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ABSTRACT

We present a new method for image-only camera relocalisa-
tion composed of a fast image indexing retrieval step followed
by pose refinement based on ICP (Iterative Closest Point).
The first step aims to find an initial pose for the query by eval-
uating images similarity with low dimensional global deep
descriptors. Subsequently, we predict with a fully convolu-
tional deep encoder-decoder neural network a dense depth
map from the image query. We use this depth map to cre-
ate a local point cloud and refine the initial query pose using
an ICP algorithm.

We demonstrate the effectiveness of our new approach on
various indoor scenes. Compared to learned pose regression
methods, our proposal can be used on multiple scenes with-
out the need of a specific weights-setup for each scene, while
showing equivalent results.

Index Terms— Camera relocalisation, multimodal data,
depth from monocular, pose estimation, ICP

1. INTRODUCTION

Image-based camera relocalisation consists in retrieving the
6 Degrees of Freedom (DoF) pose of a camera with a sin-
gle image according to a known reference [1]. Initial image
relocalisation methods rely on fast features indexing [2] or
learned approaches [3] to quickly retrieve a precise camera
pose. It is a crucial step for many applications such as robot
relocalisation on a map created by a SLAM algorithm, cam-
era tracking recovering for augmented reality or autonomous
driving navigation initialisation.

In most of the cases, due to limited sensing capability of
portable or embedded devices, the camera relocalisation prob-
lem has to be solved using only radiometric observation of
the scene (i.e. images) [4]. However, recent methods of ma-
chine learning applied to computer vision are able to infer un-
derlying geometry of a scene from single images only [5, 6].
Based on these works, we propose a new method combining
both learned approaches and geometric algorithms to solve
the camera relocalisation problem. We show that our method
is able to quickly retrieve a pose with fast indexing of global

image descriptors and then to refine the position and the ori-
entation of the camera based on a learned representation of
the scene geometry.

Our paper is presented as follows: the end of this section
is dedicated to a brief review of the related work, then the
details of our method are presented in section 2. The obtained
results with our proposal are discussed in section 3, and we
finally conclude the paper in section 4.
Related work. The state of the art on online camera localisa-
tion [2, 7] usually relies on global and local features indexing
combined with costly verification steps. [7] generates virtual
camera view point from a dense 3D model in order to verify
the retrieved pose. In our work, the refinement step relies on
the alignment of point clouds, so we do not need to construct
a costly 3D dense model, neither to generate artificial data.

Recent learned approaches [8, 9] have shown impressive
results in terms of accuracy and robustness to visual changes.
However, these methods are scene-dependent and we need to
train a whole network for each scene, narrowing the range
of real applications where those methods can be used (e.g.
real-time novel scene mapping and relocalisation [1]). Our
method benefits from the robustness of learned methods,
while not being specific to a particular scene since it can be
deployed on multiples areas without parameters retraining.

A recent work related to ours was presented in [10]. Au-
thors propose a two-step pose estimation algorithm where
two different networks are trained, one for image retrieval by
deep descriptor indexing and a second pose refinement step
by relative pose estimation between two images. We use the
same two-step approach but we rely on a single network and
our pose refinement step involves a non-learned geometric
method. Thus the learned part of our system required weakly
annotated data compared to [10], and the training data are
easier to gather.

2. METHOD

2.1. Method overview

Notations. We aim to recover the camera pose h ∈ R4×4,
represented by a pose matrix in homogeneous coordinates,
given an input RGB image I ∈ R3×H×W . We assume that
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Fig. 1. Workflow of our pose estimation method. The first indexing step retrieves the most similar image to the query from a pool
of localised reference data by comparing compact deep representation extracted from our encoder. We use the pose of the first retrieved
candidate as initial pose hi. In a second step, we use an ICP algorithm to align a local point cloud, projected from the query depth map
inferred by our deep decoder, to a reference global point cloud, producing final refined pose hr.

we know the matrix K ∈ R3×3 of intrinsic parameters of
the camera. We denote as E, respectively D, a fully convo-
lutional neural network encoder, respectively decoder, with
trainable parameters wE, respectively wD. E applied on I
generates Ce features maps FE

I ∈ RCe×He×We . We denote
FD

I ∈ R1×Hd×Wd the 1-channel output of D applied on FE
I :

FD
I = D(FE

I ) = D(E(I)).

Encoder E reduces the spatial resolution of the input image
(We < W,He < H), while decoder D upsamples the spatial
resolution of the encoder features (Wd > We, Hd > He and
Wd ≤W,Hd ≤ H).
Finally, P is a set of N 3D points p: P = {pk}N .
Workflow. The complete pipeline of our method is described
in figure 1. We first create a low-dimensional descriptor fIq
from deep features FE

Iq
computed on the query image Iq . We

evaluate the similarity of this descriptor with the pool of S ref-
erence images {Ik}S with respective descriptors {fIk}S . We
associate the pose of the most similar image as initial pose hi

for the query image (see section 2.2). In a second step, the
initial pose hi is refined with a geometric-based method. We
use latent image description FE

Iq
and the decoder D to gener-

ate the depth map FD
Iq

associated to query image Iq (see sec-
tion 2.3). FD

Iq
is used to obtain the local point cloud PIq . We

then retrieve the global point cloud Pref centred on the initial
pose hi. An ICP (Iterative Closest Point) registration algo-
rithm is finally used to align PIq with Pref given the initial
pose hi, leading to the refined query pose hr (see section 2.4).

2.2. Image indexing

We cast the pose estimation task as a content-based image
retrieval problem like in [10], since the reference data are
augmented with 6 DoF pose information. Recent works have
shown that deep features extracted from convolutional neural

network are well suited for global image description, com-
pared to hand-crafted features [11, 12, 13]. We consider
two state-of-the art global methods, Maximum of ACtivation
(MAC) [14, 13] and NetVALD [11], to describe the data by
low-dimensional L2 normalized descriptors. We first com-
pute reference descriptors {fIk}S from the reference images
(i.e. images with associated 6 DoF poses) using the deep
features computed by E combined with a descriptor. Then
we compare the query descriptor fIq to the pre-computed
descriptors by fast nearest neighbour indexing and retrieval:

fIi = NN(fIq , {fIk}S), (1)

whereNN is the nearest neighbour matching function and fIi
the closest retrieved candidate to the query descriptor fIq . We
consider the pose hi associated to reference image Ii as an
approximate pose of the image Iq .

2.3. Depth map generation

Our pose refinement process is based on geometric align-
ment. As we consider only image data as query, we have to
find a way to generate the underlying geometry of the scene
corresponding to the image. Various recent deep learning
generative models are able to properly reconstruct geom-
etry associated to radiometric data, with full supervision
training [5], weakly annotated data [15] or even in a self-
supervised way [16]. We train an encoder/decoder jointly and
in a supervised manner in order to predict the corresponding
depth associated to an image with the following loss function:

(wE,wD) = argmin
wE,wD

∑
k

∥∥FD
Ik
−Dk

∥∥
1
, (2)

= argmin
wE,wD

∑
k

‖D(E(Ik))−Dk‖1 , (3)

where {Ik,Dk}M are training pairs of images with corre-
sponding depth maps.



This is the only learned part of our localisation pipeline,
which only needs weakly annotated data, paired image and
depth map, for training.

2.4. Point cloud alignment

Thanks to the dense geometric information provided by the
encoder-decoder network, we can rely on the robust ICP al-
gorithm to refine the initial pose.
Local point cloud. With the generated depth map obtained by
our neural network and the intrinsic parameters of the camera,
we can project the depth map on the point cloud PI :

[PI ]l+k×Wd
= pl+k×Wd

=
[
FD

I

]
k,l
·K−1[k, l, 1]T , (4)

where p ∈ R3 is a 3D point and [·]j is the subscription oper-
ator at index j. PI contains Wd ×Hd 3D points.
Point descriptor. Refinement with ICP involves matching
corresponding points between two point clouds in order to es-
timate a rigid transformation that minimises the distances be-
tween the paired points. Standard approaches only consider
the Euclidean distance between a single point and its nearest
neighbours in the reference point cloud to establish matching,
making the initial alignment between the two point clouds a
crucial step to obtain correct results. We can rely on point
descriptors to establish strongest matches [17]. Because the
point cloud to align is generated with a deep neural network,
we associate to each projected point p a C-dimensional de-
scriptor d ∈ RC corresponding to the deep feature computed
by the encoder E at the same spatial position:

[DI ]l+k×Wd
= dl+k×Wd

=
[
GE

I

]
k,l
, (5)

where DI is set set of point descriptors associated to point
cloud PI and GE

I ∈ RC×Hd×Wd are the feature maps from E
that have the same spatial resolution that the output of D.
Descriptors D are obtained without any additional computa-
tion cost because latent features GE

I have already been com-
puted by E to produce final features FE

I .
Global point cloud. To align the point cloud generated from
the query, we need a reference scene geometry. We sample
a pool of reference data within a fixed radius centred on the
initial retrieved pose hi. The reference point cloud Pref is
created by aggregating all the point clouds from these data
(using ground truth or generated depth maps). We also com-
pute point descriptors Dref corresponding to the 3D points
in Pref . The reference point cloud is computed offline and
stored efficiently for fast access during query time.
Pose refinement. Final refined pose hr is given by:

hr = ICP(hi,PIq ,DIq ,Pref ,Dref ), (6)

where ICP is the function described in algorithm 1.
The match points function computes pairs of similar points
both based on the spatial proximity and on the descriptors

similarity. In other words, two pairs of point descriptors
{pm,dm} and {pn,dn} are matched together if:

m,n = argmin
k,l

‖[pk,dk]− [pl,dl]‖2 , (7)

where [·] is the concatenation operator. The matches are re-
trieved efficiently by k-d tree fast nearest neighbour search.
The relative pose function computes the relative trans-
formation between the matched points that minimises the
Euclidean difference between the two point clouds. We
embed the pose computation within a RANSAC consen-
sus, as the point cloud may contain erroneous data because
it has been generated from image-only information by our
encoder/decoder.

Data: initial pose hinit, point cloud to align P with
associated descriptors D and reference point
cloud Pref with assocaited descriptors Dref

Result: final pose hrefined

hrefined ← hinit;
hrelative ← 14×4;
while ‖hrelative − I4×4‖F ≥ ε do
Paligned ← hrefinedP;
M← match points(Paligned,Pref ,D,Dref );
hrelative ← relative pose(M);
hrefined ← hrelativehrefined;

end
if ‖M‖2 > εrepro then

hrefined ← hinit;
end

Algorithm 1: Our ICP algorithm, see text for details about
functions match points and relative pose. Pose re-
finement is rejected if the mean distance between matched
points, ‖M‖2, is superior to εrepro.

3. EXPERIMENTS

We choose an indoor camera relocalisation scenario to evalu-
ate the pose estimation performances of the proposed method.
We use 7 scenes [3] indoor dataset for both training and test-
ing as it contains images with ground-truth depth maps ac-
quired with a kinect, making our network easier to train.

3.1. Implementation details

Network architecture and training. We use a custom fully
convolutional network architecture inspired by U-net image
translation network [19] where each feature map from the en-
coder is given to the decoder through skip-connection. Our
network has 17M parameters, that is a slightly superior to
Resnet18 and inferior to Resnet50. We train the network
with adam optimizer, batch size of 24 pairs {image, depth
map}, with learning rate of 1e−4, divided by two every 40k



Vol. Only Indexing Scene specific (one network trained by scene) All scenes
Scene (m3) MAC (M) NetVLAD (V) M + ICP w/o dc. M + ICP V + ICP V + ICP V + ICP (GT)

Chess 6 0.31m, 14.9◦ 0.29m, 13.0◦ 0.28m, 8.6◦ 0.23m, 5.4◦ 0.22m, 4.9◦ 0.24m, 5.0◦ 0.12m, 4.5◦

Fire 2.5 0.49m, 16.7◦ 0.40m, 15.5◦ 0.39m, 16.5◦ 0.30m, 14.1◦ 0.30m, 14.1◦ 0.26m, 9.7◦ 0.25m, 8.9◦

Heads 1 0.28m, 20.5◦ 0.20m, 16.0◦ 0.18m, 14.9◦ 0.19m, 14.1◦ 0.17m, 12, 9◦ 0.16m, 10.1◦ 0.18m, 9.9◦

Office 7.5 0.46m, 16.4◦ 0.38m, 13.0◦ 0.41m, 13.4◦ 0.36m, 11.3◦ 0.30m, 8.6◦ 0.32m, 7.8◦ 0.22m, 7.3◦

Pumpkin 5 0.50m, 15.0◦ 0.43m, 13.1◦ 0.40m, 12.0◦ 0.35m, 7.4◦ 0.34m, 6.8◦ 0.37m, 6.9◦ 0.21m, 6.2◦

Red Kitchen 18 0.30m, 11.2◦ 0.23m, 9.5◦ 0.24m, 7.5◦ 0.19m, 4.9◦ 0.18m, 4.6◦ 0.23m, 5.0◦ 0.15m, 4.5◦

Stairs 7.5 0.64m, 16.0◦ 0.46m, 14.9◦ 0.57m, 12.2◦ 0.48m, 10.3◦ 0.50m, 9.5◦ 0.51m, 10.4◦ 0.48m, 12.2◦

Complete 0.40m, 14.8◦ 0.33m, 12.6◦ 0.34m, 11.3◦ 0.28m, 8.7◦ 0.26m, 7.7◦ 0.28m, 7.1◦ 0.20m, 6.6◦

Table 1. Results on 7 scenes dataset: median position and orientation errors are reported for each scene, best results are in bold. Scene
specific means that one network was trained for each scene, while All scenes is the same method but used with a unique network for all scenes.
Method ICP w/o dc. relies only on the 3D point position during the point cloud matching. Result V + ICP (GT) was obtained by using the
ground-truth depth maps to produce the global point cloud reference (see section 2.4).

Posenet Posenet V + ICP (GT)
Scene LSTM [18] Geometric [8] (all scenes)

Chess 0.24m, 5.77◦ 0.13m, 4.48◦ 0.12m, 4.5◦

Fire 0.34m, 11.9◦ 0.27m, 11.3◦ 0.25m, 8.9◦

Heads 0.21m, 13.7◦ 0.17m, 13.0◦ 0.18m, 9.9◦

Office 0.30m, 8.08◦ 0.19m, 5.55◦ 0.22m, 7.3◦

Pumpkin 0.33m, 7.00◦ 0.26m, 4.75◦ 0.21m, 6.2◦

Kitchen 0.37m, 8.83◦ 0.23m, 5.35◦ 0.15m, 4.5◦

Stairs 0.40m, 13, 7◦ 0.35m, 12.4◦ 0.48m, 12.2◦

Complete 0.32m, 9, 0◦ 0.22m, 6.8◦ 0.20m, 6.6◦

Table 2. Comparison with pose regression network (median
position and orientation errors): Posenet requires a dedicated net-
work for each scene, while our method uses the same network.

iterations. We perform standard image augmentation during
training (random cropping and colour alteration). Images are
rescaled at 224 × 224 pixels during training and testing and
our network produces a depth map 4 times smaller than the
input image (i.e. 56× 56).

7 scenes dataset. The dataset is composed of various indoor
sequences acquired by an RGBD camera with ground truth
poses. From the training sequences, we only use RGBD in-
formation (without the frame pose) to train our network. For
testing, we use training sequences of each scene as reference
data (to create the pool of descriptors {fIk}S and to gener-
ate the point cloud Pref ) and only the images of the test se-
quences as queries.

3.2. Results

Localisation performances of our proposal are presented on
table 1. Results show that NetVLAD descriptor produces
more accurate result than MAC descriptor and our refinement
step significantly increases the final pose precision (M + ICP
& V + ICP respectively compared to MAC & NetVLAD). We
also show the benefit of using point descriptors computed by
our encoder for the point cloud matching described in sec-
tion 2.4 (M + ICP compared to M + ICP w/o dc.). Finally

we compare the performances of a single network trained on
all scenes for depth estimation compared to specific network
trained on each scene. We observe a slight decrease in pose
accuracy for some scenes, but the overall performances re-
main stable. Best results are obtained by using the ground
truth depth maps to build the global reference point cloud
(while the depth map related to the query remains created
by our encoder-decoder network). These encouraging results
confirm our hypothesis that the image-only pose estimation
problem can be addressed by one global method instead of
multiple systems for each scene where we want to localise a
camera.

Comparison with Posenet. We report on table 2 localisation
performances of our method trained on all scenes network,
compared to Posenet [20, 8]. Posenet learns a mapping from
images to 6 DoF camera poses so we need to train a network
by scene. We show that our proposal is more accurate than
both LSTM Posenet [18] and the last version presented in [8],
while using a single network for all scenes, compared to the
7 networks needed for Posenet.

4. CONCLUSION

We have presented a new method for camera relocalisation
that benefits from both learned features and geometric infor-
mation. We show that we are able to refine a pose associated
to an image by aligning a point cloud entirely generated from
the RGB modality. Our method is generic and can be used on
various scenes without specific retraining.

In a future work, we will investigate relocalisation perfor-
mances of our method on outdoor scenes, as well as a version
of our system that can be trained with only RGB data by self-
supervised training [16].
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