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NON-ASYMPTOTIC SEQUENTIAL TESTS FOR OVERLAPPING
HYPOTHESES AND APPLICATION TO NEAR OPTIMAL ARM

IDENTIFICATION IN BANDIT MODELS

BY AURÉLIEN GARIVIER , AND EMILIE KAUFMANN

Abstract. In this paper, we study sequential testing problems with over-
lapping hypotheses. We first focus on the simple problem of assessing if the
mean µ of a Gaussian distribution is ≥ −ε or ≤ ε; if µ ∈ (−ε, ε), both an-
swers are considered to be correct. Then, we consider PAC-best arm identifi-
cation in a bandit model: given K probability distributions on R with means
µ1, . . . , µK , we derive the asymptotic complexity of identifying, with risk at
most δ, an index I ∈ {1, . . . ,K} such that µI ≥ maxi µi − ε. We provide
non asymptotic bounds on the error of a parallel General Likelihood Ratio
Test, which can also be used for more general testing problems. We further
propose lower bound on the number of observation needed to identify a cor-
rect hypothesis. Those lower bounds rely on information-theoretic arguments,
and specifically on two versions of a change of measure lemma (a high-level
form, and a low-level form) whose relative merits are discussed.

1. Introduction. In order to extract information on a random source P, the
classical statistical framework relies on a fixed sample X1, . . . ,Xn of a given size
n. For example, a classical hypothesis test is a (possibly randomized) function ı̂n
of the sample. In sequential statistics, on the contrary, the statistician is allowed
to adaptively decide on the sample size. For example, the sequential hypothesis
testing of H0 versus H1 consists of a stopping time τ with respect to the filtration
(Ft)t, where Ft = σ(X1, . . . ,Xt), and a decision rule ı̂τ which is Fτ -measurable.

Even more power is devoted to the statistician in active testing: the statistician
not only chooses when to stop, but also sequentially influences the observations.
For example, in the multi-armed bandit problem, a set A of unknown random
sources is available on demand, and the statistician chooses one of them At ∈ A
at every time step t, from which she gets a new sample. The choice of At is made
based only upon past observations: At is Ft−1-measurable. The goal of the statisti-
cian is typically best-arm identification, that is to infer which source has the highest
expectation using as few samples as possible. Given a risk parameter δ, a strategy
(consisting of a sampling, a stopping and a decision rule) is called δ-correct if
the probability that the decision âτ is not the source with highest expectation is
smaller than δ. The sample complexity is the smallest achievable expectation for
the stopping time of a δ-correct strategy.

In the case of a finite set of sources in a one-dimensional canonical exponential
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model, the complexity of the best-arm identification problem is well understood
since [8, 18]. A non-asymptotic lower bound has been given on the sample com-
plexity: the expectation of the stopping of any δ-correct strategy is always larger
than the product of a model-dependent characteristic time, which can be computed
as the solution of a convex optimization problem depending on the sources, and
a confidence term which scales like ln(1/δ). This lower-bound is tight: a strategy
asymptotically matching it when the risk δ goes to 0 has been described.

But the problem of δ-correct best-arm identification is not really well-posed:
the characteristic time of a model tends to infinity when one of the sources has
an expectation almost as high as the best one, and δ-correct strategies never stop
(with high probability) if two sources are simultaneously optimal. In fact, a much
more natural and useful objective is to search for a Probably Approximately Correct
(PAC) decision: given a risk parameter δ and a tolerance parameter ε > 0, a strategy
is called (ε, δ)-PAC if for every bandit model of the considered class the probability
that the chosen source âτ has a mean smaller that the highest one minus ε is smaller
than δ. Note that a strategy is δ-correct if it is (0, δ)-PAC: the latter notion is thus
a generalization of the former.

The purpose of this paper is to show to what extend the results on the complexity
of δ-correct best-arm identification can be generalized to the PAC setting. An inter-
esting feature of the latter is that several decisions may simultaneously be correct
if several sources are ε-optimal. In other words, this supposes to deal with sequen-
tial testing of overlapping hypotheses, a surprisingly little investigated problem of
interest on its own.

The paper is organized as follows: Section 2 is devoted to the general problem
of sequential testing of overlapping hypotheses. A generic sequential test based on
generalized likelihood ratio tests (called the parallel GLRT) is proposed, together
with a non-asymptotic analysis proving its correctness in exponential bandit mod-
els. Section 3 details the most simple example: testing if the mean of a Gaussian
distribution is smaller than ε or larger that −ε. Building on these ideas, Section 4
provides our main result on the complexity of PAC best-arm identification. In a nut-
shell, it appears that a complexity generalizing the results known for δ-correct pro-
cedures can be identified, but only asymptotically, under stronger hypothesis, and
using less elegant arguments: high-level information-theoretic reasoning cannot be
applied here. In Section 5 we then propose an (ε, δ)-PAC strategy that combines
the parallel GLRT with a “tracking” sampling rule designed for converging to an
optimal allocation. This strategy is matching our lower bound for a large family of
regular bandit instances.
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2. The Parallel GLRT for Testing Overlapping Hypotheses.

2.1. From sequential to active testing. In a classical parametric hypothesis
testing framework, some data D is collected whose distribution depends on some
parameter µ ∈ X and is denoted by Pµ. Given two hypotheses

H0 ∶ (µ ∈ R0) andH1 ∶ (µ ∈ R1) ,

where R0 and R1 are two disjoint subsets of X , the goal is to build a test Φ map-
ping the data to a decision in {0,1}, where Φ(D) = 1 means that we reject hy-
pothesis H0 based on the observed data. Usually, the data collected consists in a
fixed number n of i.i.d. samples from some distribution depending on µ, and the
two hypotheses do not play symmetric roles: the risk to reject the null hypothesis
H0 when it is true, called the type I error α ∶= supµ∈R0

Pµ(Φ(D) = 1) , is con-
trolled, and the decision Φ(D) = 0 is not interpreted as an acceptation of H0, but
as a absence of rejection. Under a controlled type I error, the procedure aims at
minimizing the type II error β ∶= supµ∈R1

Pµ(Φ(D) = 0), that is at maximizing
power 1 − β of the test.

In some cases, however, the hypotheses do play symmetric roles and both type
I and type II errors have the same importance. When this happen, we really want
to decide for H0 orH1. This distinction is of importance in what follows, and both
cases will be illustrated in our approach.

We focus in this paper on sequential testing for symmetric hypotheses. In or-
der to emphasize that there is no preferred (null) hypothesis, the hypotheses are
denoted by H1 and H2. Given a data stream X1,X2, . . . and two hypotheses
H1 ∶ (µ ∈ R1) and H2 ∶ (µ ∈ R2), the goal is to stop the data collection pro-
cess after some (random) number τ of observations, and based on this observation
Dτ = (X1, . . . ,Xτ) make a decision ı̂τ = Φ(Dτ) ∈ {1,2}, where ı̂τ = i means that
hypothesis Hi is selected. The duration τ of the test should be minimal, but needs
to be long enough so that it is actually possible to discriminate between the two
hypotheses. This area was pioneered by Wald [19], who propose the Sequential
Probability Ratio Test (SPRT) for two simple hypotheses, e.g. in a parametric set-
ting H1 ∶ (µ = µ1) and H2 ∶ (µ = µ2). Among the sequential tests with prescribed
type I and type II errors, the SPRT is proved to have the smallest average duration
Eµi[τ] for i ∈ {1,2}. Later, particular examples of sequential test of composite
hypotheses (in which R1 and R2 are not reduced to a singleton) have also been
studied, see e.g. [17, 13].

We introduce below in Section 2.2 a broader sequential testing framework, in
which we allow for composite hypotheses that are possibly overlapping, allowing
for R1 ∩ R2 ≠ ∅. Moreover, we allow to simultaneously test more than two hy-
potheses. In this setup, the goal is to stop the data collection as quickly as possible
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in order to identify one correct hypothesis. We present a generic sequential test for
this problem, which is an extension or the classical Generalized Likelihood Ratio
test. Then, we illustrate its efficiency in the context of active testing, especially for
active identification problems in a multi-armed bandit model.

Active testing can be traced back to the early work of Chernoff [4]: at each
round, an experiment is selected and performed in order to gain information about
which of a finite set of hypotheses is true. An active test is thus made of a sam-
pling rule (that indicates which experiment At is selected at round t) together
with the stopping rule and recommendation rules (τ, ı̂) inherent to sequential test-
ing. In a multi-armed bandit model, these experiments consists in sampling one of
the K available arms (probability distributions) ν1, . . . , νK with respective means
µ1, . . . , µK . As explained in Section 2.4 below, we assume here that the arms be-
long to a one-parameter exponential family, and as such can be parameterized by
their means.

Many works on bandit models in the past decade have focus on the reinforce-
ment learning framework, where the samples collected are viewed as rewards and
the goal is to maximize cumulative rewards (see, e.g. [16, 14, 2]). A broader class of
objectives is to learn something about the unknown parameter µ = (µ1, . . . , µK)

and several active testing problems have been studied, including the ε-best arm
identification problem [6] where the goal is to find any arm whose expectation is
within ε of the highest mean. We show in Section 2.4 that the Parallel GLRT test
provides a valid stopping rule for very general tests in bandit models. We investi-
gate in Section 5 how it can help reaching the optimal sample complexity for ε-best
arm identification, when coupled with a good sampling rule.

2.2. Sequential Test of Overlapping Hypotheses. We formally define our frame-
work in a rather general setting in which one sequentially collects samplesX1,X2, . . .
and the joint distribution of these samples depends on some parameter µ ∈ R.
Let R1,R2, . . . ,RM be M regions that cover the parameter space (i.e. such that
⋃
M
i=1Ri = R) but that do not necessarily form a partition of R. We consider the

corresponding M hypotheses

H1 ∶ (µ ∈ R1) H2 ∶ (µ ∈ R2) . . . HM ∶ (µ ∈ RM) .

We denote by (Ft = σ(X1, . . . ,Xt))t≥1 the filtration generated by the observa-
tions. A sequential test of the hypothesesH1, . . . ,HM based on the stream of sam-
ples (Xs)s∈N is a pair (τ, ı̂τ) where τ is a stopping rule indicating when to stop
the test (hence a is a stopping time with respect to (Ft)t), and ı̂τ ∈ {1, . . . ,M} is a
recommendation rule that proposes upon stopping a guess for a correct hypothesis
based on the observed data (hence Fτ -measurable).
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DEFINITION 1. Let δ ∈ (0,1) be a risk parameter. A sequential test (τδ, ı̂τδ) is
δ-correct if for all µ ∈ R, Pµ (τδ < ∞, µ ∉ Rı̂τδ

) ≤ δ.

In words, the probability that the test stops and recommends a wrong hypothesis
Hi (such that µ ∉ Ri) should be under control. For example, in the presence of
two overlapping hypotheses, the test should be such that Pµ(ı̂τδ = 2) ≤ δ for all
µ ∈ R1/R2 and Pµ(ı̂τδ = 1) ≤ δ for all µ ∈ R2/R1; however, for all µ ∈ R1∩R2 the
test may decide for either hypothesis (at any time). Among all δ-correct sequential
tests, the preferred one is the one that stops after using as few samples as possible:
we want τδ to be small in expectation for every µ ∈ R.

2.3. The Parallel Generalized Likelihood Ratio Test. The likelihood of the ob-
servations collected up to round t under the distribution parameter λ is denoted
by `(X1, . . . ,Xt;λ). To decide between the M symmetric hypotheses, we run in
parallelM sequential tests of the following two non-overlapping (and asymmetric)
hypotheses

H̃0 ∶ (µ ∈ R/Ri) against H̃1 ∶ (µ ∈ Ri),

for each i ∈ {1, . . . ,M}. We stop when one of these tests rejects hypothesis H̃0.
The i-th test causing to stop means that µ is believed to belong toRi (this does not
exclude that it may also belong to other regions), in which case we set ı̂τ = i .

Our test of H̃0 against H̃1 is a Generalized Likelihood Ratio Test (GLRT). The
Generalized Likelihood Ratio statistic based on t samples is defined as

maxλ∈R `(X1, . . . ,Xt;λ)

maxλ∈R/Ri `(X1, . . . ,Xt;λ)
= inf
λ∈R/Ri

`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;λ)
,

where µ̂(t) is the maximum likelihood estimator (inR). Large values of this GLR
statistic tend to reject H̃0. Calibrating the rejection threshold for a GLR based on
a fixed sample size is often done by resorting to asymptotic arguments (like Wilks
phenomenon [20]) describing the limit distribution of the GLR under the null hy-
pothesis; this is however not useful for the finite-confidence bandit analysis that
follows. We propose to use a threshold function β(t, δ) that depends on the current
number of samples t and on the risk parameter δ. We provide in the cases consid-
ered here a valid choice for the threshold β(t, δ) in order to ensure δ-correctness
of the corresponding test.

The Parallel GLRT using the threshold function β(t, δ) is formally defined in
the following way. Given δ ∈ (0,1), the stopping rule is

τδ = inf {t ∈ N ∶ max
i=1,...,M

inf
λ∈R/Ri

ln
`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;λ)
> β(t, δ)}
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and the decision rule is

ı̂τδ ∈ argmax
i=1,...,M

inf
λ∈R/Ri

ln
`(X1, . . . ,Xτ ; µ̂(τδ))

`(X1, . . . ,Xt;λ)

(ties can be resolved arbitrarily). Note that the maximum over i ∈ {1, . . . ,M} in
the definition of τδ and ı̂τδ can be reduced to the set of hypotheses to which µ̂(t)
belongs.

2.4. A δ-Correct Parallel GLRT in a Bandit Model. We consider bandit models
where all arms belong to a canonical one-parameter exponential family

F = {νθ of density fθ(x) = exp(θx − b(θ)) w.r.t. ξ; θ ∈ Θ} ,

where ξ is some reference measure, Θ ⊆ R is an interval of natural parameters and
b ∶ Θ → R is convex and twice differentiable. For appropriate choices of b and ξ,
the class F can be the set of Bernoulli distributions, Gaussian distribution with a
known variance, Poisson, Exponential distributions, etc. We refer the reader to [3]
for more details about the use of these exponential families for bandit problems. We
just recall that distributions in a one-parameter exponential family can be alterna-
tively parameterized by their means µ = ḃ(θ). Hence, if I = ḃ (Θ), an exponential
bandit model can be parameterized by µ = (µ1, . . . , µK) ∈ IK . Letting νµ be the
unique distribution that has mean µ ∈ I, the Kullback-Leibler divergence between
the distribution of mean µ and than of mean µ′ is

d(µ,µ′) ∶= KL (νµ, νµ
′
) = µ (ḃ−1

(µ) − ḃ−1
(µ′)) − b (ḃ−1

(µ)) + b (ḃ−1
(µ′)) .

Remarkable special cases are the family of Gaussian distributions with variance
σ2, with d(µ,µ′) = (µ − µ′)2/(2σ2), and the family of Bernoulli distributions
associated to the binary relative entropy d(µ,µ′) = µ ln µ

µ′ + (1 − µ) ln 1−µ
1−µ′ .

The accumulation of observations in a bandit model is governed by a sampling
rule which specifies, at each round t, the arm At that is selected; a sample Xt from
the distribution νµAt is subsequently collected. Of course,At is only allowed to de-
pend on the past observationsA1,X1, . . . ,At−1,Xt−1 and possibly on some exoge-
nous (independent) source of randomness. We consider M regions R1, . . . ,RM
covering IK : ⋃Mi=1Ri = I

K . For any given sampling rule, we are interested in
building a sequential test (τδ, ı̂τδ) that δ-correctly tests the M possibly overlap-
ping hypotheses

(2.1) H1 ∶ (µ ∈ R1) H2 ∶ (µ ∈ R2) . . . HM ∶ (µ ∈ RM)

based on the stream of observations A1,X1,A2,X2, . . . . We denote by Na(t) =

∑
t
s=1 1(As=a) the number of selections of arm a up to round t and use the notation

µ̂a(t) =
1

Na(t) ∑
t
s=1Xs1(As=a) for the empirical mean of those observations.
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Letting µ̂(t) = (µ̂1(t), . . . , µ̂K(t)) be the vector of empirical means of the arms,
the log-likelihood ratio can be written as

ln
`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;λ)

=
K

∑
a=1

[µ̂a(t) (ḃ
−1

(µ̂a(t)) − ḃ
−1

(λa)) − b (ḃ
−1

(µ̂a(t))) + b (ḃ
−1

(λa))]

=
K

∑
a=1

Na(t)d (µ̂a(t), λa) .(2.2)

Hence, the parallel GLRT for testing (2.1) is defined by

τδ = inf

⎧⎪⎪
⎨
⎪⎪⎩

t ∈ N ∶ max
a=1,...,M

inf
λ∈R/Ra

K

∑
j=1

Nj(t)d (µ̂j(t), λj) > β(t, δ)

⎫⎪⎪
⎬
⎪⎪⎭

,(2.3)

ı̂τδ = argmax
a=1,...,M

inf
λ∈R/Ra

K

∑
j=1

Nj(τδ)d (µ̂j(τδ), λj) .

In Lemma 2 below, we provide a choice of the threshold function β(t, δ) for which
the parallel GLRT is δ-correct, whatever the sampling rule. The definition of β
requires to introduce the function

(2.4) T (x) = 2h̃(
h−1(1 + x) + ln(2ζ(2))

2
)

where, for u ≥ 1, h(u) = u − lnu and for any x ≥ 0

h̃(x) =

⎧⎪⎪
⎨
⎪⎪⎩

e1/h−1(x)h−1(x) if x ≥ h−1(1/ ln(3/2)),
(3/2)(x − ln ln(3/2)) otherwise.

The function T is easy to compute numerically. Its use for the construction of any-
time, self-normalized confidence intervals is detailed in [11], where the following
approximations are derived: T (x) ≃ x+4 ln (1+x+

√
2x) for x ≥ 5 and T (x) ∼ x

when x is large.

LEMMA 2. For any sampling rule, the parallel GLRT test (τδ, ı̂τδ) using the
threshold function

β(t, δ) = 3K ln(1 + ln t) +KT (
ln(1/δ)

K
)

is δ-correct: for all µ ∈ R, Pµ (τδ < ∞, µ ∉ Rı̂τδ
) ≤ δ.
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In can be noted that in the particular case of Gaussian bandits Lemma 2 holds for
a slightly smaller function T that satisfies T (x) ≃ x + ln(x).

PROOF. Let µ ∈ R. The probability of error Pµ (τδ < ∞,µ ∉ Rı̂τδ
) can be

upper-bounded by

Pµ (∃t,∃i ∶ µ ∉ Ri, inf
λ∈R/Ri

ln
`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;λ)
> β(t, δ))

≤ Pµ (∃t,∃i ∶ µ ∈ R/Ri, ln
`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;µ)
> β(t, δ))

≤ Pµ (∃t, ln
`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;µ)
> β(t, δ)) .

Hence, to prove the δ-correctness of the parallel GLRT, it is sufficient to control
the deviations of the quantity ln

`(X1,...,Xt;µ̂(t))
`(X1,...,Xt;µ) uniformly over time. For this pur-

pose, in the case of an exponential family bandit model, one can use the deviations
bounds recently obtained by [11]. More precisely, thanks to Equation (2.2),

Pµ (τδ < ∞,µ ∉ Rı̂τδ
) ≤ Pµ (∃t ∈ N ∶

K

∑
a=1

Na(t)d(µ̂a(t), µa) > β(t, δ))

≤ Pµ (∃t ∈ N ∶
K

∑
a=1

Na(t)d(µ̂a(t), µa)> 3
K

∑
a=1

ln(1 + lnNa(t)) +KT (
ln(1/δ)

K
)) ,

which is upper bounded by δ according to Theorem 14 in [11]. In the Gaussian
case, Corollary 10 in the same paper justifies the use of a slightly smaller func-
tion T .

◻

Lemma 2 provides a universal choice of threshold for which the parallel GLRT
is δ-correct, whatever the sampling rule. Obviously, however, in order to minimize
the number of samples τδ needed before stopping the test, the sampling rule also
plays a crucial role. For example, if for K = 3 the question is whether µ2 > µ3,
there is no point in sampling from ν1. We show below how a lower-bound analysis
of the sample complexity indirectly leads to an efficient sampling rule.

In the remainder of the paper we investigate the expected number of samples
used by a parallel GLRT in two different settings. We first consider the simplest
possible data-generating process (a one-armed Gaussian bandit): based on i.i.d.
Gaussian samples, the goal is to decide whether the mean is “rather positive” or
“rather negative”. Then, with the particular example of PAC identification in a ban-
dit model, we study active testing based on parallel GLRT, in which we further
optimize the sampling rule in order to minimize the number of samples used.
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3. Sequential Test of Overlapping Hypotheses: an Archetypal Example.
We focus here in this section on a stream of independent samples X1,X2, . . . of
the distributionN (µ,σ2), where the variance σ2 is known. The statistical problem
is to determine whether µ is positive or negative, but with and indifference region
of width 2ε: we consider the two hypotheses

H1 ∶ (µ < ε) and H2 ∶ (µ > −ε) .

The hypotheses H1 and H2 are not mutually exclusive. In this particular example,
one aims at building a stopping rule τδ and a recommendation rule ı̂τδ such that

(3.1) ∀µ ≤ −ε, Pµ(ı̂τδ = 2) ≤ δ and ∀µ ≥ ε, Pµ(ı̂τδ = 1) ≤ δ ,

but any answer ı̂τδ is considered correct when µ ∈ R1 ∩R2 = (−ε, ε).

3.1. Properties of the Parallel GLRT Test. The expression of the parallel GLRT
for this test can be obtained by particularizing the general expression obtained
in exponential family bandits (2.3) to K = 1, Gaussian distribution for which
d(x, y) = (x−y)2/(2σ2) and the two above hypotheses for whichR/R1 = [ε,+∞)

and R/R2 = (−∞,−ε]. Letting µ̂s = 1
s ∑

s
i=1Xi denote the empirical mean of the

observations, one can easily show that

(3.2) τδ = inf {t ∈ N ∶
t(∣µ̂t∣ + ε)

2

2σ2
> β(t, δ)} ,

and (ı̂τδ = 2) if and only if (µ̂τδ > 0).
From Lemma 2, we know that the parallel GLRT is δ-correct for the choice of

threshold

(3.3) β(t, δ) = 3 ln(ln(t) + 1) + T (ln(1/δ)) ,

where T is such that T (x) ≃ x+ ln(x). Under the simple sampling rule considered
in this section (that always selects arm 1), it is possible to give an upper bound on
the expected number of samples used by the parallel GLRT that employs the above
threshold.

We first give a crude, asymptotic analysis. Fix µ ∈ R and let α ∈ [0, ε).

E[τδ] ≤
∞
∑
t=1

P (t(∣µ̂t∣ + ε)
2
≤ 2σ2β(t, δ))

≤
∞
∑
t=1

P (∣µ̂t − µ∣ > α) +
∞
∑
t=1

P (t(∣µ̂t∣ + ε)
2
≤ 2σ2β(t, δ), ∣µ̂t − µ∣ ≤ α)

≤
∞
∑
t=1

P (∣µ̂t − µ∣ > α) +
∞
∑
t=1

P (t(∣µ∣ − α + ε)2
≤ 2σ2β(t, δ), ∣µ̂t − µ∣ ≤ α) .
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The first term is upper bounded by a constant (independent of δ), while the second
is upper bounded by

T0(δ) = inf {t ∈ N∗
∶ ∀t′ ≥ t, t(∣µ∣ − α + ε)2

≤ 2σ2β(t, δ)} .

For β(t, δ) as given in (3.3), Lemma 17 in Appendix A shows that

T0(δ) =
2σ2

(∣µ∣ − α + ε)2
ln

1

δ
+ oδ→0 (ln

1

δ
) .

Letting α go to zero, one obtains, for all µ ∈ R,

lim sup
δ→0

Eµ[τδ]
ln(1/δ)

≤
2σ2

(∣µ∣ + ε)2
.

The following non-asymptotic statement is proved in Appendix A.

THEOREM 3.1. Introducing the notation `(δ) = T (ln(1/δ)) + 3
e , the parallel

GLRT with threshold function β(t, δ) given in (3.3) satisfies

E[τδ] ≤
2σ2

(∣µ∣ + ε)2
[`(δ) +

6

e
ln(

2σ2

(∣µ∣ + ε)2
`(δ))

+8

¿
Á
ÁÀ`(δ) +

6

e
ln(

2σ2

(∣µ∣ + ε)2
`(δ)) + 32δ1/8

⎤
⎥
⎥
⎥
⎥
⎦

+ 1 .

To summarize, the parallel GLRT with threshold function (3.3) is δ-correct and
the expected number of samples uses satisfies Eµ [τδ] ≲

2σ2

(∣µ∣+ε)2 ln (1
δ
) for small

values of the risk parameter δ, for every µ ∈ R, even in the indifference zone
(−ε, ε). We prove in the next section that this is the smallest possible number of
samples for a δ-correct test.

3.2. Asymptotic Optimality of the Parallel GLRT. In order to prove the opti-
mality of the parallel GLRT, we need to provide a lower bound on the sample
complexity of any δ-correct algorithm. To provide lower bound it is quite common
to rely on a change of distribution argument.
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A change of distribution consists in relating the probability of an event C under
two different probability distributions. It is well-known that for any event C ∈ Ft,

Pλ(C) = Eλ[1C] = ∫ 1C(x1, . . . , xt)dPX1,...,Xn
λ (x1, . . . , xn)

= ∫ 1C(x1, . . . , xt)
dPX1,...,Xt

λ (x1, . . . , xt)

dPX1,...,Xt
µ (x1, . . . , xt)

dPX1,...,Xt
µ (x1, . . . , xt)

= ∫ 1C(x1, . . . , xt)
`(X1, . . . ,Xt;λ)

`(X1, . . . ,Xt;µ)
dPX1,...,Xt

µ (x1, . . . , xt)

= Eµ[1C exp ( −Lt(µ,λ))],

where Lt(µ,λ) denotes the log-likelihood ratio of the observations:

Lt(µ,λ) ∶= ln
`(X1, . . . ,Xt;µ)

`(X1, . . . ,Xt;λ)
.

This elementary change of distribution has been a key ingredient for the derivation
of lower bounds in the bandit literature. The most notable example is the famous
regret lower bound by Lai and Robbins in the seminal paper [14], and further ex-
amples include notably [1].

But this “low-level” ingredient can also serve as a basis for more elaborate ar-
guments, which lead to more elegant and stronger results as for example illustrated
in [8]. We propose in Lemma 3 below two forms of change of distribution that are
useful: the low-level form (3.4), and the high-level form (3.5). The high-level form,
of information-theoretic flavor, involves the Kullback-Leibler divergence KL(⋅, ⋅)
from one distribution to another. For any random variable Z defined on a proba-
bilistic space (Ω,F ,P), we denote by PZ the law of Z.

LEMMA 3. Let µ and λ be two parameters.

1. High-level form: for any stopping time τ and any event C ∈ Fτ ,

(3.4) Eµ[Lτ(µ,λ)] = KL (PX1,...,Xτ
µ ,PX1,...,Xτ

λ ) ≥ kl(Pµ(C),Pλ(C)) ,

where kl(x, y) = x ln(x/y)+(1−x) ln((1−x)/(1−y)) is the binary relative
entropy.

2. Low-level form: for all x ∈ R, n ∈ N∗, for all event C ∈ Fn,

(3.5) Pλ(C) ≥ e−x [Pµ(C) − Pµ (Ln(µ,λ) ≥ x) ] .

PROOF. The high-level form is a consequence of the data-processing inequality:

Eµ[Lτ(µ,λ)] = KL (PX1,...,Xτ
µ ,PX1,...,Xτ

λ ) ≥ KL (P1Cµ ,P1Cλ ) = kl(Pµ(C),Pλ(C)) ,
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see [9] for details. The low-level form is even more elementary:

Pλ(C) = Eµ[1C exp ( −Lt(µ,λ))] ≥ Eµ[1C1(Lt(µ,λ)<x) exp ( −Lt(µ,λ))]

≥ e−x Pµ(C ∩ (Lt(µ,λ) < x))

≥ e−x [Pµ(C) − Pµ (Ln(µ,λ) ≥ x) ] .

◻

The sample complexity lower bounds provided below illustrate the strengths
and weaknesses of each form. In particular, Lemma 3 permits to identify the sam-
ple complexity of the testing problem with overlapping hypotheses studied in this
section. Indeed, Theorem 4 below shows that any δ-correct sequential procedure
satisfies Eµ[τδ] ≥ 2σ2

(∣µ∣+ε)2 ln (1
δ
) for every µ, in a regime of small values of δ. In

Section 3.1 we exhibited a δ-correct parallel GLRT that uses not more than this
number of samples for small values of δ. This proves that the sample complexity
of the testing problem, that is the minimal number of samples needed by a δ-correct
test, is close to 2σ2

(∣µ∣+ε)2 ln (1
δ
) for small values of the risk δ, and justifies that the

parallel GLRT, which attains this sample complexity, is asymptotically optimal.
It is notable that the lower bound of Theorem 4 is non-asymptotic for all µ

that belong to a single hypothesis, which is obtained using the high-level form in
Lemma 3, but only asymptotic when µ is in the intersection (−ε, ε), which requires
the low-level form, as can be seen in the proof below.

THEOREM 4. Any δ-correct sequential test satisfies

● ∀µ ∉ (−ε, ε), Eµ[τδ] ≥
2σ2

(∣µ∣ + ε)
2

kl(δ,1 − δ) ,

● ∀µ ∈ R, lim inf
δ→0

Eµ[τδ]
ln(1/δ)

≥
2σ2

(∣µ∣ + ε)
2
.

PROOF. We first treat the case µ ∉ (−ε, ε). In the particular case considered in
this section the samples X1, . . . ,Xt are i.i.d. from a Gaussian distribution. Assum-
ing that Eµ[τ] < ∞ and using Wald’s lemma, the expected log-likelihood ratio
takes the simple form

Eµ[Lτ(µ,λ)] = Eµ[τ]KL(N(µ,σ2
),N(λ,σ2

)) = Eµ[τ]
(µ − λ)2

2σ2
.

Hence, the high-level change of measure inequality (3.4) translates into the follow-
ing inequality, which obviously also holds when Eµ[τ] = ∞:

(3.6) Eµ[τ]
(µ − λ)2

2σ2
≥ kl(Pµ(C) ,Pλ(C)) .
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For µ < −ε, choosing λ = ε and C = (ı̂τδ = 2), which is such that Pµ(C) ≤ δ and
Pλ(C) ≥ 1 − δ, directly yields

Eµ[τ]
(∣µ∣ + ε)

2

2σ2
≥ kl(δ,1 − δ) .

Similarly, for µ > ε, we use λ = −ε and C = (ı̂τδ = 1) so as to obtain the same
inequality.

We now turn our attention to the (more interesting) case µ ∈ (−ε, ε). For every
β > 0, we prove that

(3.7) lim
δ→0

Pµ (τδ ≤
2σ2(1 − β)

(∣µ∣ + ε)2
ln (1/δ)) = 0 ,

which entails that

lim inf
δ→0

Eµ[τδ]
ln(1/δ)

≥
2σ2(1 − β)

(∣µ∣ + ε)2
.

Letting β tend to zero gives the second statement of Theorem 4 for µ ∈ (−ε, ε).
Note that this statement is also true for µ ∉ (−ε, ε), as a consequence of the non-
asymptotic lower bound obtained above and the fact that kl(δ,1 − δ) ∼ ln(1/δ)
when δ goes to zero.

We now prove (3.7) for a fixed β > 0. Introducing

nδ ∶=

⎢
⎢
⎢
⎢
⎢
⎣

2σ2(1 − β)

(∣µ∣ + ε)
2

ln
1

δ

⎥
⎥
⎥
⎥
⎥
⎦

,

and the event Cδ = (τδ ≤ nδ), we need to prove that Pµ(Cδ) → 0 when δ → 0. To
do so, we write

Pµ (Cδ) = Pµ (Cδ, ı̂τδ = 1) + Pµ (Cδ, ı̂τδ = 2) ,

and prove that the two terms in the RHS tend to zero when δ goes to zero, using
the low-level form of Lemma 3 with two different changes of distribution.

limδ→0 Pµ (Cδ, ı̂τδ = 1) = 0. Choosing λ = ε yields that Pλ(Cδ, ı̂τδ = 1) ≤

Pλ(ı̂τδ = 1) ≤ δ. Since τδ is a stopping time, the event Cδ ∩ (ı̂τδ = 1) belongs to
Fnδ . Hence, by Inequality (3.5), for all x ∈ R,

δ ≥ e−x [Pµ (Cδ, ı̂τδ = 1) − Pµ (Lnδ(µ, ε) ≥ x)] ,

which can be rewritten as

Pµ (Cδ, ı̂τδ = 1) ≤ δex + Pµ (Lnδ(µ, ε) ≥ x) .
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The choice x = (1 − β/2) ln(1/δ) yields

(3.8) Pµ (Cδ, ı̂τδ = 1) ≤ δ
β
2 + Pµ (

Lnδ(µ, ε)

nδ
≥

1 − β/2

1 − β

(∣µ∣ + ε)2

2σ2
) .

By the law of large numbers and the fact that nδ → +∞ when δ → 0,

Lnδ(µ, ε)

nδ

δ→0
Ð→ Eµ [ln

`(X1;µ)

`(X1; ε)
] = KL (PX1

µ ,PX1
ε ) =

(µ − ε)2

2σ2
<

1 − β/2

1 − β

(∣µ∣ + ε)
2

2σ2
,

and the RHS of Equation (4.5) goes to zero.

limδ→0 Pµ (Cδ, ı̂τδ = 2) = 0. Using the exact same reasoning as above, this
time with λ = −ε which is such that Pλ(Cδ, ı̂τδ = 2) ≤ δ, yields

(3.9) Pµ (Cδ, ı̂τδ = 2) ≤ δ
β
2 + Pµ (

Lnδ(µ,−ε)

nδ
≥

1 − β/2

1 − β

(∣µ∣ + ε)2

2σ2
) .

Writing, thanks to the law of large numbers,

Lnδ(µ,−ε)

nδ

δ→0
Ð→

(µ + ε)2

2σ2
<

1 − β/2

1 − β

(∣µ∣ + ε)2

2σ2
,

proves that the RHS in (3.9) goes to zero.

◻

4. Sample Complexity Lower Bounds for Active Testing: ε-Best Arm Iden-
tification. ε-Best-Arm Identification (BAI) was first introduced by [15, 6] in the
bandit literature. Given a risk parameter δ ∈ (0,1] and an accuracy parameter ε > 0,
the goal is to find as quickly as possible an element of the set Aε(µ) ∶= {a ∶ µa ≥
maxi µi − ε} of ε-optimal arms, with probability at least 1 − δ, by adaptively sam-
pling the arms. A slightly different formulation with an indifference zone has been
studied in the ranking and selection community (see, e.g.,[12]) in which correct-
ness guarantees are provided only when there is a unique ε-best arm (i.e. for µ
such that ∣Aε(µ)∣ = 1). In contrast, we highlight that in ε-BAI, in the presence of
multiple ε-best arms (i.e., overlapping hypotheses), our goal is to identify one of
those.
ε-best arm identification can be regarded as a particular example of active testing

of the hypotheses

H1 = (µ1 > max
i
µi − ε) . . . HK = (µK > max

i
µi − ε)
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based on adaptively sampling the marginals of fµ = fµ1 ⊗ ⋅ ⋅ ⋅ ⊗ fµK .
A strategy for ε-BAI not only consists in a sequential test for those hypotheses,

that is a pair (τ, ı̂) of stopping and recommendation rule, but also on a sampling
rule (At)t indicating which arm is selected at round t. As explained in Section 2.4,
we consider the case where the arms belongs to a one-dimension canonical expo-
nential family and their distribution is therefore parameterized by their means that
belong to some interval I = (µ−, µ+).

DEFINITION 5. A (ε, δ)-PAC strategy for ε-best arm identification is a triple
(Aδt , τδ, ı̂τδ), where Aδt is Ft−1-measurable for each t ≥ 1, τ is a stopping time
relative to the filtration (Ft)t, and ı̂τδ is an Fτ -measurable random variable such
that

∀µ ∈ I
K , Pµ(τδ < ∞, ı̂τδ ∉ Aε(µ)) ≤ δ .

An ε-PAC strategy is a family of strategies πδ = (Aδt , τδ, ı̂τδ) such that, for all δ, πδ
is (ε, δ)-PAC.

The goal in ε-BAI is to build an (ε, δ)-PAC strategy such that on every bandit
instance µ, the expected number of samples needed before stopping Eµ[τδ], is
as close as possible to the sample complexity, which is the minimal number of
samples needed by any (ε, δ)-PAC algorithm before stopping. In this section, we
provide lower bounds on the sample complexity of ε-Best Arm Identification.

4.1. The Characteristic Time of ε-Best Arm Identification. All the lower bounds
that we propose feature a quantity T ∗ε (µ) which we term the characteristic time
of µ.

DEFINITION 6. The characteristic time T ∗ε (µ) is defined by:

T ∗ε (µ)
−1

= sup
w∈ΣK

max
a∈Aε(µ)

min
b≠a

inf
(λa,λb)∶λa≤λb−ε

[wad(µa, λa) +wbd(µb, λb)],

where ΣK = {w ∈ [0,1]K ∶ ∑iwi = 1} is the set of probability vectors.

It can be observed that the quantity T ∗0 (µ) coincides with the quantity T ∗(µ)
introduced by [8] as the characteristic time for the best arm identification problem.

In order to illustrate the dependency of T ∗ε (µ) on the means µ, we first consider
the Gaussian case. Introducing the notation µa,ε for the bandit instance such that
µa,εi = µi for all i ≠ a and µa,εa = µa + ε, it can be shown (see Appendix B.1) that

(4.1) T ∗ε (µ) = min
a∈Aε(µ)

T0 (µ
a,ε

) = T0 (µ
a∗,ε

) ,
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where a∗ ∈ argmaxaµa is an optimal arm. Hence it is sufficient to be able to com-
pute the characteristic time for ε = 0, for which [8] provides an efficient algorithm.
Besides, [8] proposes an approximation for T ∗0 (µ) from which it directly follows
that

K

∑
a≠a∗

2σ2

(µa∗ + ε − µa)2
≤ T ∗ε (µ) ≤ 2 ×

K

∑
a≠a∗

2σ2

(µa∗ + ε − µa)2
.

Finally, there is a simple expression in the two armed-case: T ∗ε (µ) =
8σ2

(∣µ1−µ2∣+ε)2 .
Explicit expressions for general (non-Gaussian) two-armed bandits can be found
in Section 4.4. However, beyond 2 arms there is no closed-form expression for the
characteristic time T ∗ε (µ) and we refer to Section 5 for a discussion on its efficient
computation.

4.2. A First Non-Asymptotic Lower Bound. To illustrate the difficulty of ex-
tending the lower bound technique of [8] to ε-BAI, we begin with a sub-optimal
but simple sample complexity lower bound, obtained using the high-level change
of distribution argument presented in Lemma 3.

THEOREM 7. For any (ε, δ)-PAC strategy, one has

Eµ[τδ] ≥ T ∗ε (µ) [
1 − δ

∣Aε(µ)∣
ln(

1

δ
) − ln(2)] .

PROOF. Using the δ-PAC property and the pigeonhole principle, there exists
a ∈ Aε(µ) such that

Pµ(ı̂τδ = a) ≥
1 − δ

∣Aε(µ)∣
.

By definition of T ∗ε (µ), for the above choice of a ∈ Aε(µ), there exists b ≠ a and
λ such that λa < λb − ε:

(4.2) T ∗ε (µ)
−1

≥
Eµ[Na(τδ)]

Eµ[τδ]
d(µa, λa) +

Eµ[Nb(τδ)]

Eµ[τδ]
d(µb, λb) .

Indeed, fixing wa ∶= Eµ[Na(τδ)]/Eµ[τδ] and defining

Fa(w,µ) = min
b≠a

inf
λa<λb−ε

[wad(µa, λa) +wbd(µb, λb)] ,

observe that
sup
w∈ΣK

Fa(w,µ) ≥ Fa(w,µ) .

Letting b, λa, λb be the minimizer in the definition of Fa(w,µ) yields

max
a∈Aε

sup
w∈ΣK

Fa(w,µ) ≥ wad(µa, λa) +wbd(µb, λb) ,
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and the left hand side of this inequality is T−1
ε (µ).

We now assume E[τδ] < ∞ (otherwise any lower bound on the number of sam-
ples of that algorithm obviously holds). Using Wald’s Lemma, the expression of
the expected log-likelihood ratio between µ and λ is

Eµ [Lτδ(µ,λ)] = Eµ[Na(τδ)]d(µa, λa) +Eµ[Nb(τδ)]d(µb, λb) .

Therefore, one can use Inequality (4.2) and the high-level form of Lemma 3 to
write

Eµ[τδ]
T ∗ε (µ)

≥ Eµ [Lτδ(µ,λ)] ≥ kl(Pµ(ı̂τδ = a),Pλ(ı̂τδ = a))

≥ kl(
1 − δ

∣Aε(µ)∣
, δ) ≥

1 − δ

∣Aε∣
ln(

1

δ
) − ln(2) ,

where the last inequality follows from the inequality kl(x, y) ≥ x ln(1/y) − ln(2).

◻

4.3. A Tighter Lower Bound for Converging Strategies. The lower bound ob-
tained in Theorem 7 could incorrectly suggest that the sample complexity would
be of order T ∗ε (µ)

∣Aε(µ)∣ ln (1
δ
). As we will see, the factor ∣Aε(µ)∣ in the denominator is

not correct: this bound is tight only for values of µ with a unique ε-best arm. We
now provide a tighter lower bound, which comes with two shortcomings. First, it
is asymptotic: it relies on the low-level form of change of distribution presented in
Lemma 3. Second, it requires an additional assumption on the sampling rule, that
needs to be converging.

DEFINITION 8. A sampling rule Aδt is said to be converging if it does not
depend on δ (that is, Aδt = At) and for every µ, there exists w(µ) ∈ ΣK such that,
Pµ- almost surely,

∀a = 1, . . . ,K,
Na(t)

t
Ð→
t→∞

wa(µ) .

THEOREM 9. For any ε-PAC family of converging strategies, one has

lim inf
δ→0

Eµ[τδ]
ln(1/δ)

≥ T ∗ε (µ) .

PROOF. To prove Theorem 9, it is sufficient to prove that for every β > 0,

(4.3) lim
δ→0

P(τδ ≤ (1 − β)T ∗(µ) ln(
1

δ
)) = 0 .
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Indeed, the conclusion follows by Markov inequality and letting β go to zero. We
now fix β > 0 and introduce

nδ ∶= ⌊(1 − β)T ∗ε (µ) ln(
1

δ
)⌋ .

Defining Cδ = (τδ ≤ nδ), we establish that limδ→0 Pµ(Cδ) = 0.
First, using that the strategy is δ-correct, one can write

Pµ(Cδ) = Pµ (Cδ, ı̂τδ ∈ Aε(µ)) + P (Cδ, ı̂τδ ∉ Aε(µ))

≤ ∑
a∈Aε(µ)

Pµ(Cδ, ı̂τδ = a) + δ .

To conclude, it is sufficient to prove that ∀a ∈ Aε(µ), limδ→0 Pµ(Cδ, ı̂τδ = a) = 0.
Fix a ∈ Aε(µ). Just like in the proof of Theorem 7, we use that by definition of

T ∗ε (µ), there exists b ≠ a and an alternative model λ in which only arm a and b are
changed and such that λa < λb − ε that satisfies

(4.4) T ∗ε (µ)
−1

≥ wa(µ)d (µa, λa) +wb(µ)d (µa, λb) ,

where we recall that the weights vectorw(µ) contains the limit fraction of samples
allocated to each arm by the converging sampling rule (At): for all i, it holds that
Pµ (limt→∞Ni(t)/t = wi(µ)) = 1.

As arm a is not ε-optimal in the bandit instance λ, one has Pλ(Cδ, ı̂τδ = a) ≤

Pλ(ı̂τδ = a) ≤ δ. Moreover, the event Cδ ∩ (ı̂τδ = a) belongs to Fnδ . Hence, using
the low-level Inequality (3.5) in Lemma 3, for all x ∈ R,

δ ≥ e−x [Pµ (Cδ, ı̂τδ = a) − Pµ (Lnδ(µ,λ) ≥ x)]

which can be rewritten as

Pµ (Cδ, ı̂τδ = a) ≤ δe
x
+ Pµ (Lnδ(µ,λ) ≥ x) .

The choice x = (1 − β/2) ln(1/δ) yields

(4.5) Pµ (Cδ, ı̂τδ = a) ≤ δ
β
2 + Pµ (

Lnδ(µ,λ)

nδ
≥

1 − β/2

1 − β
T ∗ε (µ)

−1
) .

Because of the converging assumption, it holds Pµ-a.s. (independently of δ) that

Lt(µ,λa)

t
Ð→
t→∞

wa(µ)d (µa, λa)+wb(µ)d (µb, λb) ≤ T
∗
ε (µ)

−1
<

1 − β/2

1 − β
T ∗ε (µ)

−1
,

where the first inequality holds by definition of λ, which satisfies (4.4). As nδ →∞

when δ → 0, it follows that

lim
δ→0

Pµ (
Lnδ(µ,λ)

nδ
≥

1 − β/2

1 − β
T ∗ε (µ)

−1
) = 0

and limδ→0 Pµ (Cδ, ı̂τδ = a) = 0, which concludes the proof.
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◻

4.4. An improved lower bound for two arms. ε-best arm identification in a
two-armed bandit model µ = (µ1, µ2) coincides with an active testing procedure
to select one of the hypotheses

H1 ∶ (µ1 > µ2 − ε) or H2 ∶ (µ2 > µ1 − ε)

and an (ε, δ)-PAC strategy should satisfy P (ı̂τδ = 2) ≤ δ for all µ such that µ1 >

µ2 + ε and P (ı̂τδ = 1) ≤ δ for all µ such that µ2 > µ1 + ε. In that case, a first
observation is that the complexity term T ∗ε (µ) can be made slightly more explicit.
The proof of Proposition 10 can be found in Appendix B.2.

PROPOSITION 10. If µa ≥ µb − ε, define µ∗ε (µa, µb) as the unique solution in
λ ∈ (µ−, µ+ − ε) to

d(µa, λ) = d(µb, λ + ε) .

Then

T ∗ε (µ)
−1
∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

d(µ1, µ
∗
ε (µ1, µ2)) if µ1 > µ2 + ε ,

max[d(µ1, µ
∗
ε (µ1, µ2)), d(µ2, µ

∗
ε (µ2, µ1))] if µ1 − µ2 ∈ (−ε, ε) ,

d(µ2, µ
∗
ε (µ2, µ1)) if µ2 > µ1 + ε .

Note that the quantity µ∗ε (µa, µb) defined in Proposition 10 is indeed well-
defined when µa ≥ µb − ε, as the the mapping g ∶ µ ↦ d(µa, µ) − d(µb, µ + ε)
is decreasing on [µb − ε, µa] and satisfies g(µb − ε) = d(µa, µb − ε) > 0 and
g(µa) = −d(µb, µa + ε) < 0.

For two armed bandits, we provide below an asymptotic sample complexity
lower bound that relax the converging assumption required for Theorem 9. The-
orem 11 given below still requires the sampling rule Aδt to be independent from δ
(we write At instead of Aδt ), but doesn’t need the fraction of selection of each arm
to converge to a certain proportion under that sampling rule.

THEOREM 11. Every ε-PAC family of anytime strategies (i.e., for which the
sampling rule (At) is independent from δ) satisfies, for all µ,

lim inf
δ→0

Eµ[τδ]
ln(1/δ)

≥ T ∗ε (µ) .

PROOF. Assume to fix the ideas that µ1 ≥ µ2.
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Case 1: µ1 ≥ µ2 + ε. To simplify the notation we use the notation µ∗ε to denote
the quantity µ∗ε (µ1, µ2) defined in Proposition 10. Considering the alternative ban-
dit model λ such that λ1 = µ∗ε and λ2 = µ∗ε + ε, one has λ1 − λ2 = −ε, hence
Pλ (ı̂τδ = 1) ≤ δ, while Pµ (ı̂τδ = 1) ≥ 1 − δ. Inequality (3.5) in Lemma 3 yields

E[N1(τδ)]d(µ1, λ1) +E[N2(τδ)]d(µ2, λ2) ≥ kl(δ,1 − δ)

(E[N1(τδ)] +E[N2(τδ)])d(µ1, µ
∗
ε ) ≥ kl(δ,1 − δ)

E[τδ] ≥
1

d(µ1, µ∗ε )
kl(δ,1 − δ) ,

and the conclusion follows by letting δ go to zero and using kl(δ,1− δ) ∼ ln(1/δ).

Case 2: 0 < µ1 − µ2 < ε. As in the proof of Theorem 11, we fix β ∈ (0,1) and
prove that

(4.6) lim
δ→0

Pµ(τδ ≤
1 − β

d∗ε (µ1, µ2)
ln(

1

δ
)) = 0 .

Introducing the notation nδ = ⌊
1−β

d∗ε (µ1,µ2)
ln (1

δ
)⌋ and Cδ = (τδ ≤ nδ), we prove that

limδ→0 Pµ(Cδ) = 0. To prove this, we show that Pµ (Cδ, ı̂τδ = 1) and Pµ (Cδ, ı̂τδ = 2)
tend to zero when δ goes to zero, by invoking Inequality 3.4 in Lemma 3 with a
different alternative model λ in each case.

To control Pµ (Cδ, ı̂τδ = 1) we consider the alternative model λ in which λ1 =

µ∗ε (µ1, µ2) and λ2 = µ
∗
ε (µ1, µ2)+ε, under which Pλ(ı̂τδ = 1) ≤ δ. We let Lt(µ,λ)

be the log-likelihood ratio of the observations under the two models:

Lt(µ,λ) =
N1(t)
∑
s=1

ln
fµ1(Y1,s)

fλ1(Y1,s)
+

N2(t)
∑
s=1

ln
fµ2(Y2,s)

fλ2(Y2,s)
.

The choice of λ permits to write

Eµ [ln
fµ1(Y1,s)

fλ1(Y1,s))
] = Eµ [ln

fµ2(Y2,s)

fλ2(Y2,s))
] = d(µ1, µ

∗
ε (µ1, µ2)) ,

thus Mt = Lt(µ,λ) − td(µ1, µ
∗
ε (µ1, µ2)) is a martingale whose increments have

bounded variance, and that does not depend on δ (as the sampling rule At is inde-
pendent from δ). By the law of large number for martingales, it holds that

(4.7)
Lt(µ,λ)

t

Pµ−a.s.
Ð→
t→∞

d(µ1, µ
∗
ε (µ1, µ2)).

Proceeding as in the previous proofs, it follows from Inequality (3.4) with x =

(1 − β/2) ln(1/δ) that

Pµ (Cδ, ı̂τδ = 1) ≤ δ
β
2 + Pµ (

Lnδ(µ, ε)

nδ
≥

1 − β/2

1 − β
d∗ε (µ1, µ2)) .
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The second term in the RHS tends to zero when δ goes to zero using (4.7) and the
fact that nδ → ∞ and 1−β/2

1−β d
∗
ε (µ1, µ2) > d(µ1, µ

∗
ε (µ1, µ2)). Hence, one obtains

limδ→0 Pµ (Cδ, ı̂τδ = 1) = 0.
To control Pµ (Cδ, ı̂τδ = 2), we proceed similarly and consider the alternative

model λ′ in which λ′1 = µ
∗
ε (µ2, µ1) and λ′2 = µ

∗
ε (µ2, µ1)−ε, under which Pλ′(ı̂τδ =

2) ≤ δ. For this particular choice, the log-likelihood ratio satisfies

(4.8) lim
t→∞

Lt(µ,λ
′)

t

Pµ−a.s.
Ð→
t→∞

d(µ2, µ
∗
ε (µ2, µ1)) .

Applying Inequality 3.4 as above yields

Pµ (Cδ, ı̂τδ = 2) ≤ δ
β
2 + Pµ (

Lnδ(µ, ε)

nδ
≥

1 − β/2

1 − β
d∗ε (µ1, µ2))

and noting that 1−β/2
1−β d

∗
ε (µ1, µ2) > d(µ2, µ

∗
ε (µ2, µ1)) one can prove using (4.8)

that the second term in the RHS goes to zero. Hence limδ→0 Pµ (Cδ, ı̂τδ = 2) = 0.

◻

5. Asymptotically Optimal Strategies for ε-Best Arm Identification. The
strategy described in this section hinges on the same ideas than the Track-and-
Stop strategy proposed by [8] for the case ε = 0. The sampling rule builds on the
knowledge of “optimal weights” under which the arms should be sampled, whereas
the stopping is a parallel GLRT test with an appropriate choice of threshold. We
prove that the resulting strategy, called ε-Track-and-Stop is asymptotically optimal
for some instances of ε-best arm identification.

5.1. Optimal Weights and their Computation. From the proof of our lower
bounds, it appears that a converging strategy matching the lower bound should
have its empirical proportions of draws converge to a vector that belongs to the set

W
∗
ε (µ) = argmax

w∈ΣK
max
a∈Aε

min
b≠a

inf
(λa,λb)∶λa≤λb−ε

[wad(µa, λa) +wbd(µb, λb)] .

To ease the notation, we assume that µ1 is an optimal arm, i.e. µ1 ≥ µb for all
b ∈ {1, . . . ,K}. We define

T ∗,aε (µ)−1
∶= sup
w∈ΣK

min
b≠a

inf
(λa,λb)∶λa≤λb−ε

[wad(µa, λa) +wbd(µb, λb)] .

Observe that for a such that there exists b ≠ awith µa = µb−ε, then T ∗,aε (µ) = +∞.
For a such that µa > µb − ε for all b ≠ a, we argue below that the argmax in w is
unique and define

(5.1) w∗,a
ε (µ) ∶= argmax

w∈ΣK
min
b≠a

inf
(λa,λb)∶λa≤λb−ε

[wad(µa, λa) +wbd(µb, λb)] .
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With this notation, for ε > 0, one has

(5.2) W
∗
ε (µ) =

⎧⎪⎪
⎨
⎪⎪⎩

w∗,a
ε (µ) for a ∈ argmin

i∈Aε(µ)∶µi>maxj≠i µj−ε
T ∗,iε (µ)

⎫⎪⎪
⎬
⎪⎪⎭

.

For ε > 0, this set if always non-empty as arm 1 satisfy µ1 > minj≠1 µi − ε. For
ε = 0, in the presence of a unique optimal arm, Wε(µ) = {w∗,1

0 (µ)}, but in the
presence of multiple arms with mean µ1, the optimal weights are not well defined.
In this degenerate case, we defineWε(µ) = {∣A0(µ)∣

−11A0(µ)}.
We now fix a ∈ Aε(µ) such that µa > maxb≠a µb−ε and explain why w∗,a

ε (µ) is
well-defined and how to compute this probability vector. Introducing the interval

I
ε
a,b = [µ− ∨ (µb − ε), µa ∧ (µ+ − ε)] ,

it follows from Proposition 18 (stated in Appendix B) that

w∗,a
ε (µ) = argmax

w∈ΣK
min
b≠a

inf
λ∈Iε

a,b

[wad(µa, λ) +wbd(µb, λ + ε)]

= argmax
w∈ΣK

min
b≠a

wagb (
wb
wa

)

where for b ≠ a the application gb (also depending on a, µ and ε) is defined by

gb(x) = inf
λ∈Iε

a,b

[d(µa, λ) + xd(µb, λ + ε)] .(5.3)

In the particular case in which µa > µ+ − ε and µb = µ+, the interval Iεa,b is reduced
to the point µ+ − ε and the mapping gb(x) = d(µa, µ

+ − ε) is constant. Besides
this degenerate case, Iεa,b is a non-degenerate compact interval, and one can lever-
age this property to show that the mapping x ↦ gb(x) is increasing. Moreover, it
satisfies gb(0) = d(µa, µa ∧ (µ+ − ε)) and limx→∞ gb(x) = d(µa, (µb − ε) ∨ µ

−).
Therefore, one can define the inverse mapping

xb(y) = g
−1
b (y) for y ∈ [d(µa, µa ∧ (µ+ − ε)), d(µa, (µb − ε) ∨ µ

−
)).

We furthermore define the constant mapping xa(y) = 1 for all y ∈ [d(µa, µa ∧

(µ+ − ε)), d(µa, (maxb≠a µb − ε) ∨ µ
−)).

To state Proposition 12 below, which provides a more explicit expression of the
weights w∗,a

ε (µ), we also introduce the notation λb(x) for the minimizer in (5.3):

gb(x) = d(µa, λb(x)) + xd(µb, λb(x) + ε)

The proof of Proposition 12 is given in Appendix C. It hinges on the fact that at the
optimum all the values of gb(wb/wa) are identical, which allows to re-parameterize
the optimization problem by their common value, y.
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PROPOSITION 12. Fix a bandit instance µ and a ∈ Aε(µ) and let

Ia = [d(µa, µa ∧ (µ+ − ε)), d(µa, (max
b≠a

µb − ε)) ∨ µ
−
) .

1. For degenerate instances (µ, ε) such that µa > µ+ − ε and there exists b ≠ a
such that µb = µ+,

(w∗,a
ε (µ))b = 1(b=a) .

2. For other instances (µ, ε), let y∗ be the unique solution on Ia to the equation

(5.4) ∑
b≠a

d(µa, λb(xb(y)))

d(µb, λb(xb(y)) + ε)
= 1 .

Then the argmax in (5.1) is unique and is defined by (w∗,a
ε (µ))

b
=

xb(y∗)
∑kb=1 xb(y∗)

.

In practice, the optimal weights can be computed by solving (5.4) using binary
search. Each computation of the left-hand side requires to compute λb(xb(y)). For
each x, λb(x) is the minimizer of a twice differentiable convex function and can
be approximated numerically using for example Newton’s method. In the Gaussian
case, we may also use the closed form λb(x) =

µa+x(µb−ε)
1+x . Then the value of the

inverse function xb(y) can be obtained by solving gb(x) = y using binary search.

5.2. The ε-Tracking rule. The Tracking sampling rule was originally proposed
by [8] for best arm identification (ε = 0), for which the set of optimal weights
W0(µ) is reduced to a single vector, w∗(µ). Building on our ability to compute
those optimal weights, the Tracking rule is a mechanism that forces the empirical
proportions of arm selections to converge to this oracle allocation, by relying on
plug-in estimates w∗(µ̂(t)) and ensuring enough exploration.

We present below an extension of this rule, called ε-Tracking, that can be used
in any ε-best arm identification problem. The difference with Tracking is that ties
need to be broken whenW∗(µ̂(t)) contains multiple vectors. We do by relying on
a fixed ordering of the arms, introducing the notation

w∗
ε (µ) = w

∗,a∗
ε (µ) where a∗ = min{a ∈ {1, . . . ,K} ∶ w∗,a

ε (µ) ∈ Wε(µ)}.

At round t + 1, ε-Tracking first computes the set Ut = {a ∶ Na(t) <
√
t −K/2} of

arms that are currently under-sampled. Then it selects

At+1 ∈

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

argmin
a∈Ut

Na(t) if Ut ≠ ∅ (forced exploration),or otherwise

argmax
1≤a≤K

[t × (w∗
ε )a(µ̂(t)) −Na(t)] (tracking the plug-in estimate).
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Observe that this sampling rule does not depend on δ. Other Tracking rules exist,
for example tracking the cumulative proportions (C-Tracking), which forcesNa(t)
to be close to ∑ts=1w

∗
a(µ̂s(t)). Their relative merits is discussed in [5].

DEFINITION 13. An instance (µ, ε) is regular if the setW∗
ε (µ) is of cardinal-

ity one. For a regular instance,W∗
ε (µ) = {w∗

ε (µ)}.

Using the same arguments as those used by [8] for the Tracking rule, one can
show that for regular instances ε-Tracking is a converging strategy (in the sense of
Definition 8), which converges to the optimal proportions.

LEMMA 14. Let (µ, ε) be a regular instance of almost optimal best arm iden-
tification. Then, under the ε-Tracking sampling rule,

Pµ (∀a = 1, . . . ,K, lim
t→∞

Na(t)

t
= (w∗

ε (µ))a) = 1 .

5.3. The Parallel GLRT Stopping Rule for ε-Best Arm Identification. Introduc-
ing for all a, b the statistic

Ẑεa,b(t) = inf
λ∶λa<λb−ε

[Na(t)d(µ̂a(t), λa) +Nb(t)d(µ̂b(t), λb)]

and Âε(t) = {a ∶ µ̂a(t) ≥ maxj µ̂j(t) − ε}, the parallel GLRT stopping rule can be
written

(5.5) τδ = inf {t ∈ N ∶ max
a∈Âε(t)

min
b≠a

Ẑεa,b(t) > β(t, δ)}

and the associated recommendation rule is

(5.6) ı̂τδ ∈ argmax
a∈Âε(τδ)

min
b≠a

Ẑεa,b(τδ).

In the Gaussian case, a more explicit expression of Ẑεa,b(t) can be given for a
and b such that µ̂a(t) ≥ µ̂b(t) − ε (which holds when a ∈ Âε(t)):

Ẑεa,b(t) =
1

2σ2

Na(t)Nb(t)

Na(t) +Nb(t)
(∣µ̂a(t) − µ̂b(t)∣ + ε)

2
,

Beyond the Gaussian case, when µ̂a(t) ≥ µ̂b(t) − ε one can write

Ẑεa,b(t) = inf
λ∈]µ−,µ+−ε[

[Na(t)d(µ̂a(t), λ) +Nb(t)d(µ̂b(t), λ + ε)] ,
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and the solution of this minimization problem has to be numerically approximated.
Lemma 2 ensures that the parallel GLRT stopping rule defined in (5.5) based on

the threshold

β(t, δ) = 3K ln(1 + ln t) +KT (
ln(1/δ)

K
)

yields an (ε, δ)-PAC strategy when combined with any sampling rule. Using a more
refined analysis tailored to particular structure of the parallel GLRT test for ε-best
arm identification permit to guarantee the (ε, δ)-PAC property for a smaller thresh-
old. Note that the threshold β(t, δ) = log (

2(K−1)t
δ ) proposed by [8] for ε = 0 (and

that rely on different deviation inequalities) can also be used here, but the one given
in Lemma 15 can be smaller for large values of t.

LEMMA 15. For any sampling rule that parallel GLRT stopping rule with
threshold

(5.7) β(t, δ) = 6 ln(1 + ln t) + 2T (
ln((K − 1)/δ)

2
)

satisfies P (τδ < ∞, ı̂τδ ∉ Aε) ≤ δ.

PROOF.

Pµ (µâτ < µ1 − ε) ≤ ∑
b∉Aε

Pµ(âτ = b, τ < ∞)

≤ ∑
b∉Aε

Pµ (∃t ∈ N ∶ inf
µ′
b
−µ′1<−ε

[N1(t)d(µ̂1(t), µ
′
1) +Nb(t)d(µ̂b(t), µ

′
b)] > β(t, δ))

≤ ∑
b∉Aε

Pµ (∃t ∈ N ∶ N1(t)d(µ̂1(t), µ1) +Nb(t)d(µ̂b(t), µb) > β(t, δ))

≤ ∑
b∉Aε

δ

K − 1
= δ ,

where the last inequality relies on Theorem 14 in [11].

◻

5.4. The ε-Track-and-Stop Strategy. We define the ε-Track-and-Stop strategy
with parameter δ as the following strategy for ε-Best Arm Identification:

• its sampling rule is the ε-Tracking rule
• its stopping rule is the parallel GLRT with threshold β(t, δ) given in (5.7)
• its recommendation rule is the one associated to the parallel GLRT, that is
ı̂τδ defined in (5.6).
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This strategy, that we denote by ε-TaS(δ) has the following properties.

THEOREM 16. Fix δ ∈ (0,1]. Then ε-TaS(δ) is (ε, δ)-PAC. Moreover, for every
regular instance (µ, ε), if τδ denotes the stopping rule of ε-TaS(δ),

lim sup
δ→0

Eµ[τδ]
ln(1/δ)

≤ T ∗ε (µ) .

This result shows that the family of ε-TaS(δ) strategies for δ in (0,1), which is a
family of converging strategies by Lemma 14, is ε-PAC and is matching the lower
bound given in Theorem 9, for regular instances.

Beyond regular instances, the picture is intriguingly more complex, and was re-
cently studied in details by [5], who consider a general active testing framework
with overlapping hypotheses. They show that ε-Tracking can fail to converge to an
element inW∗

ε (µ) and propose a “sticky” variant fixing this problem. This alter-
native sampling rule turns out not to be a converging strategy anymore, as under
two different runs it may converge to a different element inW∗

ε (µ). However, the
authors manage to extend the lower bound of Theorem 9 to any strategy (using
a nice game-theoretic argument). Hence the quantity T ∗ε (µ) is indeed the right
characteristic number of samples for ε-best arm identification.

Sketch of proof. To understand why the parallel GLRT attains the lower bound of
Theorem 9 if coupled with a good sampling rule, we first rewrite its stopping rule

τδ = inf {t ∈ N∗
∶ Ẑ(t) ≥ β(t, δ)} ,

where we introduce

Ẑ(t) = max
a∈Âε(t)

min
b≠a

inf
λ∈(µ−,µ+−ε)

[Na(t)d(µ̂a(t), λ) +Nb(t)d(µ̂b(t), λ + ε)]

= t × ( max
a∈Âε(t)

min
b≠a

inf
λ∈(µ−,µ+−ε)

[
Na(t)

t
d(µ̂a(t), λ) +

Nb(t)

t
d(µ̂b(t), λ + ε)]) .

By Lemma 14, under a regular instance for which W∗
ε (µ) = {w∗

ε (µ)} the ε-
Tracking sampling rule satisfies that, for every arm a, µ̂a(t) converges almost
surely to µa and the sampling proportion Na(t)/t converges almost surely to the
target (w∗

ε (µ))a. Using the fact that µ ↦ w∗
ε (µ) is continuous in any regular

instance µ, for large values of t it holds that

Ẑ(t) ≃ t × (max
a∈Aε

min
b≠a

inf
λ∈(µ−,µ+−ε)

[(w∗
ε (µ))ad(µa, λ) + (w∗

ε (µ))bd(µb, λ + ε)])

= t × (T ∗ε (µ))
−1 .
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Therefore one obtains

(5.8) τδ ≃ inf {t ∈ N∗
∶ t ≥ T ∗ε (µ)β(t, δ)} .

If the threshold function were chosen to be β(t, δ) = ln(1/δ) one would immedi-
ately get the upper bound T ∗ε (µ) ln(1/δ). However, a slightly larger threshold is
needed to ensure the (ε, δ)-PAC property of ε-TaS(δ). Still, the threshold defined
in (5.7) satisfies β(t, δ) ≤ ln(1/δ) + ln(t) for large values of t hence Lemma 17
can be applied to show that the right hand side of (5.8) can be upper bounded by

T ∗ε (µ) ln(
1

δ
) + 2T ∗ε (µ) ln(T ∗ε (µ) ln(

1

δ
)) .

This argument can be made rigorous to prove that on every regular instance µ,

Pµ (lim
δ→0

τδ
ln(1/δ)

≤ T ∗ε (µ)) = 1 ,

in the spirit of the proof of Proposition 13 in [8]. The proof of Theorem 16 is a bit
more complex as it requires to control the expectation E[τδ]. It can be obtained by
following similar arguments as the proof of Theorem 14 in [8].

6. Numerical Experiments. We report results of some experiments compar-
ing ε-Track-and-Stop (TaS) to some state-of-the-art algorithms for ε-best arm iden-
tification for Bernoulli distributed arms. These competitors are KL-LUCB and KL-
Racing [10] and UGapE [7]. For instances having a unique optimal arm, we also
include 0-TaS in our study (designed for finding the unique best arm) in order to
assess the gain in sample complexity achieved when studying the ε relaxation.

We experiments with two regular instances,

µ1 = [0.2 0.4 0.5 0.55 0.7] ε1 = 0.1
µ2 = [0.4 0.5 0.6 0.7 0.75 0.8] ε2 = 0.15 ,

and one non-regular instance

µ3 = [0.2 0.3 0.45 0.55 0.6 0.6] ε3 = 0.1 .

In the experiments we set δ = 0.1 and perform N = 1000 independent repli-
cations in order to estimate the probability of error Pµi(µı̂τδ ∉ Aεi(µi)), and the
expected number of samples Eµi[τδ] for each algorithm and problem instance.

Table 1 report the estimated values of Pµi(ı̂τδ = k) for each arm k in for
different algorithms and the three problem instances. Errors (non-zero values of
Pµi(ı̂τδ = k) for k that is not ε-optimal) are indicated in bold in this table. We
see that the empirical error of all algorithms is (much) smaller than the prescribed
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µ1 0.2 0.4 0.5 0.55 0.7
ε-TaS 0 0 0.002 0.013 0.985

KL-LUCB 0 0 0 0.003 0.997
UGap-E 0 0 0 0.002 0.998

KL-Racing 0 0 0.001 0.002 0.997
0-TaS 0 0.001 0.001 0.001 0.997

µ2 0.4 0.5 0.6 0.7 0.75 0.8
ε-TaS 0 0 0 0.044 0.217 0.739

KL-LUCB 0 0 0 0.009 0.104 0.887
UGap-E 0 0 0 0.012 0.13 0.858

KL-Racing 0 0 0 0.009 0.138 0.853
0-TaS 0 0 0 0 0.004 0.996

µ3 0.2 0.3 0.45 0.55 0.6 0.6
ε-TaS 0 0 0.001 0.05 0.493 0.456

KL-LUCB 0 0 0 0.011 0.49 0.499
UGap-E 0 0 0 0.01 0.49 0.5

KL-Racing 0 0 0 0.006 0.479 0.515
TABLE 1

Empirical distribution of the recommendation âτδ based on N = 1000 repetitions.

T ∗(µ) ln(1/δ) ε-TaS KL-LUCB UGapE KL-Racing 0-TaS
µ1, ε1 = 0.1 97 171 322 324 372 433

(104) (137) (143) (159) (277)
µ2, ε2 = 0.15 108 162 345 344 402 2659

(83) (135) (141) (146) (1863)
µ3, ε3 = 0.1 531 501 1236 1199 1348 -

(261) (403) (414) (436) -

TABLE 2
Estimated values of Eµi[τδ] based on N = 1000 repetitions for different instances and algorithms

(standard deviation indicated in parenthesis).

(µ2)a 0.4 0.5 0.6 0.7 0.75 0.8
(w∗

ε2(µ2))a 0.024 0.036 0.060 0.136 0.275 0.469
Eµ2[Na(τδ)/τδ] 0.079 0.077 0.099 0.156 0.235 0.353

(µ3)a 0.2 0.3 0.45 0.55 0.6 0.6
(w∗,5

ε3 (µ3))a 0.008 0.0133 0.035 0.114 0.436 0.393
(w∗,4

ε3 (µ3))a 0.008 0.0133 0.035 0.114 0.393 0.436
Eµ3[Na(τδ)/τδ] 0.049 0.049 0.081 0.194 0.317 0.309

TABLE 3
Optimal proportions and empirical proportions achieved by ε-TaS (ε-optimal arms in bold)
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δ for all algorithms. In those experiments, the stopping rule of Track-and-Stop is
the parallel GLRT with threshold β(t, δ) = ln((1 + ln(t))/δ). This threshold is an
approximation of the theoretical threshold given in Lemma 15 that we recommend
to use in practice.

All the other algorithms rely on confidence bounds, and we implement them
with upper and lower confidence bounds based on the Kullback-Leibler divergence

ua(t) = max{q ∈ [0,1] ∶ Na(t)d(µ̂a(t), q) ≤ β(t, δ)} and

and `a(t) = min {q ∈ [0,1] ∶ Na(t)d(µ̂a(t), q) ≤ β(t, δ)} ,

for the same choice of β(t, δ) = ln((1+ ln(t))/δ). The stopping rule of KL-LUCB
or UGapE consists in waiting for the lower confidence bound of the candidate best
arm to overlap by at most ε with the upper-confidence bound of all other arms.
This confidence-based stopping rule seem to be far to conservative compared to
the parallel GLRT stopping rule, as the sample complexity results now reveal.

Sample complexity results are reported in Table 2. It can be seen that ε-TaS re-
quires about half the number of samples needed by other methods before stopping,
and is sometimes getting very close to the ideal sample complexity T ∗(µ) ln(1/δ).
In the first instance, in which there is a single ε-best arm, one can see that ε-TaS
slightly improves over 0-TaS due to the ε-relaxation. This improvement is much
more flagrant in the second instance, which contains 3 ε-best arms.

For the two instances with 3 ε-best arms µ2 and µ3, we now report in Table 3
the optimal weights inWε(µ). There is one such weight for µ2 and two for µ3 in
which the fraction allocation to the two best arms are exchanged. We also report in
this table the empirical fraction of selection of each arm by ε-TaS. For the regular
instance µ2, according to Lemma 14 the empirical proportions converge to the true
proportions. However, as can be seen from Table 3 the convergence is slow and
did not yet occur at the stopping time τδ (all sub-optimal arms are slightly over
sampled which may be a consequence of the forced exploration scheme). For the
non-regular instance µ3 in which there are two candidate optimal weights, ε-TaS
has no convergence guarantee towards one of these weights (and [5] propose a
fix). Just like for µ2, we see that all sub-optimal arms are slightly over-sampled
under µ3. On average over many simulations, the strategy spends about the same
time on the two optimal arms, which could indicate that “convergence” occurs
towards w∗,4

ε3 (µ3) or w∗,5
ε3 (µ3) half of the time. Even without proper convergence

guarantees, ε-TaS performs very well on µ3 as can be noted from Table 2.

7. Conclusion. We proposed a non-asymptotic way to analyze parallel Gen-
eralized Likelihood Ratio Tests, which can be used is various adaptive testing set-
tings, from sequential to active testing, even in the presence of overlapping hy-
potheses. We also presented a way to derive lower bounds providing the exact
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asymptotic sample complexity of some testing problems. Remarkably, for problem
instances that belong to multiple hypotheses, non-asymptotic lower bounds are still
out of reach, maybe because of the use of the low-level change of low formula. An
interesting open question is thus to know whether lower bounds can always be de-
rived using only the high-level form, in a way that provides non-asymptotic results.
So far, we were not able to achieve this goal, nor to show that it is impossible.

Natural extensions of our approach can be obtained for other sequential and
active testing problems. For example, in bandit models, our approach is likely to
apply also for thresholding bandits, or for best-arm identification with a structure
on the set of arms. Moreover, if a regularity constraint like µi+1 − µi ≤ L could
be handled, this would open the way to the study of the sample complexity of
optimizing a Lipschitz continuous function. In that context, one can hope to exhibit
a optimal density of sampling (corresponding to the optimal weights in the finite
case), depending on the function only, which an optimal optimization procedure
would need to track. All these developments are left for future investigations.
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edges the support of the Project IDEXLYON of the University of Lyon, in the
framework of the Programme Investissements d’Avenir (ANR-16-IDEX-0005).

References.
[1] Audibert, J.-Y., Bubeck, S., and Munos, R. (2010). Best Arm Identification in Multi-armed

Bandits. In Proceedings of the 23rd Conference on Learning Theory.
[2] Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-

armed bandit problems. Fondations and Trends in Machine Learning, 5(1):1–122.
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APPENDIX A: NON-ASYMPTOTIC SAMPLE COMPLEXITY ANALYSIS
FOR A GAUSSIAN TEST

We provide a general sample complexity analysis of the parallel GLRT test using
a generic threshold function β(t, δ). Introducing the function

f(t, δ) ∶=
∣µ∣ + ε

σ

√
t −

√
2β(t, δ) ,

we make the following assumptions:

1. β(t, δ) ≤ `(δ) + c ln(t) where `(δ) ≥ ln(1/δ). This permits to define T0(δ)
to be any constant such that

∀t ≥ T0(δ), f(t, δ) ≥ 0 .

2. For all δ ∈ (0,1],∀t ≥ T0(δ),

(A.1)
∂

∂t
(
√

2β(t, δ)) ≤
1

2

∂

∂t

√

t
(∣µ∣ + ε)2

σ2
=

∣µ∣ + ε

4σ2

1
√
t
.

A consequence of Assumption 2 is that t ↦ f(t, δ) is non-decreasing, which per-
mits to upper bound the expectation of Tδ as follows, introducing (Zt) a sequence
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of standard normal random variables.

E[Tδ] ≤
∞
∑
t=1

P(t
(∣µ̂t∣ + ε)

2

2σ2
≤ β(t, δ))

≤
∞
∑
t=1

P(
√
t(∣µ +

σZt
√
t
∣ + ε) ≤

√
2σ2β(t, δ))

≤
∞
∑
t=1

P (
√
t (∣µ∣ − ∣σZt/

√
t∣ + ε) ≤

√
2σ2β(t, δ))

≤
∞
∑
t=1

P(∣Zt∣ ≥
∣µ∣ + ε

σ

√
t −

√
2β(t, δ))

≤ ⌈T0(δ)⌉ +
∞
∑

t=⌈T0(δ)⌉+1

P (∣Zt∣ ≥ f(t, δ))dt

≤ ⌈T0(δ)⌉ + ∫
∞

T0(δ)
P (∣Zt∣ ≥ f(t, δ))dt .

Using assumption (A.1) one can write

f(t, δ) = f(T0(δ), δ) + ∫
t

T0(δ)
f ′(s, δ)ds

≥ 0 +
1

2
∫

t

T0(δ)

⎛

⎝

√

t
(∣µ∣ + ε)2

σ2

⎞

⎠

′

ds

= ∫

t

T0(δ)

∣µ∣ + ε

4σ

1
√
s
ds .

For t ∈ [T0(δ),2T0(δ)], observe that

f(t, δ) ≥ (t − T0(δ))
∣µ∣ + ε

4
√

2σ

1
√
T0(δ)

,

while for t > 2T0(δ),

f(t, δ) ≥ (t − T0(δ))
∣µ∣ + ε

4σ

1
√
t
≥
√
t − T0(δ)

∣µ∣ + ε

4
√

2σ
.
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Hence

E[Tδ] ≤ ⌈T0(δ)⌉ + ∫
2T0(δ)

T0(δ)
2Φ(f(t, δ))dt + ∫

∞

2T0(δ)
2Φ(f(t, δ))dt

≤ ⌈T0(δ)⌉ + 2∫
∞

T0(δ)
Φ

⎛

⎝
(t − T0(δ))

∣µ∣ + ε

4
√

2σ

1
√
T0(δ)

⎞

⎠
dt + 2∫

∞

2T0(δ)
Φ(

√
t − T0(δ)

∣µ∣ + ε

4
√

2σ
)dt

≤ ⌈T0(δ)⌉ +
8
√

2σ

∣µ∣ + ε

√
T0(δ)∫

∞

0
Φ (u)du +

64σ2

(∣µ∣ + ε)2 ∫

∞

T0(δ) (∣µ∣+ε)
2

8σ2

Φ (
√
u)du

≤ ⌈T0(δ)⌉ +
8
√

2σ

∣µ∣ + ε

√
T0(δ)

1
√

2π
+

64σ2

(∣µ∣ + ε)2 ∫

∞

T0(δ) (∣µ∣+ε)
2

8σ2

e−
u
2 du

≤ 1 + T0(δ) +
8
√

2σ

∣µ∣ + ε

√
T0(δ)

1
√

2π
+

64σ2

(∣µ∣ + ε)2
e
−T0(δ) (∣µ∣+ε)

2

8
√

2σ2 .

If the exploration function β satisfies

β(t, δ) ≤ `(δ) + c ln(t) ,

Lemma 17 below permits to prove that one can pick

T0(δ) =
2σ2

(∣µ∣ + ε)2
`(δ) +

4cσ2

(∣µ∣ + ε)2
ln(

2σ2

(∣µ∣ + ε)2
`(δ)) .

In that case,

E[Tδ] ≤
2σ2

(∣µ∣ + ε)2

⎡
⎢
⎢
⎢
⎢
⎣

`(δ) + 2c ln
⎛

⎝

2σ2

(∣µ∣ + ε)2
`(δ)

⎞

⎠

+ 8

¿
Á
ÁÀ`(δ) + 2c ln(

2σ2

(∣µ∣ + ε)2
`(δ)) + 32δ1/8

⎤
⎥
⎥
⎥
⎥
⎦

+ 1 .

Theorem 3.1 follows from observing that the threshold (3.3) for which the parallel
GLRT is δ-correct satisfies

β(t, δ) ≤ T (ln(1/δ)) + 3
1 + ln(t)

e
,

and thus Assumption 1 is satisfied with c = 3/e and `(δ) = T (ln(1/δ)) + 3/e. It
can be checked by calculus that Assumption 2 is also satisfied.

LEMMA 17. Fix α ≥ 0 and γ ≥ 1 + α. Then for all t > 0,

t ≥ γ + 2α ln(γ) ⇒ t ≥ γ + α ln(t) .
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PROOF. Let f(t) = t − γ − α ln(t). Then f ′(t) = 1 − α/t ≥ 0 for t ≥ α. Hence,
for all t ≥ t0 ∶= γ + 2α ln(γ) ≥ α,

f(t) ≥ f(t0) = γ + 2α ln(γ) − γ − α ln (γ + 2α ln(γ))

= α ln(γ) − α ln(1 +
2α

γ
ln(γ))

which has the same sign as

γ − 1 −
2α

γ
ln(γ) ≥ γ − 1 −

2αγ

eγ
≥ γ − 1 − α ≥ 0 .

◻

APPENDIX B: COMPUTING THE CHARACTERISTIC TIME

The following result is useful at several places to provide more explicit expres-
sions of the characteristic time T ∗ε (µ). It follows easily from monotonicity prop-
erties of λ↦ d(µa, λ) and λ↦ d(µb, λ).

PROPOSITION 18. Fix wa,wb ∈ R and µa, µb such that µa ≥ µb − ε.

inf
λa<λb−ε

[wad(µa, λa) +wbd(µb, λb)]

= inf
λ∈[µ−∨(µb−ε),µa∧(µ+−ε)]

[wad(µa, λ) +wbd(µb, λ + ε)]

= inf
λ∈(µ−,µ+−ε)

[wad(µa, λ) +wbd(µb, λ + ε)] .

This result follows from the monotonicity properties of the mapping λ↦ d(µa, λ)
and λ↦ d(µb, λ) that are illustrated in Figure 1.

First, we show that the minimizer in (λa, λb) of

g(λa, λb) = wad(µa, λa) +wbd(µb, λb)

under the constraints λa ≤ λb − ε is such that λa ∈ [µ− ∨ (µb − ε), µa ∧ (µ+ − ε)].
Indeed, if µ− < λa < µb − ε,

inf
λ∶λb>λa+ε

g(λa, λ) = g(λa, µb) ≥ g(µb − ε, µb) .

Similarly, if λa > µa (and λa < µ+ − ε),

inf
λ∶λ>λa+ε

g(λa, λb) = g(λa, λa + ε) ≥ g(µa, µa + ε) .



TESTING OVERLAPPING HYPOTHESES 35

0.0 0.2 0.4 0.6 0.8 1.0

λ

0.0

0.5

1.0

1.5

2.0

2.5

µb µa

d(µa, λ)

d(µb, λ)

FIGURE 1. Monotonicity properties of the Kullback-Leibler divergence in the Bernoulli case

Now for λa ∈ [µ− ∨(µb − ε), µa ∧(µ+ − ε)], λb satisfying the constraint λb ≥ λa + ε
is larger than µb. As d(µb, λ) is decreasing for λ ≥ µb, the value λb that minimizes
wbd(µb, λb) is the smallest admissible value, that is λb = λa + ε. This justifies the
first equality in Proposition 18.

The second equality follows from the same monotonicity properties: letting
g(λ) = wad(µa, λ) + wbd(µb, λ + ε), one can easily show that the minimum of
this function on (µ−, µ+ − ε) is attained on [µ− ∨ (µb − ε), µa ∧ (µ+ − ε)]. Indeed,
for all λ < µb − ε, g(λ) > g(µb − ε) (as the two mappings λ ↦ d(µa, λ) and
λ ↦ d(µb, λ + ε) are decreasing for λ < µb − ε) and for all λ > µa, g(λ) > g(µa)
(the two mappings are increasing for λ > µa).

B.1. Computing the Characteristic Time for Gaussian Distributions. In
the Gaussian case, there is no edge effect as µ− = −∞ and µ+ = +∞. Therefore one
can write

T ∗ε (µ)
−1

= sup
w∈ΣK

max
a∈Aε(µ)

min
b≠a

inf
λ∈R

[wad(µa, λ) +wbd(µb, λ + ε)]

= sup
w∈ΣK

max
a∈Aε(µ)

min
b≠a

inf
λ∈R

[wad(µa, λ − ε) +wbd(µb, λ)]

= max
a∈Aε(µ)

sup
w∈ΣK

min
b≠a

inf
λ∈R

[wad(µa + ε, λ) +wbd(µb, λ)]

= max
a∈Aε(µ)

T ∗0 (µa,ε)−1 ,

where the last but one equality uses that d(µa, λ − ε) = d(µa + ε, λ), which is a
special feature of the divergence function d(x, y) = (x − y)2/(2σ2). Recall that
µa,ε is a bandit instance identical to µ expect for arm a that is set to µa + ε.
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Now, exploiting further the explicit form of the Gaussian divergence, one can
write for any λ with a unique optimal arm a∗ = a∗(λ)

T ∗0 (λ)−1
= sup
w∈ΣK

inf
b≠a∗

wa∗wb
wa∗ +wb

∆b(λ)

2σ2
with ∆b(λ) = λ

a∗(λ)
− λb .

Moreover, if λ does not have a unique optimal arm, Tε(λ)−1 = 0. Letting 1 be an
optimal arm in µ, it can be observed that for all a such that µa > µ1−ε, the instance
µa,ε as a unique optimal arm and the vector of gaps (∆b(µ

a,ε))b≠a is dominated
by the vector of gaps (∆b(µ

1,ε))b≠1, in the sense that there exists a permutation
σ such that ∆b(µ

a,ε) ≤ ∆σ(b)(µ
1,ε) (intuitively, adding ε to µ1 creates the overall

largest gaps in the bandit instance compared to adding it elsewhere). This yields
Tε(µ

a,ε)−1 ≤ Tε(µ
1,ε)−1. For a such that µa = µ1−ε, Tε(µa,ε)−1 = 0 ≤ Tε(µ

1,ε)−1.
Putting things together, we proved that

T ∗ε (µ)
−1

= max
a∈Aε(µ)

T ∗0 (µa,ε)−1
= T ∗0 (µ1,ε

)
−1 ,

which easily yields the equality (4.1) stated in Section 4.2.

B.2. Computing the Characteristic Time for Two-Armed bandits: proof of
Proposition 10. The optimization problem defining T ∗ε (µ)

−1 can rewritten

T ∗ε (µ)
−1

= sup
w∈ΣK

max
a∈Aε(µ)

min
b≠a

inf
(λa,λb)∶λa≤λb−ε

[wad(µa, λa) +wbd(µb, λb)]

= sup
w∈ΣK

max
a∈Aε(µ)

min
b≠a

inf
λ∈(µ−,µ+−ε)

[wad(µa, λ) +wbd(µb, λ + ε)] ,(B.1)

where the second equality follows from Proposition 18.
The proof relies on the following key observation: if µa ≥ µb − ε,

(B.2) sup
α∈[0,1]

inf
λ∈(µ−,µ+−ε)

[αd(µa, λ) + (1 − α)d(µb, λ + ε)] = d(µa, µ
∗
ε (µa, µb)) .

Using the definition of T ∗ε (µ), Equality (B.1) and the notation b = 3 − a it holds
that

T ∗ε (µ)
−1

= sup
w∈Σ2

max
a∈Aε

inf
λ∈(µ−,µ+−ε)

[wad(µa, λ) +wbd(µb, λ + ε)]

= max
a∈Aε

sup
α∈[0,1]

inf
λ∈(µ−µ+−ε)

[αd(µa, λ) + (1 − α)d(µb, λ + ε)] .

The result follows by using Equation (B.2) for all a ∈ Aε (that is either equal to
{1},{2} or {1,2}).
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We now prove (B.2) as a double inequality. First,

sup
α∈[0,1]

inf
λ∈(µ−,µ+−ε)

[αd(µa, λ) + (1 − α)d(µb, λ + ε)]

≤ inf
λ∈(µ−,µ+−ε)

max [d(µa, λ), d(µb, λ + ε)] = d(µa, µ
∗
ε (µa, µb)) .

To prove the second inequality, we denote by

λ∗α(µa, µb) = argmin
λ∈(µ−,µ+−ε)

[αd(µa, λ) + (1 − α)d(µb, λ + ε)]

and prove that there exists α ∈ [0,1] such that λ∗α(µa, µb) = µ
∗
ε (µa, µb). We first

prove that the mapping α ↦ λ∗α(µa, µb) is continuous. This can be established
using that the minimizer of the convex function λ↦ αd(µa, λ) + (1−α)d(µb, λ+
ε) which is attained on the compact set [µb − ε, µa], is unique together with the
continuity of (α,λ) ↦ αd(µa, λ) + (1 − α)d(µb, λ + ε). As λ∗0(µa, µb) = µb −
ε, λ∗1(µa, µb) = µa and µ∗ε (µa, µb) ∈ (µb − ε, µa), from the intermediate values
theorem there exists α∗ ∈ [0,1] such that λ∗α∗(µa, µb) = µ

∗
ε (µa, µb) ∈ (µb − ε, µa).

With this value α∗ one can write

sup
α∈[0,1]

inf
λ∈(µ−,µ+−ε)

[αd(µa, λ) + (1 − α)d(µb, λ + ε)]

≥ α∗d(µa, λα∗(µa, µb)) + (1 − α∗)d(µb, λα∗(µa, µb) + ε)

= α∗d(µa, µ
∗
ε (µa, µb)) + (1 − α∗)d(µb, µ

∗
ε (µa, µb) + ε)

= d(µa, µ
∗
ε (µa, µb)) ,

which together with the first inequality proves (B.2).

APPENDIX C: COMPUTATION OF THE OPTIMAL WEIGHTS

In this section, we prove Proposition 12. Let a ∈ Aε(µ) be an ε-optimal such
that µa > µb − ε and recall the definition of the interval

I
ε
a,b = [µ− ∨ (µb − ε), µa ∧ (µ+ − ε)]

and of the optimal weights

w∗,a
ε (µ) = argmax

w∈ΣK
min
b≠a

inf
λ∈Iε

a,b

[wad(µa, λ) +wbd(µb, λ + ε)].

= argmax
w∈ΣK

min
b≠a

wagb (
wb
wa

) ,(C.1)

where

gb(x) = d(µa, λb(x)) + xd(µb, λb(x) + ε) and

λb(x) = argmin
λ∈Iε

a,b

[d(µa, λ) + xd(µb, λ + ε)] .
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A particular case. We first study the particular case in which µa ≥ µ+ − ε and
there exists b̃ ≠ a such that µb̃ = µ

+. Among common exponential families, this
may happen for Bernoulli distribution with µa = µb̃ = 1. In that case Iε

a,b̃
is reduced

to the singleton {µ+ − ε} and

λb̃(x) = d(µa, µ
+
− ε) + xd(µ+, µ+) = d(µa, µ

+
− ε)

is a constant mapping.
Observe that, for all b ≠ a, as λ↦ d(µa, λ) is decreasing on (µ−, µ+ − ε),

wad(µa, µ
+
− ε) ≤ inf

λ∈(µ−,µ+−ε)
[wad(µa, λ) +wbd(µb, λ + ε)]

= inf
λ∈Iε

a,b

[wad(µa, λ) +wbd(µb, λ + ε)] .

Therefore, minb≠awagb(wa/wb) = wagb̃(wa/wb̃) = wad(µa,1 − ε) and

w∗,a
ε (µ) = argmax

w∈ΣK
wad(µa, µ

+
− ε) = (1(b=a))b=1,...,K .

This proves the first statement of Proposition 12.

General case. In the general case, Iεa,b is a non-degenerated compact interval,
and one can define the following inverse mapping

xb ∶ [d(µa, µa ∧ (µ+ − ε)), d(µa, (µb − ε) ∨ µ
−
)) Ð→ R+

y ↦ g−1
b (y),

which is increasing. Let w∗ be an optimum in (C.1), and define x∗b = w∗
b /w

∗
a if

b ≠ a and x∗a = 1. Then

(x∗b )b≠a ∈ argmax
x∈(R+)K−1

minb≠a gb(xb)

1 +∑b≠a xb

Since all the gb are increasing, such an optimum equalizes the values of gb(x∗b ):
there exists y such that ∀b ≠ a, gb(x

∗
b ) = y, and y necessarily belongs to Ia =

[d(µa, µa ∧ (µ+ − ε)), d(µa, (maxb≠a µb − ε) ∨ µ
−)), the intersection of the image

of all functions gb.
By re-parameterizing the optimization problem by the common value y of gb(xb)
(which yields xb = xb(y) by definition of the inverse function xb), one obtains
x∗b = xb(y

∗) where
y∗ ∈ argmax

y∈Ia

y

1 +∑b≠a xb(y)
.
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We now justify that this maximum is unique, and provide a more explicit ex-
pression for it. The derivative of G ∶ Ia → R defined by G(y) = y

1+∑b≠a xb(y)
is

(C.2) G′
(y) =

1 +∑b≠a xb(y) − y∑b≠a x
′
b(y)

(1 +∑b≠a xb(y))
2

.

In order to compute x′b(y) and simplify the expression of this derivative, we rely
on the following properties of the minimizer λb(x).

PROPOSITION 19. The mapping x ↦ λb(x) is differentiable on R+ and such
that for all x > 0, λ′b(x) < 0. Moreover,

lim
x→0

λb(x) = µa ∧ (µ+ − ε) and lim
x→∞

λb(x) = (µb − ε) ∨ µ
− .

PROOF. For every x, the function hx(λ) ∶= d(µa, λ) + xd(µb, λ + ε) is strictly
convex: its derivative h′x(λ) is increasing and crosses 0 at λb(x). The differentia-
bility of λb follows from that of d by the implicit function theorem. Since for every
λ > µb − ε, d′2(µb, λ + ε) > 0, for every y > x

h′y(λb(x)) = d
′
2(µa, λb(x)) + yd

′
2(µb, λb(x) + ε)

= d′2(µa, λb(x)) + xd
′
2(µb, λb(x) + ε) + (y − x)d′2(µb, λb(x) + ε)

= 0 + (y − x)d′2(µb, λb(x) + ε) > 0 .

Thus, for every α > 0 small enough,

h′y(λb(x) − α) ≥ (y − x)d′2(µb, λb(x) + ε) − α sup
[λb(x)−α,λb(x)]

h′′y > 0 .

Since λb(y) is the zero of the increasing function h′y, this entails that

λb(y) ≤ λb(x) −
(y − x)d′2(µb, λb(x) + ε)

sup[λb(y),λb(x)] h
′′
y

,

which shows that λ′b(x) < 0. The limit when x goes to 0 follows from the continuity
of λb, and when x→∞ it appears that

argmin
λ∈Iε

a,b

[d(µa, λ) + xd(µb, λ + ε)] = argmin
λ∈Iε

a,b

[d(µa, λ)/x + d(µb, λ + ε)]

→ argmin
λ∈Iε

a,b

[d(µb, λ + ε)] = (µb − ε) ∨ µ
− .

◻
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As the minimum of the convex function λ↦ d(µa, λ)+d(µb, λ+ε) on (µ−, µ+−
ε), λb(x) cancels its derivative, hence

d′2(µa, λb(x)) + xd
′
2(µb, λb(x) + ε) = 0 ,

where d′2(x, y) ∶= ∂d(x, y)/∂y denotes the partial derivative of d(x, y) with re-
spect to the second variable. Using this equality, the derivative of gb simplifies to

g′b(x) = d(µb, λb(x) + ε) + λ
′
b(x)[d

′
2(µa, λb(x)) + xd

′
2(µb, λb(x) + ε)]

= d(µb, λb(x) + ε) .

Hence for every y ∈ [d(µa, µa ∧ (µ+ − ε)), d(µa, (µb − ε) ∨ µ
−)),

x′b(y) =
1

d(µb, λb(xb(y)) + ε)
.

Using this expression in the derivative (C.2) yields

G′
(y) ≥ 0⇔ 1 +∑

b≠a
xb(y) ≥ y∑

b≠a

1

d(µb, λb(xb(y)) + ε)

⇔ ∑
b≠a

d(µa, λb(xb(y)))

d(µb, λb(xb(y)) + ε)
≤ 1 ,

where we use that by definition, for all b,

y = gb(xb(y)) = d(µa, λb(xb(y))) + xb(y)d(µb, λb(xb(y)) + ε) .

The mapping

F (y) ∶= ∑
b≠a

d(µa, λb(xb(y)))

d(µb, λb(xb(y)) + ε)

is increasing as a composition of the two decreasing mappings y ↦ λb(xb(y))

(decreasing by Proposition 19) and λ ↦ ∑b≠a
d(µa,λ)
d(µb,λ+ε) . With b∗ ∈ argmax

b≠a
µa,

Proposition 19 permits to show that

lim
y→d(µa,µa∧(µ+−ε)))

λb(xb(y)) = µa ∧ (µ+ − ε) and

lim
y→d(µa,(µb∗−ε)∨µ−)

λb(xb(y)) = (µb∗ − ε) ∨ µ
− .

Thus F tends to 0 in d(µa, µa∧(µ+−ε)) and to +∞ in d(µa, (µb∗−ε)∨µ−). Hence,
there is a unique y∗ that satisfies F (y∗) = 1 and G′ is positive for y < y∗, negative
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for y > y∗ and satisfies G′(y∗) = 0. This proves that G as a unique maximum on
Ia, given by the unique solution y∗ to the equation

∑
b≠a

d(µa, λb(xb(y)))

d(µb, λb(xb(y)) + ε)
= 1 ,

which justifies the second statement of Proposition 12.
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