performance at various plat-
forms for comparing continuous optimizers such as the Black-Box
Optimization Benchmarking (BBOB) workshop [22e24] and the
Special Session at Congress on Evolutionary Computation [25,26].
Thus, CMA-ES seems naturally suitable for the wind farm layout
optimization problem especially when a low-dimensional param-
eterization of the design problem is considered.

In this section, we discuss the application of CMA-ES to thewind
farm layout optimization problem. In a nutshell, CMA-ES works as
follows. In its iteration t, a mean mt of the mutation distribution
(which can be interpreted as an estimation of the optimum) is used
to generate l candidate solutions xk2ℝ

n by adding a random
Gaussian mutation defined by a (positive definite) covariance ma-
trix Ct

2ℝ
n+n. The k-th sampled candidate solution xt

k
is then

defined as:

xtk , N

%

mt ; st2Ct
&

¼ mt þ s
t
N

!

0;Ct
$

; (3)

where s
t is a mutation step-size. These l solutions then should be

evaluated on an objective function f. The old mean of the mutation
distribution is stored in mt and a new mean mtþ1 is computed as a
weighted sum of the best m parent individuals selected among the l
generated offspring individuals. The algorithm adapts mt and Ct in
order to increase the likelihood of the successful sampling steps to
appear again and to proceed towards the optimum.

Since we optimize both the number of turbines and their posi-
tions, the direct representation of turbine positions as variables
would lead to a large-scale optimization problem which is often
intractable [13]. Similarly to other algorithms presented in this
paper, we therefore parameterize the search space of wind-farm
layouts with only a few variables. We use 5 continuous variables
to i) fill a rectangular grid of turbines, ii) shift it to the origin, iii)
rotate it, and then iv) shift it to some location. Finally, all turbines
which violate the constraints (e.g., obstacles, target size of the
layout) are removed from the grid.

We parameterize the original optimization problem as follows:

STEP 1 The initial rectangular grid is selected to be h1 ¼ 4 times
larger than the maximum size ðW;HÞ of the target layout to
take into account its rotation in STEP 2. The minimum
distance between turbines on the x-axis is set by Dx ¼

Dmin þ ð0:2x1Þ
h2 + ðW # DminÞ, where Dmin ¼ 8R and h2 is a

hyperparameter set to 4. Similarly, the distance on y-axis is
set by Dy ¼ Dmin þ ð0:2x2Þ

h3 + ðH# DminÞ. Thus, the total
number of turbines is ðbh1 + W=Dxcþ 1Þð

"

h1 + H=Dy

#

þ 1Þ.
STEP 2 Shift the grid to the origin by substracting ðh1 +W=2;h1 +

H=2Þ and rotate turbine coordinates by an angle q ¼ # pþ

2px3.

STEP 3 Shift the rotated grid by ðð0:5þ 0:2x4Þ+ W ; ð0:5þ 0:2x5Þ+
HÞ.

STEP 4 Remove all infeasible turbines.

Table 4 summarizes the various constants used as well as the
five variables x1 to x5 optimized by CMA-ES. All these 5 variables
are constrained to be in ½0; 10 and are optimized with the active
CMA-ES [27,28] in its default settings andwithm0 ¼ ½0:505 and s

0 ¼

0:3.

3.3. A sequence-based selection hyper-heuristic (SSHH)

In contrast to the other techniques, hyper-heuristics operate
at the level above (meta-)heuristics such as EAs. Selection
hyper-heuristics are high level control methods that mix and
manage a predefined set of low level heuristics for solving hard
computational problems. Hence, online learning is a crucial
component of such methods which are capable of discovering
the appropriate combinations of low level heuristics yielding an
improved overall performance. More on different types of hyper-
heuristics, including an overview of different algorithmic com-
ponents and designs, and their applications can be found in
Ref. [29].

Traditionally, a selection hyper-heuristic employs two methods,
consecutively: a heuristic selection method to choose a suitable low
level heuristic (move operator) which is applied to a candidate

Table 3

Parameters of the 3s-mde method.

Parameter name Notation value

Population size N 10
Crossover rate CR 0.9
Mutation scale factor F Gaussian dist. N ð0:5;0:3Þ
L1 Step size L1-SS 125
L2 Step size L2-SS 125
a Step Size a-SS 22.51

b Step Size b-SS 22.51

Local search budget (Initialization) I-LSB 15,000
Local Search budget (Offspring) O-LSB 5000
Criterion to pass to third stage N/A 90% of Evaluations

Table 4

Parameters optimized with CMA-ES and constants used in this approach.

Parameter Notation Optimized

Layout height H No (input)
Layout width W No (input)
Turbine radius R No (input)
Layout scale factor h1 No, fixed to 4
Interturbine scale on x-axis h2 No, fixed to 4
Interturbine scale on y-axis h3 No, fixed to 4
Interturbine distance on x-axis x1 Yes
Interturbine distance on y-axis x2 Yes
Rotation angle x3 Yes
Shift on x-axis x4 Yes
Shift on y-axis x5 Yes

Fig. 4. Encoding of individuals in SSHH.



solution, and then a move acceptance method to decide whether to
accept or reject the newly generated solution. This study presents a
sequence-based selection hyper-heuristic (SSHH) consisting of a
learning sequence of heuristics selection method and an adaptive
threshold move acceptance method to solve the wind farm layout
optimization problem.

3.3.1. Representation and overall search

In order to pick the best locations for a set of turbines, a given
region is split into a grid consisting of a certain number of rows and
columns with neighbouring cells having an interval of size
(0.1+ TurbineRadius) in between them. A given solution is repre-
sented using three integer variables, X, Y and S, where
M 2 X <maxCols, M 2 Y <maxRows, and 0 2 S; M is the minimum
allowed distance between neighbouring turbines, maxRows and
maxCols are the maximum number of rows and columns, respec-
tively (see Fig. 4). Based on the values of those variables, a binary
matrix is formed by spreading neighbouring turbines with a
separating distance of X cells at each row and a separating distance
of Y cells at each column. A cyclic shift is performed at each row
starting from the second row. The S parameter is used to reduce the
wake effect from a neighbouring turbine and deals with differing
wind directions by shifting wind turbines. Algorithm 2 provides the
pseudocode of how the solution is constructed.

SSHH performs the search under an iterative framework main-
taining the best solution detected so far. Solutions are always made
feasible by removing the invalid turbines which are placed on ob-
stacles, before evaluation.

3.3.2. Low level heuristics

The low level heuristics (LLHs) used in this work are parame-
terized low level heuristics. Assume that HðV1; p;V2Þ is a heuristic,
where p has one of three values: 1, rand [1,10] or rand[10,79]; and
rand[L, U] is a random integer in [L, U] and this low level heuristic
modifies (increases or decreases) the value of the variable V1 by p,
and then with a probability of 0.30 resets the value V2. SSHH con-
trols the following low level heuristics during the search process:

' LLH0: Apply HðX;p;SÞ

' LLH1: Apply HðY;p;SÞ

' LLH2: Apply HðS;p;XÞ, then with a probability of 0.30 reset the
value of Y.

' LLH3: increase or decrease the value of X by p; then update p

and apply HðY ;p;SÞ.
' LLH4: increase or decrease the value of X by p; then update p

and increase or decrease the value of Y by p; and finally update p
and increase or decrease the value of S by p.

3.3.3. Heuristic sequence selection and move acceptance

The selection component forms and applies a sequence of low
level heuristics to a candidate solution as a single operation,
thereby generating super-heuristics through the combination of
more than one low level heuristic. This online learning method
analyses and produces sequences of heuristics during the search
process using a hidden Markov model, in which the hidden states
are low level heuristics (LLHs) and observations are sequence-
based acceptance strategies (AS). We make use of two matrices: a
transition probability matrix to determine the movement between
states and an emission probability matrix to determinewhether the
sequence of heuristics that has been constructed will be applied to
a candidate solution or that sequence will be extended by including
another LLH. As explained earlier, each heuristic is associatedwith a
parameter, p influencing its behaviour. Therefore, an additional
emission probability matrix is implemented to set the value of p. A
detailed description of this algorithm can be found in Refs. [30e32].
The threshold move acceptance method accepts all improving
moves by default. However, the non-improving moves are accepted
only if the cost of the new solution is less than or equal to a
threshold which changes with respect to the best solution during
the search process. The threshold is always set to the (1.01) of the
cost of the best solution found so far, whenever a non-improving
move occurs.

3.4. The Goldman method (GM)

3.4.1. Representation

There are two straightforward approaches to representing tur-
bine locations in the field, both of which have significant
limitations.

The first method would be to enforce a maximally compact two-
dimensional mesh, with each mesh point representing a possible
turbine. This method handles obstacles gracefully as invalid mesh
points can be removed before beginning search. As search focuses
on which mesh points to include as turbines, the total number of
turbines in the field is easy to manipulate. However, the mesh
structure does not allow turbines to orient themselves with the
wind. For example, it is possible that the wind is blowing parallel to
one of mesh axes, resulting in all turbines in a row (or column)
interfering with each other.

The second method would be to specify some number of tur-
bines and then search their possible locations in the field. While
this can overcome the problem of interference, it massively in-
creases the search space. Furthermore, it now becomes challenging
to determine the correct number of turbines to use and to avoid
obstacles.

In an attempt to gain the best of both techniques, while
simultaneously reducing the search space size, the Goldman
method represents a layout as two vector lattice. In this form,
search is performed over the space of a pair of two-dimensional
vectors. These vectors are converted to a layout by placing a tur-
bine at all integer linear combinations of the two lattice vectors.
As with the mesh representation any invalid turbine is removed,
resulting in simple obstacle handling. Yet unlike that method
turbines can orient at any angle to each other, with a flexible
amount of space between each, to avoid interference. To aid
search, the Goldman method encodes the two lattice vectors as
(angle, magnitude) pairs.

3.4.2. Number of turbines

A significant cost of any layout is howmany substations must be
purchased. The cost of energy function includes the term cs&

)

)

N
M

)

). The
cost of a substation, cs, is an order of magnitude larger than the cost
of a turbine. As a result the cost of energy is often minimized when

Algorithm 2

The pseudocode of how a solution is constructed.



NmodM ¼ M # 1 as this uses the maximum number of turbines
before a new substation must be purchased.

The Goldman method leveraged this knowledge when evalu-
ating layouts. Along with calculating the global cost of energy, each
evaluation provides the user with information about the “fitness” of
individual turbines in the layout. The Goldman method used this
information to reduce each tested layout to the nearest complete
substation by naïvely removing the least fit turbines. The reduced
layout is then evaluated, meaning that every lattice requires at
most two evaluations.2 The lattice's cost of energy is then consid-
ered to be whichever version was cheaper.

3.4.3. Search method

Given the limited evaluation budget, the Goldman method uti-
lizes a deterministic best-improvement local search method to
explore the space of lattice vectors. To simplify this process and
further reduce the search space, the four variables (two angles and
two magnitudes) which encode the lattice were discretized. Angles
were restricted to 36 intervals spaced p=18 apart. Magnitudes
ranged from the minimum allowable interval between turbines up
to 5 times that size in 64 evenly spaced steps.

To perform local search, the algorithm began from a lattice with
the vectors perpendicular to each other, one using the minimum
magnitude and the other using the middle of the magnitude range.
All alternatives to each variable were then tested sequentially, such
that only the best changing improvement to a variable is made
before continuing to the next variable. This process continues until
no single variable can be changed to make the lattice better. To
improve rotational symmetry, this process is run starting with the
long vector parallel to the x-axis, and then again parallel to the y-
axis. Duplicate work is prevented by caching the quality of each
discrete lattice.

4. Competition results

4.1. Competition results

The algorithms presented in the previous section, in addition to
four others not described in this paper, were run on the 5 scenarios
presented in the competition rules section. As mentioned above,
the competitors were given a budget of 10,000 evaluations to split
between the 5 scenarios for computational cost reasons. Table 5
provides the costs of energy fitness of each algorithms. As a basis
of comparison, we have compared the results to a genetic algo-
rithm. GAs have been used many times in this domain and offer a
familiar and standard benchmark against other algorithms from the
field of evolutionary computation. For this problem, a GA optimizes
a binary genome that decides whether or not a turbine is located in
each grid of a discretized layout. The fitness function used to
evaluate each layout is the one presented in equation (1). The GA is
set up with a population size of 20 individuals, a 4-player tourna-
ment selection with elitism, 5% mutation and 40% crossover.
Mutating a layout consists in switch a Boolean of the grid and
crossing is a standard one-point crossover. The GA is run for 50
generations, which represents 2000 evaluation per scenario.

Table 6 presents the scores obtained by the 4 algorithms during
the competition. Table 7 provides both the number of turbines and
of substations of the best layouts obtained by the different com-
petitors on the different scenarios. It is worth noting that obtained
layouts are of comparable size in terms of number of turbines for
each scenario. Also, the algorithms, either naturally or due to spe-
cific strategies, limit the number of turbines to a value very close to

the constraints of the substations. When evaluating the cost of
energy function, the cost of building a substation is subsequently
greater than the total price of the turbines. Therefore, the number
of substations, even though not directly highlighted in the problem
description, is of primary importance. Fig. 5 depicts the four layouts
obtained by the four competitors for scenario 1. We can note sim-
ilarities of the geometric arrangement strategies used by the
competitors, albeit with different approaches, to compress the
number of variables induced by the problem to a lower amount.
They mostly operate on a transformation (shift, scale and rotation)
of a grid layout prior to a removal of turbines that violate con-
straints (obstacles) and local deletion for layout refinement. Fig. 6
presents the best layouts across all competitors obtained for each
scenario. Once again this geometric arrangement strategy appears
on the obtained layout with various rotations and shifts depending
on the terrain characteristics.

4.2. Convergence comparison

Fig. 7 shows the convergence curves of the different algorithms.
They represent the competitor algorithms' best evaluations. Each
algorithm curve stops at the final evaluation. As an example, the GA
is always used with a fixed 2000 evaluation steps for each scenario.

First, the 3s-MDE optimization strategy is noticeable on the
plots: whereas good fitness values appear as soon as the first
evaluation in other approaches, 3s-MDE only has competitive
fitness values after 1260 evaluations. This corresponds to the
duration needed by the algorithm to build the surrogate model.
During this initial phase, the algorithm evaluates layouts with only
two turbines, which generate very poor layouts (not represented in
the plot for visualization purposes).

Secondly, it can be noticed that all other algorithms converge in
few iterations (approximately 300 evaluations) to a very good so-
lutions before starting local optimization. Even though 3s-MDE
needs more evaluation steps to produce a good layout, the initial
1260 evaluations are only madewith 2 turbines which is costless in
comparison to layouts with hundreds to thousands of turbines.
Therefore, we can argue that the layouts can be presented to the
farm designer very early in the optimization loop across all pre-
sented methods.

Table 5

Cost of energy, compared to the state-of-the-art layout optimization (binary GA).
Bold values are emphasizing the best score obtained among the algorithms.

Scenario 3s-MDE CMA-ES SSHH GM GA

1 1.164422E#3 1.172731E#3 1.181129E#3 1.185466E#3 1.269266E#3

2 1.00929E#3 1.029998E#3 1.039825E#3 1.044906E#3 1.158464E#3

3 6.26867E#3 6.30916E#4 6.40241E#4 6.49096E#4 6.91265E#4

4 6.53861E#4 6.5356E#4 6.66205E#4 6.64341E#4 7.18626E#4

5 1.142309E#3 1.152661E#3 1.167168E#3 1.16033E#3 1.269238E#3

Table 6

Competition results in points and ranking. Note that GA was not part of the
competition and is therefore not ranked. The results of other competitors are not
presented in this table.

Scenario 3s-MDE CMA-ES SSHH GM GA

1 10 6 4 3 e

2 10 6 4 3 e

3 10 6 4 3 e

4 6 10 3 4 e

5 10 6 3 4 e

Total 46 34 18 17 e

Rank 1st 2nd 3rd 4th e

2 Some lattices create layouts where NmodM ¼ M# 1.



5. Conclusion

This paper presented the results of the 2015 competition on
wind farm layout optimization. With this event, we were able to
propose innovative algorithms to optimize large wind farms with a
strong computational constraint. Thanks to this competition, we
were also able to compare these approaches with state-of-the-art
algorithms and observe the potential improvement of the optimi-
zation algorithms used to generate the wind farm layouts.

This competition also provides a framework to compare future
algorithms with existing ones on a comparative basis. The
competition framework is freely available inmultiple programming
languages (Cþþ, Java, Matlab and Python) with a set of randomly
generated wind scenarios.

Because solutions were obtainedwith acceptable computational
costs in this competition, we can now imagine targeting new
optimization objectives. The 3D structure of the terrain, and/or
heterogeneous wind distributionwithin the terrain, heterogeneous
wind turbines with different height, width and power curves could
be considered. In this competition, cable and road networks were
not taken into account, but these are of great importance for the
initial investment to build the wind farm. They could be added to

the framework and the cost of energy function in order to be
addressed by the optimization algorithms.

One of the main points we learned from this competition is that
the algorithms proposed by the competitors mainly work on opti-
mizing very few parameters in comparison to state-of-the-art al-
gorithms; instead of optimizing the Cartesian coordinates of
individual turbines, it seams preferable to optimize geometric pa-
rameters. By doing so, the complexity of the search space is dras-
tically reduced, leading to very acceptable optimization time, even
for very large wind farms. These geometric parameters allow for
continuous turbine placement over the entire grid, which is clearly
advantageous over the discrete grid used by the GA and previously
in the literature [15]. Furthermore, these parameters could be
exposed to human wind farm designers to allow them to under-
stand the optimal placement of turbines based on the wind sce-
nario and the constraints given to the optimization. Understanding
optimized grids such as Figs. 3 and 4would allow humanwind farm
designers the flexibility of choosing turbine placement while still
benefiting from an optimized energy cost.

Beyond demonstrating the utility of reducing this problem to an
optimization of geometric parameters, the successful use of a sur-
rogatemodel in this problem is novel and significant. As a surrogate

Table 7

Number of turbines and of substations of the best layouts obtained by the competitors on each scenarios. In the substation part of the table, the value parenthesis represents
the number of missing turbines in order to have all substations fully used (30 turbines per substation). Bold values are emphasizing the best score obtained among the
algorithms.

Scenario #Turbines #Substations

3s-MDE CMA-ES SSHH GM 3s-MDE CMA-ES SSHH GM

1 539 539 561 479 18 (0) 18 (0) 19 (¡8) 16 (0)

2 388 239 329 324 13 (¡1) 8 (0) 11 (0) 11 (¡5)

3 899 804 809 680 30 (0) 27 (¡5) 27 (0) 23 (¡9)

4 929 929 958 898 31 (0) 31 (0) 32 (¡1) 30 (¡1)

5 359 358 348 356 12 (0) 12 (¡1) 12 (¡1) 12 (¡3)

Fig. 5. Best layouts obtained by the 4 competitors on scenario 1.

Fig. 6. Best layouts obtained on the 5 scenarios.



Fig. 7. Comparison of the convergence profile of the different algorithms on the 5 scenarios.



could be built using gathered wind data a single time before layout 
design starts, the computational load of optimization during design 
can be greatly reduced. Surrogates could be used while considering 
new constraints to allow for more rapid design, and then finally 
rebuilt once constraints are more firmly understood. While this 
was not the focus of this competition, it was encouraging to see a 
sur-rogate model achieve such promising results.

This competition also encouraged the use of intelligent stop 
criteria by allowing competitors to develop a strategy to best 
allocate their evaluation over the five scenarios. The stop criterion 
of the optimization is still an open question for evolutionary algo-
rithms and is a difficult one to address: even if evolutionary algo-
rithms have been proven to converge to the optimal solution [33], 
it is impossible to determine when and even if the current best so-
lution is a local optimum or the global one. This is due to the size of 
search space explored in this kind of problem. However, trans-
formations on the search space can reduce its complexity, and the 
convergence of most algorithms here suggests that simpler search 
space created by optimizing geometric parameters allows for a 
more natural stop condition. Furthermore, we imagine the inte-
gration of this type of optimization into wind layout software will 
be part of an iterative design process, as numerous factors, 
including human design, come into play during wind farm design. 
The optimization process could be run for a desired number of 
steps or amount of computational time before being further 
reviewed or modified, matching the needs of human designers and 
mitigating the issue of a stop criterion.
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