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Nonlocal Coupled Tensor CP Decomposition for
Hyperspectral and Multispectral Image Fusion

Yang Xu, Member, IEEE, Zebin Wu, Senior Member, IEEE, Jocelyn Chanussot, Fellow, IEEE, Pierre
Comon, Fellow, IEEE, and Zhihui Wei

Abstract—Hyperspectral super-resolution, which aims at en-
hancing the spatial resolution of hyperspectral images (HSIs),
has recently attracted considerable attention. A common way of
hyperspectral super-resolution is to fuse the HSI with a higher
spatial resolution multispectral image (MSI). Various approaches
have been proposed to solve this problem by establishing the
degradation model of low spatial resolution HSIs and MSIs
based on matrix factorization methods, e.g., unmixing and sparse
representation. However, this category of approaches cannot well
construct the relationship between the high spatial resolution
HSI and MSI. In fact, since the HSI and the MSI capture
the same scene, these two image sources must have common
factors. In this paper, we propose a nonlocal tensor decomposition
model for HSI-MSI fusion. Firstly, the nonlocal similar patch
tensors of the HSI are constructed according to the MSI, for
the purpose of calculating the smooth order of all the patches
for clustering. Then, the relationship between the high spatial
resolution HSI and the MSI is explored through a coupled
tensor canonical polyadic (CP) decomposition. The fundamental
idea of the proposed model is that the factor matrices in CP
decomposition of the high spatial resolution HSI’s nonlocal tensor
can be shared with the matrices factorized by the MSI’s nonlocal
tensor. Alternating direction method of multipliers is used to solve
the proposed model. Through this method, the spatial structure of
the MSI can be successfully transferred to the HSI. Experimental
results on three synthetic datasets and one real dataset suggest
that the proposed method substantially outperforms existing
state-of-the-art HSI-MSI fusion methods.

Index Terms—e Hyperspectral images, multispectral images,
data fusion, nonlocal tensor, coupled CP decomposition.
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I. INTRODUCTION

N recent years, hyperspectral (HS) imaging has attracted

much attention since it can obtain images capturing the
same scene in different successive wavelengths at the same
time [1-3]. The abundant spectral information is of great
importance to improving the performances of many remote
sensing applications [4—10]. However, in optical remote sens-
ing systems, the limited amount of incident energy involves
a tradeoff between the spatial resolution and the spectral
resolution of images [11]. For example, hyperspectral images
(HSIs) have a high spectral resolution but a low spatial
resolution. To enhance the spatial resolution of HSIs, much
effort has been made, under the name of hyperspectral and
multispectral image fusion (HSI-MSI fusion), for fusing high
spatial resolution (HR) multispectral image (MSI) [12] with
low spatial resolution (LR) HSI. The fused image is expected
to have both a high spectral resolution and a high spatial
resolution.

The archetypal instance of HSI-MSI fusion is pansharpening
which fuses a low spatial resolution MSI with a corresponding
panchromatic (PAN) image. A variety of pansharpening ap-
proaches have been proposed in the last two decades [13—15].
The fusion of LR-HSI and PAN image has been further exten-
sively studied under the name of hyperspectral pansharpening
[11]. HSI contains more accurate spectral information than
MSI does, and therefore has drawn more attention to the spec-
tral fidelity. HSI-MSI fusion can be regarded as an extension
of pansharpening and hyperspectral pansharpening. Therefore,
substantial effort has been made to generalize the pansharp-
ening and hyperspectral pansharpening methods for HSI-MSI
fusion[13], [15]. In general, the HSI-MSI fusion methods can
be classified into four groups, component substitution (CS),
multi-resolution analysis (MRA), Bayesian, and sparse repre-
sentation. The basic idea of CS approaches is to substitute one
component of the HSI with the high spatial resolution image.
Intensity-hue-saturation (IHS) [16], [17] method changes the
intensity channel in the intensity, hue, and saturation domain
of the MSI with the PAN image. Principal component analysis
(PCA) [18] approaches substitute the first principal component
in the LR-HSI with the high spatial resolution image. The
spectral structure can be preserved by dividing the spectrum
of the HSI into several regions and applying conventional
pansharpening techniques in each region separately. In MRA
approaches, a high-resolution image for each band of the LR-
HSI is synthesized as a linear combination of the HR-MSI. The
results obtained in this manner would be significantly better



than the results produced by using one high-resolution im-
age for all bands. Representative methods include smoothing
filtered-based intensity modulation (SFIM) [19] and general-
ized Laplacian pyramid (GLP) [20]. In Bayesian approaches,
the proposed Bayesian formulation introduces the appropriate
prior distribution of the MSI, such as naive Gaussian [21],
[22] and sparsity promoting prior [23], [24]. The variational
approaches can be regarded as special variants of the Bayesian
methods. The fused image is estimated by minimizing the
objective function which is built upon the posterior probability
density of the fused image. Among these variant methods,
HS super-resolution (HySure) [25] makes use of the vector-
total-variation-based regularization. The sparse representation-
based method [26] estimates the HS dictionary and sparse
codes simultaneously by introducing the spatial-spectral sparse
regularization. Akhtar er al. proposed to learn the dictionary
and sparse codes in the Bayesian framework[27]. Huang et al.
[28] proposed to use sparse matrix factorization to enhance
the spatial resolution of low-resolution images of different
spatial and spectral resolutions. Coupled nonnegative matrix
factorization (CNMF) approach [29] estimates HR-HSI based
on HS unmixing. In addition, a coupled matrix factoriza-
tion approach with nonnegativity and sparsity constraints is
proposed for HSI-MSI fusion [30]. Moreover, with the fast
development of deep learning in remote sensing and computer
vision tasks [31-35], researchers have attempted to employ
deep learning techniques in HSI super-resolution. Li et al. [36]
used a deep spectral difference convolution neural network to
map the spectral difference between the LR-HSI and the HR-
HSI. Yuan et al. [37] designed a mutil-scale and multi-depth
CNN in to recover the high spatial-spectral resolution image.

In existing HSI-MSI fusion approaches, the spatial and
spectral data are always vectorized and processed separately.
However, this class of techniques destroy the HSI’s intrinsic
structure when reconstructing the HR-HSI. In fact, since the
original HSIs are organized in data cubes [38—40], repre-
sentativeness and informativeness play an important role in
real applications [41]. For this reason, several tensor-based
methods have been proposed and successfully applied. In [38],
Dian et. al proposed a nonlocal sparse tensor factorization
(NLSTF) method to fuse the LR-HSI and the HR-MSI. It
regards the HSI as a three-order tensor, and decomposes the
tensor into a core tensor multiplication by factor matrices
representing the three dimensions. Yi et al. [42] proposed
a weighted low-rank tensor recovery (WLRTR) model that
treated the singular values differently. Similar to the non-
local self-similarity across space (NSS) method [43], the
nonlocal similarity between spectral-spatial cubic and spectral
correlation can be characterized in tensors. Among all these
effective tensor representation methods, parallel factor anal-
ysis (PARAFAC)[44] model, which is also called canonical
polyadic (CP) decomposition [45—47], has been justified as a
powerful method to decompose a tensor data onto a few rank-
one tensors in a multilinear way. In HS data analysis, the CP
decomposition has been widely used because it can describe
the low-rank structure in HS data. Veganzones et al. used
a novel compression-based nonnegative CP decomposition
to the blind analysis of hyperspectral big data [39], and

proposed a nonnegative unmixing method to estimate multi-
angle bidirectional reflectance (BRF) data [48]. Fang et al.
[49] proposed an effective CP tensor HS compression method
with the observed HSI characterized by a three-order tensor.
Xian et al. [50] used the CP decomposition to extract the rank-
1 component in HSI and combined the signal rank-1 profiles
to denoising.

Inspired by the tensor decomposition of HSI, we propose
a novel nonlocal coupled tensor CP decomposition (NCTCP)
HSI-MSI fusion method. In the proposed method, we assume
that the nonlocal tensor is composed of the similar nonlocal
patch cubes in HSI that lies in a low dimensional subspace
and can be regarded as a low-rank tensor. Thus, we use
the CP decomposition to characterize the low-rank structure.
According to the linear degradation model of the LR-HSI and
the HR-MSI, nonlocal patch tensors in the LR-HSI and the
HR-MSI can also be represented using CP decomposition.
Besides, the factor matrices representing the spatial mode
and nonlocal similarities mode are shared between the HR-
HSI and the HR-MSI. The relationship between shared factor
matrices can be used to transfer the spatial information of
the HR-MSI to the HR-HSI. In addition, the clustering of the
nonlocal patch cubes is a key factor to ensure the constructed
nonlocal tensor low rank. In this paper, we use the HR-MSI
to compute a smooth order of all the nonlocal patch cubes.
Then, consecutive nonlocal patch cubes in the smooth order
are extracted to form the patch tensor. Experimental results
demonstrate that the proposed fusion method substantially
outperforms existing state-of-the-art HSI-MSI fusion methods.

The remainder of this paper is organized as follows. Section
II formulates the problem of HSI-MSI fusion and introduces
the basic notations of tensors. Section III presents the proposed
NCTCP method for HSI-MSI fusion. The optimization algo-
rithm of the proposed model is detailed in Section IV. Results
on three synthetic datasets and one real dataset are presented
in Section V. Finally, Section VI concludes the whole paper
with some remarks.

II. TENSOR NOTATIONS AND PROBLEM FORMULATION
A. Tensor Notations

A tensor is a multi-dimensional data array denoted by
Euler Script letters, e.g., X. A slice is a two-dimensional
subtensor where all but two indices in a tensor are fixed.
A fiber is a one-dimensional subtensor where every index
but one is fixed. For a three-order tensor X € RI1xl2xIs
X(k,::), X(;,k,:) and X(:,:, k) represent the horizontal,
lateral and frontal slices separately. X(:,1,7), X(¢,:,j) and
X(i,j,:) represent the (7,j)s, mode-1, mode-2 and mode-
3 fiber, respectively. For sake of simplicity, we use X (*)
to represent X (:,:, k). The inner product of z,y € R’ is
< z,y >= xTy. The inner product of X and Y € RI1*/z
is < X,Y >= Tr(XTY), where Tr(-) represents the matrix
trace. The inner product of X and Y in R7:*12X1s ig defined as
<X,V >=>% <X® YO > Using the inner product of
two tensors, the Frobenius norm of a tensor can be represented
as |X||r =< X,X >. The mode-i unfolding of X is a
matrix denoted by X (;), which can be obtained by rearranging



(Iexicographically in the indices other than the ¢ index) the
mode-i fibers as the columns of the matrix. For convenience,
we use un fold;(X) = X ; and X = fold;(X ;)) to represent
unfolding and folding, respectively. The n—mode product of a
tensor X € RI1 <l XIN and a matrix U € RM*In is X x,,U,
which is of size I} X --- X I,,_1 X M X I,4q1 X --- x In. To
represent n-mode product using elements in tensor and matrix,
we have

X Xn U(il, ey b1, M, in+17 7ZN)

=" x(i, ... Lin)U(myiy). (D

Alternatively, the n—mode product can also be computed by
matrix multiplication

y:XX7lU<:>Y(n)=UX(n) 2)
The CP decomposition decomposes a tensor into a sum

of component rank-one tensors [51, 52]. For a tensor X &
RIx12x13 " the CP decomposition is defined as

inflainain+17 ..

=[A,B,C] = Zarob oe,, 3)

where A = [a1---ag| € R”lXR, B = [b;---bg| € R2xE,
and C = [e; - - -eg) € R™* ! are called factor matrices. R is
the rank of the tensor X, and is defined as the minimal number
of rank-one components [51]. The symbol o denotes the usual
outer product of two vectors, @ o b = ab”. Accordingly, each
entry of the tensor can be determined by

ZAzr

Usually the observed noisy version of X' can be written as
X=X+E, 5)

where € is Gaussian independent and identically distributed
(ii.d.) elements. In order to estimate the factor matrices, we
solve the following problem

(1,7, k r)C(k,r). )

;gﬁﬂ ~[A,B.C] | . (6)
Let W = [A, B,C]. Then, we have
W =ACO6B)T, (7
W) =B(CoA)T, (8)
W =CBoA)T )

where © is the Khatri-Rao (columnwise Kronecker) product.
The objective function can also be written as

1 ~ 1, ~
51X —[ABCl 5= X0 ~ACoB) |}
= || X -BCoAT |}
=_| )}(3) ~CBoA” 3.
(10)

These equations are the fundamental formulas for alternative
least-squares (ALS) [53] CP optimization. We can update any
one matrix as long as the other two matrices are determined,
by solving a simple linear least-squares problem.

B. HSI-MSI Fusion Problem

Denote the real HR-HSI as X € RW*HxB where W, H,
and B are the size of the image width, image height, and
spectral band number, respectively. X € Rw*h*xB represents
the observed LR-HSI with the same spectral band-B. X can
be regarded as the spatial downsampled version of X'. Here,
we assume W > w and H > h. Y € RWXHx! j5 the HR-MSI
capturing the same scene with the the same spatial dimension,
and [ is the band number of MSI. The goal of HSI-MSI fusion
is to estimate the real HR-HSI X by fusing X with ). In
the conventional way, the LR-HSI acquisition process can be
modeled as

X (3) = X (3)SH + Ep3), (11)

where H € RWHXwh represents the spatial down-sampling
operator, § € RWHXWIH represents the spatial blurring
operator, and Ej, (3) represents the independent and identicallly
distributed (i.i.d.) noise of the LR-HSI. The acquisition of the
HR-MSI is

Y(g) = RX(3) + Em(g), (12)

where R € R B is the spectral responses of the multispectral
sensor, and Em(g) represents the i.i.d. noise of the HR-MSIL.
The maximum likelihood estimation of X (3) is obtained by
X 3) —X@SH|% + MY — RX (3|7}
(13)
where A is a parameter for balancing the relative importance
of two terms. However, the problem defined in Eq. (13) is
ill-posed. To obtain the HR-HSI, additional prior knowledge
about the real solution is required. Many algorithms have
been developed to solve this ill-posed problem by introducing
additional regularization, such as vectorized total variation
(TV) [25], subspace learning [23, 54], and unmixing [30, 55].

= arg min{ ||)~((3)

III. PROPOSED NCTCP APPROACH

In this section, we introduce the NCTCP HSI-MSI fusion
approach. We first introduce the tensor representation for HSI-
MSI fusion. The nonlocal coupled tensor CP decomposition
model for HSI-MSI fusion is subsequently proposed.

A. Tensor Representation for HSI-MSI Fusion

HR-HSI is a 3-order tensor X. To express the acquisition
process of LR-HSI in the tensors, we introduce the symbol
H and S as the downsampling operator and spatial blurring
operator on tensors which have the same effect as H and S
on X (3y. Therefore, the acquisition process of LR-HSI can be
written as

X = XSH + &, (14)

According to Egs. (2) and (12), the tensor representation
for the acquisition of HR-MSI is
Y=Xx3sR+&, (15)

where &, and &, represent i.i.d. noises.
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Fig. 1. Procedure of nonlocal tensors extraction module. Here the sequence
of smooth ordering and unfolding can be swapped.

B. Nonlocal Coupled Tensor CP Decomposition Model for
HSI-MSI Fusion

The nonlocal tensor based methods have been used in image
processing community [56, 57]. Nonlocal similarity suggests
that one patch may have many patches with similar structure
within the same image. The similarity of the nonlocal patches
indicates that these patches are correlative. Recent work has
extended this nonlocal similarity to 3D case [43, 58, 59]. For
HSI-MSI fusion, the HR-HSI X is separated into a group
of overlapping local 3D cubes {P;; }1<i<w —d, 1<j<H—d, C
Rw*dnxB " and dj, represent the width and height of a 3D
cube, respectively. We unfold each cube to its matrix format by
ordering each band as a column vector lexicographically. Now
all the 3D cubes are converted into a set of 2D patches 2 =
{P; € R&wdnxBIN "where N = (W —dy+1) x (H —dj +1)
is the number of patches over the whole HR-HSI. Usually the
2D patch set € is clustered into K clusters. We can represent
each cluster as a 3-order tensor. Define D' {} as the operator
extracting the m-th 2D patch of size d,d; x B in the p-th
cluster, then denote G,X as

GpX = (D {X},D2{X}, - ,D)r{x}) € RIwn*NoxB

(16)
where IV, is the total number of nonlocal patches in the p-th
cluster. Here, the sequence of smooth ordering and unfolding
3D cubes to 2D patches can be changed. Fig. 1 illustrates the
procedure of nonlocal tensors extraction module from a HSI.
Since the patches in the same cluster have similar spatial-
spectral structures, QPX can be seen as a low-rank tensor.
In this situation, CP decomposition of G,X is an appropriate
model and can be written as

GpX = [A), By, Cy]. (17)
Then, the original X can be expressed as

X = (Z nggp)*l ZggﬂApovapﬂ- (18)
p P

This equation denotes that the ideal X' is calculated by
summing over all clusters and averaging the results.

Analogously, G, represents the corresponding patch tensor
of the HR-MSI. Since this tensor format does not change the
spectral dimension, the acquisition of G, can be written as

gpy = ng X3 R+ gpgm
=[A,,.B,,Cp] X3 R+ Gpém
= [[ApopaRCpﬂ + gpgm-

Thus, we can use nonlocal tensors and CP decomposition
to estimate X, by solving the following problem

19)

P
min {|X — XSH|T + A ) [1G,Y — [Ay, B, RC, |7}

X.A,.B,.C, =

st. X = (Z gggp)71 Z QZIIAINBIJ?CP]]'
? g (20)

In the above-mentioned model, patch tensor G,X and G,Y
share the same factor matrices A, and B, that denote the
spatial dimension structure and nonlocal patch similarities.
With these two shared factor matrices, the spatial information
and nonlocal similarities of the HR-MSI are transferred to
the HR-HSI. Meanwhile, the spectral structure of the HR-
HSI is not broken in nonlocal tensor format, indicating that
the degeneration process from the HR-HSI to the HR-MSI
still holds in the nonlocal tensor representation. Eq. (20) is a
coupled tensor CP decomposition problem that incorporates
the nonlocal tensor information. In this sense, we refer to
this model as nonlocal coupled tensor CP decomposition
(NCTCP).

Another unsolved problem is the clustering problem. With-
out HR-HSI known a priori, we cannot get exact clustering
result directly. However, the HR-MSI has the same spatial
resolution as the HR-HSI reflects the correlation between
image patches. With that in mind, we use the HR-MSI as the
guide image to determine the exact nonlocal similar patches.
In conventional nonlocal approaches [43, 60], k-means or k-nn
based methods have been popularly used to solve clustering
problems. The main obstacle for using these methods is that,
the exact number of cluster centers is not pre-specified, and
the initialization of the cluster centers has a direct impact
upon the clustering results. In this paper, we use an alter-
native method to obtain the clustering result. This method
is originally used in image denoising and inpainting [61].
The core idea is to order all extracted patches such that they
form a ‘shortest possible path’, which is essentially similar to
solving the traveling salesman problem. The reordered MSI
3D patches are supposed to induce a smooth or at least piece-
wise smooth 1-D ordering. Thus, by simply using a limited
number of consecutive patch cubes in Y according to the new
1-D ordering as one cluster to form G,), the corresponding
nonlocal 3D-patches in X form the corresponding 3-order
nonlocal tensor G,X. Fig. 2 shows the complete flowchart
of the proposed fusion method. By means of this method, the
extracted nonlocal information of HR-HSI is more robust and
accurate, leading to a more reliable CP decomposition result.

IV. OPTIMIZATION ALGORITHM

We apply the alternating direction method of multipliers
(ADMM) [62] optimization method to solve the proposed
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NCTCP model. First, new variables are introduced as auxiliary
variables D, which satisfy D, = RC,,. Then, the original
problem can be written as

P
Aoy U XSH| % + Azl 195Y = [Ap: By, Dy]
=

st. X = (Z gg’gp)—l Z gg[[Ap,Bp,Cp]],
P P
D,=RC, p=12---,P.
21
The augmented Lagrangian function of Eq. (21) is

L.(X,A,,B,,C,) = |X — XSH|%

P
+ )‘Z ||gpy - [[Apovap]]”?7
p=1
+51x = (32676,)7" Y 614, B,.C,lll%
p

- (22)

+ <M,X - -GG, ZgguAp,Bp,cp]]>

p

+ g Z HDp 7RCPH%7 + Z<FpaDp B ch>
P P

where M and F), are the Lagrange multipliers, p is the
positive penalty scalar. It would be intractable to optimize
all these variables simultaneously. Instead of that, we follow
the strategy in ALS CP algorithm that optimizes the prob-
lem by minimizing one variable with the others fixed. The
optimization problem of L, can be solved by the following
sub-problems:

1) Solving X': Optimizing L, with respect to X leads to
the following linear system:

X(2SHHTST + T) = 2XHTST - M

+,u((z gggp)_l Z Qg[[Ame, Cp]])' (&)
P P

2
I} In this work, we use the conjugate gradient algorithm to solve

this linear system.
2) Solving A,: The sub-problem of L, with respect to
A,(p=1,2,---, P) can be represented as

P
LAY 19:Y ~ [A,. B, D]l

min
A, p=12,-- P
I _
+5l1x (D676, > Gy [4p: By, Cyl) + M/pll7}.
P P
(24)
Then, we convert it into the following problem:
P
., min {AY_1G,Y ~ [4,, By, D] |17
pp=12,00 P L
: (25)

P
+ 5 D2 19,X — [4,. B, C,l + GuM /1l 7}
p=1

where G, M is the pth 3-order nonlocal tensor produced by
M. Each A, can be solved independently. According to Eq.
(7), we have

Hiin >‘||ng(1) - Ap(Dp © Bp)TH%‘
! (26)
I

F 216X 1)+ GM w1 — A,(C, © BT I

where G,Y (1), G,X (1) and G,M ) represent the mode-i
unfolding of tensors G,Y, G,X and G, M respectively. Thus,
we can obtain the solution by Eq. (27).



(Mng(l)(Cp © Bp) + 2)‘ng(l)(Dzo © Bp) + gpM(l)(Cp © Bp)) ’ (2)‘(Dp © BP)T(DP © Bp) + M(Cp © BP)T(CP © Bp))_l-

27)

1

(ngX(Z)(CP © Ap) + 2)‘ng(2) (Dp © Ap) + gpM(2) (Cp © Ap)) ’ (QA(DP © AP)T(DP © Ap)+ﬂ(cp © Ap)T(Cp © Ap))i .

3) Solving B,,: Similar to A, B, can be computed by Eq.
(28).

4) Solving Cp,: The optimization problems of L, with
respect to C)p is

min{ £16,X (5) + G, M 5) /11 — C (B, © A,) "I}
! (29)

7]

+ §HDP —RC, + FP/:U’H%‘}'

Setting the derivative of the objective function to zero with
respect to C,, we have the following matrix equation

Cy(B, ® 4,)" (B, ® Ay) + RTRC,
:ng(3) (Bp © Ap) + gpM(S) (Bp © Ap)/ﬂ
+R"D,+R"F,/p.

This is a Sylvester matrix equation [63]. Qi er al. has
proposed many methods to solve the Sylvester matrix equation
using block permutation matrix [64] and Woodbury formula
[65]. However, as the matrix is very large in their model, spe-
cific algorithms are required to cope with large-scale matrices.
Thanks to the nonlocal tensor format, the Sylvester equation in
the proposed model is of small scale. We can use the Bartels-
Stewart algorithm [63] to obtain the solution. This algorithm
decomposes (B,®A,)” (B,®A,) and R R into Schur forms
using a QR algorithm. Thus, back-substitution can be used to
solve the triangular system.

5) Solving D,: The optimization problem of L, with
respect to D, is

r%in{)\ngY(?)) - Dp(B:v © Ap)T”%

(30)

1 5 (3D
+ 511Dy — RCp + Fp/ 1}
So D, is computed by
(2XAG,Y (5)(B, ® Ap) + uRC), — F,,) -
1 (32)

(2A(B, © Ap)" (B, © Ap) + pl)
6) Multipliers update:

M e Mt p(x — (616, " 6114,.B,.C,]) ).

(33)

F,«~F,+uD,—RCp), p=1,2,--- ,P. (34)
W is updated by

< min(pp, Hmax) (35)

where p > 1. The proposed NCTCP algorithm for HSI-MSI
fusion can be summarized in Algorithm 1.

(28)

Algorithm 1 NCTCP for HSI-MSI fusion

Input: LR-HSI X, HR-MSI Y, X, 8, R, \, d,,., dy,
1: Tnitial X© = XYHTST, M© =0, FY) =0, A},
BI(OO) and C](DO), D;,O), (p = 1,2,---, P) are randomly
initialized, £k = 1, u = 104, p = 1.01, mazlter = 10,
and e = 1073
: while not convergence and k£ < maxIter do
forp=1:P do
Update Al") by (27)
Update BY" by (28)
Update C,(,k) by solving Problem (30)
Update DY) by (32)
end for
Update X*) by (23)
Update the multipliers M%), Fz(jk)7p =1,2,---,Pand
let = pp
Check the convergence conditions
lx® — (5,676,)7' S, 671457 B CiNIIE <
€, | & k) =112, < €,
102,676, 3, 67 1437, By €3] -
(3,659,713, G5 145", By 0.0 V)R < e
122 k<« k+1
13: end while
Output: HR-HSI X (%)

R e A U

._
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V. EXPERIMENTS

In this section, we describe the datasets that were used in
the experimental study as well as the quality measures used for
evaluating the similarity between fused and reference images.
The experimental results by the proposed method are later
presented and compared with other competing fusion methods.

A. Datasets

Similar to [11], we generate the datasets following Wald’s
protocol. Three real-world HSIs are used as reference images.
In what follows, detailed information of the datasets are
presented.

1) Moffett field dataset': This image presents a mixed
urban/rural scene. It is a high spectral resolution image of size
395 x 185 x 176 acquired over Moffett field, CA, in 1994 by
the JPL/NASA airbone visible/infrared imaging spectrometer
(AVIRIS). After removing the water vapor absorption bands,
ranging form 0.4pm to 2.5um, from the original 224 bands,
176 bands were preserved in the final dataset.

Ihttp://openremotesensing.net/knowledgebase/hyperspectral-
pansharpening-a-review/



2) University of Pavia dataset?: This image is captured over
Pavia, Italy, by the reflective optics system imaging spectrom-
eter (ROSIS). After omitting the water vapor absorption bands,
103 bands out of the original 115 bands were preserved. Thus,
the final size of the reference image is 610 x 340 x 103.

3) Washington DC Mall dataset®: This image was taken over
the National Mall in Washington, D.C., in 1995. It has 210
bands within the range between 0.4um and 2.5 pm captured
by the HYDICE sensor. Bands in the 0.9 and 1.4um region
where the atmosphere is opaque have been omitted from the
data set. The final size of the image is 1280x307x191. We
select a 420x300-pixel-size image as the reference image.

B. Quality Measures

To make a numerical comparison of the proposed method,
we use the peak signal-noise-ratio (PSNR), the averaged spec-
tral angle mapper (SAM), the relative dimensionless global
error in synthesis (ERGAS), and the cross correlation (CC)
as the quality measures. To explain these quality measures,
we denote the reference HS image as X € RP*Y where B
represents the spectral bands and N is the numbers of pixels.
X =[xy, ,2p]T =[z1, -+ ,zN]|. Here, z; € RV*! is the
ithband (i=1,---,B) and z; € RB*1 s the feature of the
jth pixel (j =1,---,N). X denotes the fused HSI.

1) PSNR: The PSNR can reveal the spatial quality of the
reconstructed image. The definition for the ith band is

2
PSNR(z;,2;) = 10 - logy, <maX(mZ)H > (36)
Zill2

where max(z;) represents the maximum pixel intensity in the
ith image of the reference HSI. The larger the PSNR measure
is, the better quality the reconstructed image has. The PSNR
measure average over all bands is used to measure the quality
of the entire fused image.

2) SAM: SAM index is used to evaluate the quality of the
spectral structure. It is calculated by the angle among two
spectral curves of the fused and reference image. The SAM
index of a given pixel is calculated by

SAM(z;, ;) 225 (37)
X, ;) = arccos | ————
o [Py AP

SAM value close to zero indicate high spectral quality. We
use the average SAM index of all the pixels as the spectral
measurement for the fused image.

3) ERGAS: ERGAS shows a global indication of the fusion
quality. The definition of ERGAS is

|lz; — &ill3
ERGAS(X, X) = 100d —_— (38)
B Lzl (p152:)°
where d is the downsampling factor and 1, = [1,---,1] €

RNXl

Zhttp://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote
_Sensing_Scenes
3https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral. html

4) CC: This index characterizes the geometric distortion,
which is defined as

CcC(X, X)

Z CCS(z;,%;), (39)

Here, CCS represents the cross correlation of a single-band
image, calculated by

(40)

> @] — )& - )
VE @l - w2 S @] - 2

where, 2 is the jth element of z;, u = (1/N) Z
sample mean of z;. The ideal value of CC is 1.

J is the

C. Detailed Implementation

In experiments, we compared our result with other state-of-
the-art methods, including coupled nonnegative matrix factor-
ization (CNMF) [29], HySure [25], Naive Bayes, Sparse Bayes
[23] and the coupled sparse tensor factorization (CSTF) [66].
We implement these competing methods using their published
codes and the default parameters. Specifically, the spatial
degeneration operators used in CSTF are represented accord-
ing to the Gaussian kernel. Besides, n,, and n; represent
the number of atoms in the spatial dictionaries. These two
parameters are decided according to the size of the HSI In
our experiments, we set n,, = 320, nj = 160 for the Moffett
field dataset, n,, = 600, n;, = 300 for the University of Pavia
dataset, and n,, = 400, n;, = 300 for the Washington DC
Mall dataset. For each reference image, a 4-band HR-MSI
is obtained by averaging the bands of the reference image
according to the spectral response profiles of the R, G, B, and
NIR bands of the IKONOS multispectral sensor. To obtain the
LR-HSI, we first blur the reference image band by band with a
Gaussian kernel. Then, we downsample the blurred image by
selecting one pixel from d x d pixels. d is the downsampling
factor which is set to 5 in our experiments. According to
literature [11], the size of the blurring kernel and its standard
deviation are set to 9x9 and 2.12, respectively.

For our proposed method, we set the balance parameter A =
100. During the initialization procedure, we set the multipliers
M =0, F, =0and p = 10~*. The factor matrices are
all randomly initialized. The auxiliary parameter p and the
maximum iteration number are set to 1.01 and 10, respectively.
The window size of each patch is d,, = d;, = 5 . Besides,
we set the rank R = 80 and the number of patches in one
cluster N, = 300. The sensitivity of the two parameters will
be analyzed in the following set of experiments.

D. Experimental Results

Fig. 3 shows the results of various methods for the Moffett
field dataset. We show the false color images which are
produced by the 70th, 30th and 5th band images in Fig. 3(b).
The false color image of HR-MSI is shown in Fig. 3(c). For
comparison purposes, the results by the competing methods
are shown in Fig. 3(d)-Fig. 3(h). Visually, all the methods can
successfully recover the spatial details by fusing the HR-MSI



, but there exist some areas that are not recovered well by
different methods. For example, CNMF and HySure produce
overly smooth spatial structures in the middle-right farmland
region. Bayes methods produce some spectral distortions in the
up-middle region of the scene. There are some rectangle struc-
tures in the result of CSTFE. This observation is because that,
the CSTF method models the whole HSI as a low-rank tensor
without taking into account nonlocal similarities. Specifically,
the proposed method gives better spatial structures and spectral
characteristics than other methods do by using the nonlocal
tensor decomposition. To evaluate the performance of the
proposed method in terms of spectral preservation, Fig. 4(a)-
(c) show the spectral curves of 3 pixels representing 3 different
classes. We can observe that the spectral curves produced by
our proposed method are closest to the reference curves. In
Fig. 4(d), the comparisons of PSNR measure in every band are
shown. Our proposed method can achieve the highest PSNRs
in most bands of interest.

Furthermore, the quantitative results are shown in TABLE
I. The best values are labeled in bold. As reported in [67],
the methods used for comparison achieved promising per-
formances in terms of reconstruction quality. However, the
comparison results in TABLE I demonstrate that the proposed
method outperforms them in terms of both spectral and spatial
measures.

80 100 120 140 160
Band Number

(a)

PSNR
5 8

8 &

20 40 60 8 100 120 140 160
Band Number

© (d)

Band Number

Fig. 4. Spectral curves comparisons of pixels in 3 different classes and the
PSNR comparison in each band of Moffet field dataset. (a)-(c) Spectral curves
of 3 pixels representing 3 classes. (d) PSNR comparison in each band.

TABLE I
PERFORMANCES OF THE HSI-MSI FUSION METHODS ON MOFFET FIELD:
PSNR, ERAGS, SAM, CC

Method PSNR | ERGAS | SAM | CC
CNMF 35.90 3.76 6.86 | 0.98
HySure 37.50 3.33 6.43 | 098
NaiveBayes 36.73 2.73 5.64 | 099
SparseBayes | 36.88 2.62 5.62 | 0.99
CSTF 37.35 3.67 830 | 0.98
NCTCP 41.21 2.36 4.61 | 0.99

The results for the University of Pavia dataset are shown
in Fig. 5 and Table II. In this dataset, we have achieved
the best performances in all quality measures except PSNR.

SparseBayes is 0.65 dB higher than the proposed NCTCP in
PSNR. This result denotes that the Bayes and CSTF methods
perform slightly better in preserving the spatial structure.
However, the proposed NCTCP method is more efficient in
preserving the spectral information. Additionally, the spectral
curves of 3 pixels belonging to 3 different classes are shown
in Fig. 6(a)-(c). In the first 80 bands, the spectral curves of
the proposed method match well with the reference curves. In
the last few bands, other methods cannot well approximate
the reference curves, but the proposed method generates
spectral curves closest to the reference curves. In Fig. 6(d),
the PSNR comparison in all bands is shown. The Bayes-based
methods achieve higher PSNRs than the proposed method does
between Band 10 to Band 60. With proper prior, the Bayes
method can well preserve the spatial structure. However, the
proposed method can achieve the best spectral preservation
with promising spatial preservation.

TABLE II
PERFORMANCES OF THE HSI-MSI FUSION METHODS ON UNIVERSITY OF
PAvIA: PSNR, ERAGS, SAM, CC

Method PSNR | ERGAS | SAM | CC

CNMF 31.48 3.84 5.85 | 0.92

HySure 36.61 3.34 541 | 092

NaiveBayes | 37.76 3.21 5.99 | 0.93

SparseBayes | 37.80 3.17 593 | 093

CSTF 37.19 2.95 6.06 | 0.94

NCTCP 37.15 2.36 4.38 | 0.96
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Fig. 6. Spectral curves comparisons of pixels in 3 different classes and the
PSNR comparison in each band of University of Pavia dataset. (a)-(c) Spectral
curves of 3 pixels representing 3 classes. (d) PSNR comparison in each band.

The last dataset is Washington DC Mall. The results are
shown in Fig. 7 and Table III. In this dataset, we can observe
that the proposed NCTCP method performs the best in all
quality measures. The Bayes methods are better than the other
3 methods, but are 1.6dB lower than our method in terms of
PSNR. CNMF, HySure and CSTF show poor performances
in preserving the spatial structures. 3 pixels’ spectral curves
belonging to different classes are shown in Fig. 8(a)-(c).
In Figs. 8(a) and 8(b), the spectral curves of the proposed
method are closest to the reference spectral curves. For a few



(a) LR-HSI (b) Reference

(f) NaiveBayes (g) SparseBayes

Fig. 3. HSI-MSI fusion results (Moffet field dataset).

bands in Fig. 8(c), HySure and Bayes methods outperform
the proposed method. Referring to the PSNR comparison in
Fig. 8(d), the proposed method obtains the highest PSNRs in
most bands, indicating that both spatial and spectral structures
of Washington DC Mall dataset are well preserved by the
proposed method.

Through the experiments on the three synthetic datasets, we
can conclude that the proposed NCTCP method achieves best
HSI-MSI fusion results among all competing methods.

In order to further justify the advantage of the introduced re-
lationship between the HR-MSI and the HR-HSI, we compared
our results with the results obtained by the method without
using HR-MSI. TABLE IV shows the quality measures of the
two methods in all datasets. Since the proposed method sig-
nificantly outperforms the method without using HR-MSI, we
draw the conclusion that the introduced relationship between
the HR-MSI and the HR-HSI is beneficial for improving the

(c) MSI

(d) CNMF (e) HySure

(h) CSTF (i) NCTCP

20 4 60 20 40 60 8 100 120 140 160 180

20 4 60 8 100 120 140 160 180

20 4 60 8 100 120 140 160 180 1
Band Number Band Number

and N
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Fig. 8. Spectral curves comparisons of pixels in 3 different classes and
the PSNR comparison in each band of Washington DC Mall dataset. (a)-
(c) Spectral curves of 3 pixels representing 3 classes. (d) PSNR comparison
in each band.
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Fig. 5. HSI-MSI fusion results (University of Pavia dataset).

TABLE III
PERFORMANCES OF THE HSI-MSI FUSION METHODS ON WASHINGTON
DC MALL : PSNR, ERAGS, SAM, CC

Method PSNR | ERGAS | SAM | CC
CNMF 45.77 5.09 7.38 | 091
HySure 49.59 4.38 5.87 | 093
NaiveBayes | 51.23 3.72 4.61 | 0.95
SparseBayes | 51.43 3.56 4.47 0.95
CSTF 49.74 4.65 791 | 0.92
NCTCP 53.03 2.79 3.88 | 0.97

reconstruction quality.

E. Parameter Selection

To evaluate the sensitivities of several key parameters in
the proposed method, we have varied their values to observe
the fluctuation in fusion results, i.e., rank R, number of
patches in one cluster Np. Fig. 9 plots the quality measures
of the reconstructed Moffet field dataset as a function of
the rank R and N,. R varies from 20 to 120 with step
20 and N, varies from 100 to 600 with step 100. It can

(h) CSTF (i) NCTCP

TABLE IV
COMPARISONS OF METHODS WITH AND WITHOUT HR-MSI

Dataset Method PSNR ERGAS SAM CC
Moffet Without HR-MSI  29.74 5.84 8.86  0.94
field With HR-MSI 41.21 2.36 461 0.9
University Without HR-MSI ~ 27.48 5.32 577  0.88
of Pavia With HR-MSI 37.15 2.36 438  0.96
Washington || Without HR-MSI ~ 42.90 6.39 6.86  0.85
DC Mall With HR-MSI 53.03 2.79 388 097

be observed that the quality measures are robust against the
change of N,,. When R lies between 40 and 100, the proposed
method achieves the best quality measures. When R is beyond
100, the proposed method exhibit performance degradation.
Considering the comprehensive results, we set ® = 80 and
N, = 300.

F. Real Data Experiment

In this section, we conduct the experiments on a real dataset.
This dataset consists of a LR-HSI and a HR-MSI taken over



(a) LR-HSI (b) Reference (c) MSI (d) CNMF (e) HySure
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Fig. 7. HSI-MSI fusion results (Washington DC Mall).

(a) LR-HSI (b) HR-MSI (c) CNMF (d) HySure

(e) NaiveBayes (f) SparseBayes (g) NCTCP

Fig. 10. False color images of real dataset and the reconstructed false color images using the compared methods.
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Fig. 9. Parameter analysis on Moffet field dataset. (a) PSNR, (b) ERGAS (c)
SAM (d) CC.

the Cuprite district, Nevada, US. The LR-HSI has a size of
927 x 379 x 167 collected by Hyperion and the HR-MSI
has a size of 3708 x 1516 x 8 collected by WorldView-3.
The downsampling ratio is 4. The spectral response and the
blurring kernel are not known. However, the CSTF method
requires the blurring kernel to be separable to obtain the spatial
degeneration operator, and therefore is not used for comparison
in this real data experiment. We select a 50 x 50 x 167 sized
LR-HSI and the corresponding 200 x 200 x 8 sized HR-MSI
as our real test dataset. The false color images composed
of 3 band LR-HSI and HR-MSI images are shown in Fig.
10(a) and Fig. 10(b), respectively. The spectral response and
blurring kernel are estimated using the methods in [25]. The
false color images of the reconstructed HR-HSIs are shown
in Figs. 10(c)-(g). We can see that our method leads to a
reconstructed HR-HSI with clear spatial structures. Fig. 11
provides the recovered spectral curves of 3 randomly selected
pixels in the real scene. In addition, the spectral curves of LR-
HSI in the corresponding positions are shown for comparison.
We can see that our results are close to the spectral curves in
LR-HSI, justifying the effectiveness of our proposed method
in recovering the real spatial-spectral structure of the scene.
To summarize, the proposed method also performs well in real
LR-HSI and MR-HSI fusion.

VI. CONCLUSIONS

A HSI-MSI fusion method, named NCTCP, is proposed to
fuse the LR-HSI with the HR-MSI to obtain images having
high spatial and spectral resolutions. Nonlocal tensors are
formed by nonlocal similar patches. These nonlocal tensors
are assumed to be low-rank tensors which can be represented
by CP decomposition. In addition, the relationship between the
HR-HSI and the HR-MST is built by sharing the factor matrices
representing the spatial and nonlocal similarity dimensions.
A nonlocal coupled tensor CP decomposition model is used
to reconstruct the HR-HSI. Considering that the real HR-
HSI is unknown in prior, we use the HR-MSI to guide the
nonlocal patch clustering in the reconstruction process. A
smooth order of all the patches is computed for the clustering
procedure. Numerical experiments show that the proposed
NCTCP can achieve higher reconstruction accuracy and better

visual quality on the test images compared with existing HSI-
MSI fusion methods. Future research can be directed towards
using higher order tensor to represent the HR-HSI effectively
and discover the relationship between HR-MSIs and HR-HSIs.
Other tensor representation methods, e.g., Tucker and tensor
train, will also be studied in future research line.
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