
HAL Id: hal-02123709
https://hal.science/hal-02123709

Submitted on 8 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unification modulo Lists with Reverse, Relation with
Certain Word Equations

Siva Anantharaman, Peter Hibbs, Paliath Narendran, Michaël Rusinowitch

To cite this version:
Siva Anantharaman, Peter Hibbs, Paliath Narendran, Michaël Rusinowitch. Unification modulo Lists
with Reverse, Relation with Certain Word Equations. CADE-27 - The 27th International Conference
on Automated Deduction, Association for Automated Reasoning (AAR), Aug 2019, Natal, Brazil.
pp.1–17, �10.1007/978-3-030-29436-6_1�. �hal-02123709�

https://hal.science/hal-02123709
https://hal.archives-ouvertes.fr


Unification modulo Lists with Reverse
Relation with Certain Word Equations

Siva Anantharaman1, Peter Hibbs2??, Paliath Narendran3, Michael Rusinowitch4
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Abstract. Decision procedures for various list theories have been investigated in
the literature with applications to automated verification. Here we show that the
unifiability problem for some list theories with a reverse operator is NP-complete.
We also give a unifiability algorithm for the case where the theories are extended
with a length operator on lists.

1 Introduction

Reasoning about data types such as lists and arrays is an important research area with
many applications, such as formal program verification [19, 13]. Early work on this [10]
focused on proving inductive properties. Important outcomes of this work include sat-
isfiability modulo theories (SMT), starting with the pioneering work of Nelson and
Oppen [21] and of Shostak [25]. (See [3] for a more recent syntactic, inference-rule
based approach to developing SMT algorithms for lists and arrays.)

In this paper, we investigate the unification problem modulo two simple equational
theories for lists. The constructors we shall use are the usual ‘nil’ and ‘cons’. We only
consider nil-terminated lists, or equivalently, only finite lists that are proper in the sense
of LISP. (All our lists can actually be visualized as flat-lists in the sense of LISP.) We
first examine lists with right cons (rcons) as the only operator (observer), and propose
an algorithm for the unification problem modulo this theory (Section 2). We then con-
sider the theory extended with a second operator reverse (named rev) and develop an
algorithm to solve the unification problem over rev (Section 3). In both cases, the algo-
rithm is based on a suitable reduction of the unification problem to solving equations on
finite words over a finite alphabet, where every equation of the problem has at most one
word variable on either side. Further reductions will then lead us to the case where the
equations will be ‘independent,’ and each equation will involve a single word variable;
they can be solved by the techniques presented in [8]. All of this can be done in NP with
respect to the lengths of the equations of the initial problem. In Section 4 we show how
the considerations of length of words can be built into the unification algorithms for the
theories rcons and reverse. These could be of use in formal techniques based on word
constraints (e.g., [2, 11, 17, 16]) or in constraint programming [7]. Several examples
are given in Section 5, to illustrate how the method we have developed in this paper
operates.
?? Currently at Google Inc.



Related work. Motivated by constraint logic programming [7], some existential theories
of list concatenation have been investigated in [26]. But these works do not consider
any list reverse operator. With a view to derive NP decision procedures we reduce our
unification problems, on lists with a reverse operator but without concatenation, to sys-
tems of word equations that are special case of quadratic word equations. It is stated
in [24] that solving systems of quadratic word equations is in NP if a simple expo-
nential bound can be obtained on their shortest solution; however, to our knowledge
this simple exponential bound has not yet been proved. In [11] it is shown that if
word equations can be converted to a solved form, then satisfiability of word equations
with length constraints is decidable. Satisfiability of quadratic regular-oriented word
equations with length constraints is shown decidable in [11]. Again these results do not
consider a reverse operator.

2 List theory with rcons

The reader is assumed to be familiar with the concepts and notation used in [4]. For
terminology and a more in-depth treatment of unification the reader is referred to [6].

The signature underlying our study below, will be 2-sorted with two disjoint types:
element and list. We assume there are finitely many constants (at least 2) of type el-
ement, while nil will be the unique constant of type list. The unification problems we
consider are instances of unification with constants in the terminology of [6].

For better comprehension, we shall use in general the lower-case letters x,y,z,u,v, . . .
for the variables to which are assigned terms of type element, and the upper-case letters
X ,Y,Z,U,V, . . . , for the variables to which are assigned terms of type list; possibly with
suffixes or indices, in both cases.

We introduce now the equational axioms of List theory with rcons:

rcons(nil,x) ≈ cons(x,nil)
rcons(cons(x,Y ),z) ≈ cons(x,rcons(Y,z))

where nil and cons are constructors; and cons, rcons are typed respectively as:

cons : element× list → list
rcons : list× element→ list

We refer to this equational theory as RCONS. Orienting these from left to right pro-
duces a convergent system:

(1) rcons(nil,x)→ cons(x,nil)
(2) rcons(cons(x,y),z)→ cons(x,rcons(y,z))

The following result helps simplifying equations in RCONS:

Lemma 1 Let s1, s2, t1, t2 be terms such that rcons(s1, t1)≈RCONS rcons(s2, t2).
Then s1 ≈RCONS s2 and t1 ≈RCONS t2.



2.1 Unifiability Complexity Analysis

Theorem 1. Unifiability modulo RCONS is NP-hard.

Proof. We will show this by reduction from 1-in-3-SAT. Given an instance of 1-in-3-
SAT, we will construct a unification problem in our theory such that a unifier exists
if and only if the instance of 1-in-3-SAT is satisfiable. The set of equations thus con-
structed will be referred to as S.

For each clause Ci =(ai∨bi∨ci) in the instance of 1-in-3-SAT, we add the following
equation into S:

Si : cons(0,cons(0,cons(1,Li)))≈? rcons(rcons(rcons(Li,xi),yi),zi)

where 0 and 1 are constants. Note that this equation has the following three solutions:

1 Li 7→ nil, xi 7→ 0, yi 7→ 0, zi 7→ 1
2 Li 7→ cons(0,nil), xi 7→ 0, yi 7→ 1, zi 7→ 0
3 Li 7→ cons(0,cons(0,nil)), xi 7→ 1, yi 7→ 0, zi 7→ 0

it also has the following solution:

Li 7→ cons(0,cons(0,cons(1,rcons(rcons(rcons(Mi,xi),yi),zi))))

but if we substitute this solution back into equation Si and apply a series of decomposi-
tions, this gives us the following equation:

cons(0,cons(0,cons(1,Mi)))≈? rcons(rcons(rcons(Mi,xi),yi),zi)

Therefore, clearly {Mi,xi,yi,zi} has the same solution set as {Li,xi,yi,zi} and must
ultimately terminate in a solution of type 1, 2, or 3. If it does not terminate, then the
unifier for Li must be infinitely large and is thus not a valid unifying assignment. We
associate the solutions of type 1, 2, and 3 with the truth assignments {ai = f alse, bi =
f alse, ci = true}, {ai = f alse, bi = true, ci = f alse}, and {ai = true, bi = f alse, ci =
f alse} respectively. Thus, if the constructed unification problem has a set of finite uni-
fiers for these variables, then the original 1-in-3-SAT problem has a solution (which is
given by the previous associations.) Similarly, if there is some satisfying assignment
of the 1-in-3-SAT, then a set of finite unifiers for the unification problem can be con-
structed from that assignment by running the previous associations backward. ut

To show that the problem is in NP, we first consider the set of variables of type
element in the problem, and guess equivalence classes in this set. We then select one
representative element from each equivalence class, and replace all instances of the
other variables in that class with the chosen representative; whenever possible, choose
a constant as representative. Clearly, no equivalence class may contain more than one
constant. For every representative x of type element that is not a constant, introduce a
fresh (symbolic) constant cx to act as the representative of its class. This guessing step is
clearly in NP. (If a unifier is found involving cx, then all instances of cx may be replaced
by x once again.)

Once this guessing step is done, all equations of the given unification problem will
be of the following form (after RCONS-normalization if necessary):

cons(a1, ...(cons(ak,rcons(rcons(...rcons(X ,bl)...,b1)))))
≈? cons(c1, ...(cons(cm,rcons(rcons(...rcons(Y,dn), ...,d1)))))



with X and Y not necessarily distinct. We will represent the sequences {ai}, {bi}, {ci},
{di} as finite words α , β , γ , δ respectively, over the constants. Such an equation can
then be expressed as a word equation as follows:

αXβ ≈? γY δ

Clearly, this equation does not have a solution unless either α is a prefix of γ or vice-
versus. Without loss of generality, let α be a prefix of γ and let α−1γ denote the suffix of
γ after α is removed. The equation may be simplified to the following: Xβ ≈? α−1γY δ .
Similarly, either β or δ is a suffix of the other; there are two cases:

β is a suffix of δ . Let δβ−1 denote the remaining prefix of δ .
The equation is then simplified to X ≈? α−1γY δβ−1

δ is a suffix of β . Let βδ−1 denote the remaining prefix of β .
The equation is thus simplified to Xβδ−1 ≈? α−1γY

A word equation αXβ ≈? γY δ , is said to be pruned, if all common (non-empty)
prefixes and suffixes from the two sides of the equation have been removed. If this
cannot be done, the equation is unsolvable. Every pruned 1-variable equation is either
of the form αX ≈? Xβ , or of the form X ≈? γ , and every pruned 2-variable equation is
either of the form X ≈? αY β , or of the form αX ≈? Y β , for words α, β ,γ . Equations
of the form X ≈? γ or of the form X ≈? αY β are said to be in solved form. Those of
the other types are said to be unsolved.

In the following subsection, we present a nondeterministic algorithm to solve any
set of such equations, on finite words over a finite alphabet, each equation involving at
most two variables, one on either side, appearing at most once. Such a set of equations
will be said to be a simple system, or a simple set, of word equations. The following
notions will be useful for presenting and analyzing our algorithm.

Definition 1. Let U be a simple set of word equations.

(i) The relation graph GU of U is the undirected graph G = (V , E ) where the set of
vertices V is the set of variables in U and the set of edges E contains (X , Y ) iff
there is an equation of the form αXβ ≈? γY δ in U.

(ii) For any two variables X ,Y in U, the variable Y is said to be dependent on X iff the
graph GU has an edge defined by an equation of the form Y ≈? αXβ , with α or β

(or both) non-empty; such a dependency is denoted as Y �U X, or as X ≺U Y .
(iii) The graph GU is said to present a dependency cycle from a variable Y in U, iff for

some variables X1,X2, . . .Xp in U, we have: Y �U X1 �U · · · �U Xp �U Y .

Given a dependency relation Y ≈? αXβ on the variables X ,Y in U , the variable Y
is said to be the ‘lhs’ (left-hand-side) of this dependency; the edge on GU between Y
and X is called a directed dependency edge from Y to X . (By definition, at least one of
α,β is supposed to be non-empty.) A dependency path from a node V to a node W is a
sequence of dependency edges on GU , from V to W .



2.2 NP-Solvability of Simple sets: Algorithm A

Algorithm A presented below is nondeterministic. We will show that, for any run
of Algorithm A (successful or not) on any given simple set U of word equations, the
total number of steps is polynomial wrt inputs. Moreover the equations generated in
a run will be shown to have polynomial size wrt inputs (Section 2.3). Consequently,
Algorithm A will produce, when successful on U , a system containing only a poly-
nomial number of dependencies and 1-variable equations, each of them of polynomial
size. By applying to this resulting system of 1-variable equations, (Lemma 3 followed
by) a polynomial solvability check from [8], we will deduce that solvability of simple
systems of word equations is in NP.

Under the runs of Algorithm A, dependencies chosen in Step 2 get marked; we
assume that, initially, none of the dependencies in the given set U is marked.

Step 1. (Pruning) For each equation in U of the form αXβ ≈? γY δ , remove all
common prefixes and suffixes from the two sides of that equation.
(i) If the two sides of some equation have non-common prefixes or suffixes, then
EXIT with failure.
(ii) If for some variable X in U , there is a dependency cycle at X in the graph GU ,
then EXIT with failure.

Step 2. Choose an unmarked dependency X ≈? αY β in U ; replace all instances of
X in all the other equations by αY β ; mark the chosen dependency. GOTO Step 1.

Step 3.a. Select an arbitrary equation such that the variables on the right and left
hand sides of the equation are distinct. If no such equation is available, EXIT.

Step 3.b. Let the selected equation be of the form αX ≈? Y β .
Guess a word u in Pre f ixes(α),
(i) If α = uv and β = vw, with v 6= λ , then replace the selected equation on X ,Y by
the two equations {X ≈? w, Y ≈? u} and propagate this substitution through GU ;
GOTO Step 1.
(ii) (Splitting) Otherwise, let Z be a fresh variable; and replace the selected equation
on X ,Y by the two solved forms: X ≈? Zβ and Y ≈? αZ; GOTO Step 1.

Proposition 1 Let U be a simple set of word equations. The number of steps needed
for Algorithm A to halt is bounded by 5n where n is the initial number of variables in
the given problem U.

Proof. Let d be the number of unsolved variables (i.e., that are not the lhs of an equa-
tion). Initially d ≤ n where n is the initial number of variables in U . Let d(k) be the
value of d when we enter for the kth time in Step 3. Since Step 3 generates one fresh
variable and two solved variables (that were not solved at previous steps: otherwise they
would have been replaced at Step 2) we have d(k+1) < d(k). Therefore Step 3 is ap-
plied at most n times. Hence the number of fresh variables generated (under Splitting)
is at most n, and the maximum number of variables at any stage is at most 2n. Therefore
Step 2 can be applied at most 2n times, and the same holds also for Step 1. ut

When a fresh variable ‘Z’ is introduced in Step 3.b.(ii) the graph GU will be dy-
namically extended by the addition of a fresh node labelled with the variable Z; we also



introduce two dependency edges from the nodes X and Y to the node Z, corresponding
respectively to the two solved forms X ≈? Zβ , and Y ≈? αZ. Similarly, each time an
equation derived under this step turns out (after Pruning) to be a solved form, a depen-
dency edge will be added on the extended graph, between the corresponding nodes.

We note that when Algorithm A halts (without failure) on a given problem, we
will be left with a set of equations each being either in solved form, or a simple 1-
variable equation. Note also that the variables that are lhs of solved forms have a unique
occurrence. Hence the resulting system is solvable iff each subsystem of 1-variable
equations, on a given variable, is solvable.

We prove in Lemma 3 below, that every subsystem of the resulting 1-variable equa-
tions, on a given variable, can be replaced by a single equation (that may not be nec-
essarily simple) on that variable, at polynomial cost; each such 1-variable equation can
be checked for solvability, by a known polynomial algorithm from [8]. Prior to that we
need to show that, when A halts without failure on any problem U , the length of any
resulting simple 1-variable equation is polynomially bounded, wrt the size of U . In the
following section we shall actually show more.

2.3 Lengths of Prefixes/Suffixes of equations are polynomially bounded

Note that in Steps 2 and 3.b of Algorithm A, when a dependency X = µ is selected,
then every other equation e containing at least one occurrence of X is replaced by e[X←
µ] and immediately simplified by Pruning (Step 1). After these operations the resulting
equation e′ replaces e.

Suppose now, that a derived equation e′ replaces an equation e under the propagation
of a dependency (and after Pruning); let α,β denote respectively the prefix and suffix of
the equation e, and α ′,β ′ those of e′. The replacing equation e′ is said to be in ‘excess-
size’ wrt the equation it replaces, iff |α ′|> |α|, or |β ′|> |β |, or both.

It is easy to see that the propagation of solved forms of the type Y ≈? X , or of the
type Y ≈? γ , cannot lead to replacing equations in excess-size. We can also check that,
in any run of A, a 1-variable equation is never replaced by an equation in excess-size;
this follows from a simple case analysis (cf. [1], Appendix A). It can also be checked
(cf. loc. cit), that the cases of Steps 2 and 3.b of A that can lead to replacing equations
possibly in excess-size, are as follows:

- a 2-variable equation in excess-size can get derived, when a dependency is applied
to the lhs (or the rhs) of a 2-variable equation.

- a 1-variable equation in excess-size can get derived, when a dependency is propa-
gated onto a 2-variable equation on the same two variables.

- a solved form equation in excess-size can get derived when a dependency is prop-
agated onto a solved form for the same variable, or on a 2-variable equation.

We already know that Algorithm A halts in polynomially many steps wrt the number
of variables n of the given problem, and that the number of equations in U when A
halts, is also polynomially bounded wrt n (each step generates at most one equation).
We show now, that in the equations derived under A, even when they are in excess-size,
the lengths of the prefixes/suffixes remain polynomially bounded wrt U .



Let us consider a 2-variable equation that gets derived under A: for instance, the
2-variable equation α1Y ≈? Wβ1, on which is propagated the dependency Y ≈? αXβ .
The 2-variable equation will be replaced (after Pruning) by a 2-variable equation of the
form α ′1X ≈? Wβ ′1, where: |α ′1 = α1 α| ≤ |α1|+ |α|, and |β ′1| ≤ |β1|. To the variable
X , brought in by the substitution in the equation derived α ′1X ≈? Wβ ′1, we attach the
singleton sequence [Y � X ], and refer to it as the ‘prefix-tag’ (or ‘ptag’) of X in this
equation. (Remember: by definition, either the prefix or the suffix of a dependency must
be non-empty.) This ptag is to be seen as a tag, to notify that the unique dependency
with Y as lhs, has served in the derivation of this fresh equation.

The replacing equation (in the example) will be in excess-size, iff α is non-empty.
In the prefix α1 α of X in the equation, α1 is contributed by the 2-variable equation
α1Y ≈? Wβ1, and α is contributed by the dependency Y ≈? αXβ that is applied to
that 2-variable equation. In other words, if the equation derived is in excess-size, the
ptag also carries the information that the excess in the length of the prefix, is due to a
portion contributed by the prefix of the dependency.

The ptag sequences grow incrementally, when a fresh equation derived gets replaced
in turn, under a subsequent step of A, by a new fresh equation. For instance, suppose on
the same example, that we have a second dependency of the form X ≈? θV δ . The fresh
(replacing) 2-variable equation derived would then be of the form: α ′1θ V ≈? Wβ ′1. The
ptag of V (the variable brought in) in this equation (not necessarily in excess-size) would
then be, by definition, the sequence [Y � X ,X �V ].

Suffix-tags (‘stags’) are defined analogously: on the same example above, suppose
for instance that we have a dependency W ≈? τ Z η . We would then derive an equation
of the form α ′′V ≈? Zβ ′′; the ptag of V in this equation would still be [Y � X ,X �V ],
while the stag of Z (the variable brought in by the substitution) would be [W � Z].

The ptags and stags can be defined, in formal terms, (recursively,) as follows:

Definition 2. (i) For any variable in an equation of the given problem U, the ptag
attached, wrt that equation, is set to be the empty sequence [ ].

(ii) Suppose that, under some step of the algorithm A:

- a dependency of the form Y ≈? αXβ is propagated onto an equation of the form
γ1Y ≈? Wδ1 (resp. of the form X ≈? γ1 Z δ1);

- that the variable Y in γ1Y ≈? Wδ1 (resp. Z in X ≈? γ1 Z δ1) has an attached
ptag of the form [c], where c is a (possibly empty) finite sequence of dependency
relations on the graph GU ;

- and that from the propagation of the dependency (after Pruning), we derive an
equation of the form γ ′1X ≈? W δ ′1 (resp. of the form Y ≈? γ ′1 Z δ ′1 ).

Then, the ptag attached to the variable X (resp. the variable Z), brought in by the
substitution in the replacing equation, is set to be [c,Y � X ]

(iii) stags are defined analogously.

Note that the ptags/stags define a dependency chain of the form Y � X �V �W . . . ,
on the variables of equations that get derived, under the Steps 2 and 3.b of A. .



Lemma 2 Assume that algorithm A halts without failure on a given problem U. Then,
no variable can appear more the once in the dependency chain defined by the ptag, or
stag, of any equation derived under the runs of A on U.

Proof. If we assume the contrary, then we get a dependency cycle on the (extended)
relation graph of U ; but then A would have exited with failure on U . ut

Corollary 1. Assume that algorithm A halts without failure, on a given problem U.
Then the length of the prefix of any resulting equation is polynomially bounded, wrt N s,
where N is the total number of equations in U, and s is the maximum size of the prefixes
or suffixes of the equations in U.

Proof. By the above Lemma, the number of dependency relations in any ptag or stag
is at most the number N1 of dependencies, initial or derived under the runs of A; and
we also know that N1 is polynomial on N. On the other hand, the maximal (or ‘worst’)
growth in the prefix size of any derived equation e, when A halts, would be when each
dependency relation in its ptag sequence corresponds to a derived equation in excess-
size. But, as observed above, this means, that the prefix α (or suffix β ) of a dependency
of the form Y ≈? αXβ whose propagation led to the derivation of the equation e, has
contributed to the excess-size in the prefix (or suffix) of the variable X in e. On the
other hand, we know that the length of the prefix (or suffix) of any any dependency in
the problem, initial or derived under Steps 2 and 3.b on a first run of A, is polynomial
on N s (cf. [1], Appendix A); an inductive argument, on the number of steps of A before
it halts, proves that the same bound holds also for all derivations under the subsequent
runs of A. That proves the corollary. ut

Note however, that when A halts without failure on a given problem, the resulting
1-variable equations may not be all independent. So, to be able to to apply [8] and
conclude, it remains now to replace every subsystem formed of the resulting simple 1-
variable equations on the same variable, by an equivalent single equation (which may
not be simple) on that variable, but of polynomial size w.r.t. the size of U . This is the
objective of our next lemma:

Lemma 3 Any system S of 1-variable equations, of size m, on a given variable X, is
equivalent to a single 1-variable equation of size p(m) for some fixed polynomial p
(where X can appear more than once on either side).

Proof. We first recall the well-known ‘trick’ (see [15]) to build such a single equation
from two equations: {

u = v
u′ = v′ ≡ uau′ubu′ = vav′vbv′

where a,b are two distinct constants. The resulting equation is of size 2|S|+ 4. Since
the initial system S is of size |S| ≥ 4, we deduce that the resulting single equation has
size ≤ 3|S|. To iterate the process on a system W of n equations (indexed from 1 to n)
we consider an integer k such that k− 1 ≤ logn < k; by adding to the system 2k− n
trivial equations X = X , we get an extended system V = (Vi) with equations indexed
from 1 to 2k. We shall show by induction, that V is equivalent to a single equation of
size ≤ 3k|V |.



Assume (as inductive hypothesis) that we have derived, for the two systems V ′ =
(Vi)

2k−1

1 and V ′′ = (Vi)
2k

2k−1+1 two equivalent single equations e′ and e′′ respectively, of
size ≤ 3k−1|V ′| and ≤ 3k−1|V ′′| respectively. Now if we combine e′ and e′′ we obtain
an equivalent single equation of size bounded by ≤ 3(3k−1|V ′|+3k−1|V ′′|) = 3k(|V ′|+
|V ′′|) = 3k(|V |). Getting back to system W , this means that W is equivalent to a single
equation of size ≤ 3k(|W |+ 2k− n). Since k ≤ logn+ 1 we have 3k(|W |+ 2k− n) ≤
3logn+1(|W |+ 2logn+1− n) ≤ 3nlog3(|W |+ 2nlog2− n). Since n is bounded by |W |, we
deduce the assertion of the lemma. ut

Theorem 2. Solvability of a simple set U of word equations is in NP.

Proof. Assume that Algorithm A halts without failure on the given problem U . We shall
then be left with a final system of solved form equations, along with several (simple)
1-variable equations. Moreover (see Lemma 2, and Corollary 1) the size of these 1-
variable equations is polynomially bounded wrt the size of U . Thanks to Lemma 3,
every subsystem of these 1-variable equations involving a given variable X is equivalent
to a single 1-variable equation in X (that may not be simple). Each of these resulting 1-
variable equations can then be solved, independently, in polynomial time (see [8]). ut

We can now conclude:

Theorem 3. Unifiability modulo RCONS is NP-complete.

3 List theory with rev

The axioms of this theory are

rcons(nil,x) ≈ cons(x,nil)
rcons(cons(x,Y ),z) ≈ cons(x,rcons(Y,z))

rev(nil) ≈ nil
rev(cons(x,Y )) ≈ rcons(rev(Y ),x)

where nil and cons are constructors. Orienting each of the above equations to the right
yields a convergent rewrite system (with 4 rules). But the term rewriting system we
shall consider here, for the theory rev, is the following system of six rewrite rules:

(1) rcons(nil,x)→ cons(x,nil)
(2) rcons(cons(x,Y ),z)→ cons(x,rcons(Y,z))
(3) rev(nil)→ nil
(4) rev(cons(x,Y ))→ rcons(rev(Y ),x)
(5) rev(rcons(X ,y))→ cons(y,rev(X))
(6) rev(rev(X))→ X

which is again convergent. We shall refer to this equational theory as REV.
Actually, the two added rules (5) and (6) are derivable as inductive consequences

of the first four rules. We shall prove this by induction on the length of the list-term X ,
where by ‘length’ of any ground list-term X , we shall mean the number of applications
of cons in X at the outermost level.
We first prove the claim for the added rule (5): rev(rcons(X ,y))→ cons(y,rev(X)).
Suppose we have some ground term X . If X = nil, then



rev(rcons(X ,y)) ≈ rev(rcons(nil,y))→+ cons(y,nil) and
cons(y,rev(X)) ≈ cons(y,rev(nil))→+ cons(y,nil)

If X = cons(a,Y ) for some term a and some term Y of length n, then

rev(rcons(X ,y)) ≈ rev(rcons(cons(a,Y ),y))→+ rcons(rev(rcons(Y,y)),a) and
cons(y,rev(X)) ≈ cons(y,rev(cons(a,Y )))→+ rcons(cons(y,rev(Y )),a)

By the inductive assumption rev(rcons(Y,y)) = cons(y,rev(Y )) and we are done.
We prove then the claim for the added rule (6): rev(rev(X))→ X .

Clearly rev(rev(nil))→+ nil. Let X = cons(a,Y ) for some term a and some term Y
of length n. Then rev(rev(X))≈ rev(rev(cons(a,Y )))→ rev(rcons(rev(Y ),a))
→ cons(a,rev(rev(Y )))→ cons(a,Y ) = X .

From this point on, without loss of generality, we will consider all terms to be in
normal form modulo this term rewrite system.

Lemma 4 Let S1, S2, t1, t2 be terms such that: rcons(S1, t1) =REV rcons(S2, t2).
Then S1 =REV S2 and t1 =REV t2.

Lemma 5 Let S1, S2 be terms such that: rev(S1) =REV rev(S2). Then S1 =REV S2.

Lemma 6 Unifiability modulo REV is NP-hard.

Proof. The NP-hardness proof for unifiability modulo RCONS (as given in Section 2)
remains valid for unifiability modulo REV as well. ut

Theorem 4. Unifiability modulo REV is in NP and is therefore NP-Complete.

Proof. After normalization with the rules of REV, we can assume that, for every equa-
tion in the given unification problem, its lhs as well as its rhs are of one of the following
two types:

cons(x1,cons(x2, . . .(rcons(rcons(. . .(rcons(X ,y1) . . .))),
or

cons(x1,cons(x2, . . .(rcons(rcons(. . .(rcons(rev(Y ),z1) . . .)))

If the lhs and the rhs of an equation are both of the first type, or both of the second
type, then we can associate with it a word equation of the form αXβ ≈? α ′Y β ′, as in
Section 2; we deal with all such equations first, exactly as we did in Section 2.

Once done with such equations, we consider equations (in the unification prob-
lem) whose lhs are of the first type, while their rhs are of the second type, or vice
versa. To each such equation we can associate either a word equation of the form
αXβ ≈? α ′Y Rβ ′, or a word equation of the form αXβ ≈? α ′XRβ ′, where Y R (resp.
XR) is a variable that stands for rev(Y ) (resp. for rev(X)); naturally, all these will be
duly pruned.

The (pruned) word equations of a ‘mixed’ type, of the form αX ≈? Y Rβ involving
two different variables X ,Y will be handled by the addition of an extra splitting infer-
ence step to the algorithm A, say between its Steps 2 and 3. In concrete terms, such
an equation will first get split by writing: X ≈? Zβ , and Y R ≈? αZ, where Z is a fresh
variable, then ‘solving it locally’ as X ≈? Zβ ′, Y ≈? ZRαR; this substitution will then



be propagated to all the other equations of the problem involving X or Y ; the result-
ing equations derived thereby, will be treated similarly, and by the procedure that we
present below for the equations involving a single variable.

We present now the part of the algorithm that deals with all the (pruned) word
equations of the form αXβ ≈? α ′XRβ ′, on a given variable X of the problem. This part
will be referred to as the palindrome discovery step of the algorithm. We will use the
word palindrome to refer to a variable X that has to satisfy X = XR. We maintain a
list of variables that are known to be palindromes in our algorithm, which is initially
empty. Clearly, if X is known to be a palindrome, then αXβ ≈? α ′XRβ ′ is the same as
αXβ ≈? α ′Xβ ′ and need not be considered at this step in the algorithm.

In this part, we have two cases to consider:

Case 1: X ≈? α ′′XRβ ′′. In this case, if |α ′′β ′′| = 0, then we conclude that X is a
palindrome. Else, if |α ′′β ′′| 6= 0, then there is clearly no solution and we terminate
with failure.
Case 2: α ′′X ≈? XRβ ′′. In this case, we check for the existence of words u,v such
that α ′′ = uRv, β ′′ = vu. If such a pair exists, we may conclude that X = u, and
this solution can be propagated through the dependency graph, as in the flat-list
case. Again, there cannot be more than min(|α|, |β |) of these solutions. If all such
pairs are checked without finding a solution, then we resort to splitting and write
X = Zβ ′′, XR = α ′′Z, where Z is fresh. This second equation gives us X = ZRα ′′R

and therefore Zβ ′′ = ZRα ′′R. If β ′′ 6= α ′′R, then there is no solution and we may
terminate with failure. Otherwise we may conclude that Z = ZR (and is therefore a
palindrome) and replace all occurrences of X with Zβ ′′.

Once we have finished this, we have to check with the equations of the form αX ≈? Xβ

involving the same variable X studied above. If X is not a palindrome, then we may use
(possibly after grouping several equations with Lemma 3) the algorithm given in [8] to
find a solution. If X is known to be a palindrome, then we still run the algorithm given
in [8] to check for a solution, but we first check that the prefixes and suffixes of each
equation (i.e., α,β ) meet certain criteria.

In the case where |α| or |β | ≥ |X |, the equation αX ≈? Xβ implies that X has to
be a prefix of α and a suffix of β . Therefore we may exhaustively check all palindrome
prefixes and suffixes of α and β respectively for validity.

Remains to consider the case where |α| and |β |< |X |; then, according to the follow-
ing Lemma 7, X is a solution if and only if there exist palindromes u, v, and a positive
integer k such that α = uv, β = vu and X = (uv)ku.

Lemma 7 Let α , β and A be non-empty words such that A is a palindrome and |α|=
|β | < |A|. Then αA = Aβ if and only if there exist palindromes u, v, and a positive
integer k such that α = uv, β = vu and A = (uv)ku.

Proof. If α = uv, β = vu and A = (uv)ku for palindromes u, v then

αA = uv(uv)ku = (uv)k+1u = (uv)kuvu = Aβ

Also, AR = ((uv)ku)R = uR(vRuR)k = u(vu)k = (uv)ku = A. So, A is indeed a
palindrome and satisfies αA = Aβ .



It is well-known that for any equation αA = Aβ where 0 < |α|= |β |< |A|, α and
β must be conjugates. That is, there must exist some pair of words u, v, such that α = uv
and β = vu. Furthermore, A must be (uv)ku for some k. If A is also a palindrome, then
α must be a prefix of A and β must be a suffix of A. Because A is a palindrome, αR is
therefore also a suffix of A. So, because |α|= |β |, we may conclude that αR = β . The
proof proceeds as follows:

αR = β implies (uv)R = vu implies vRuR = vu implies (vR = v and uR = u)

Thus u and v are palindromes, α = uv, β = vu, and A = (uv)ku for some k > 0. ut

4 List theories with length

In many cases of practical interest, list data types are ‘enriched’ with a length operator,
under which, e.g., the list cons(a,nil) will have length 1, the list cons(a,cons(b,nil))
will have length 2, etc. Solving equations on list terms in these cases will need to take
into account length constraints. For instance cons(a,X) = cons(a,Y ) cannot be solved if
length(X)= s(length(Y ) (where s stands for the successor function on natural integers).
We shall be assuming in this section that a length operator is defined on the lists we
consider, and that this operator is formally defined in terms of a (typed) convergent
rewrite system, presented below in Sections 4.1 and 4.2. Our objective will be to solve
equations on list terms subject to certain given length constraints. We will again reduce
the problem to solving some word equations. It seems appropriate here to quote [17]:
“The problem of solving a word equation with a length constraint (i.e., a constraint
relating the lengths of words in the word equation) has remained a long-standing open
problem”. However, thanks to the special form of the word equations we deal with, we
will be able to provide a decision algorithm in our case.

4.1 length with rcons

The Term Rewrite System: The (typed) rewrite rules for rcons with length are
given below, where the unary functions s and length are typed as s : nat→ nat, length :
list→ nat; the constant 0 is typed 0→ nat;. This rewrite system is convergent:

length(nil)→ 0
length(cons(x,Y ))→ s(length(Y ))

rcons(nil,x)→ cons(x,nil)
rcons(cons(x,Y ),z)→ cons(x,rcons(Y,z))
length(rcons(X ,y))→ s(length(X))

Variables of type nat will be denoted (in general) by the lower case letters i, j,k,m,n, . . .
The last rule above, length(rcons(x,y))→ s(length(x)), is derived easily from the pre-
ceding rules, by induction.



The Unification Algorithm We shall assume that all instances of s and 0 in the equa-
tions of the given problem have been removed by successive applications of the infer-
ence rules below, where E Q is a set of equations and ] is the disjoint union:

E Q ] {n ≈? 0}
E Q ∪ {n ≈? length(X ′), X ′ ≈? nil}

E Q ] {n ≈? s(m)}
E Q ∪ {n ≈? length(X ′), m ≈? length(Y ′), X ′ ≈? cons(x′,Y ′)}

Assume further that our given unification problem U has been transformed into
word equations of the form αXβ ≈? γY δ and that those equations have been reduced
to a set of mutually independent systems Si of equations on one variable Xi. Let us call
this set S=

⋃
Si where each Si is a set of equations on one variable. These independent

systems of equations Si may be solved, each producing a solution-set which forms a
regular language [8]. We shall use Li to refer to the solution-set to the system of equa-
tions Si. By Theorem 3 in [8] either Li = Fi or Li = Fi∪ (uivi)

+ui for some words ui,vi
and some finite set of words Fi.

In the version of this problem without length, the problem of unifiability is now
solved by simply checking each element of {Li} for (non-)emptiness. However, here
the solutions may still be related by length equations. We must find a set of words
{wi |wi ∈ Li}which satisfy length constraints of the form |wi|= |w j|+ci j for a constant,
non-negative integer ci j. Note that not all pairs i, j need have a constraint of this form.

For wi we either try elements of Fi or a word of type: (uivi)
niui. For the latter case

constraints of the type |wi| = |w j|+ ci j are equivalent to (|ui|+ |vi|)ni + |ui| = (|u j|+
|v j|)n j + |u j|+ ci j, where ni,n j are non-negative integer variables; so we can always
reduce our problem to solving a finite number of linear diophantine equations.

4.2 length with rcons and rev

The Term Rewrite System: We now add the rewrite rules of rev as defined in
Section 3. The resulting rewrite system (where 0,s, length are typed as in Section 4.1)
is convergent:

length(nil)→ 0
length(cons(x,y))→ s(length(y))

rcons(nil,x)→ cons(x,nil)
rcons(cons(x,y),z)→ cons(x,rcons(y,z))

rev(nil)→ nil
rev(cons(x,y))→ rcons(rev(y),x)

rev(rev(x))→ x
length(rcons(x,y))→ s(length(x))

length(rev(x))→ length(x)

The last rule, length(rev(x))→ length(x), is not originally in the theories of RCONS,
REV or LENGTH but can be easily derived by induction from the other rules.



The Unification Algorithm We again assume that all instances of s and 0 have been
removed from the equations of the given problem, by successive applications of the
same two inference rules presented above in 4.1, for rcons.

We thus assume once more that our unification problem has been transformed into
word equations of the form αXβ ≈? γY δ and that those equations have been reduced
to a set of mutually independent systems of equations on one variable (without reverse)
which may be required to be a palindrome. As before, let S = {Si} where each Si is a
set of equations on one variable which are respectively solved by the languages Li.

Now suppose that Si has variable X that is not required to be a palindrome, then
its solution-set is either Fi or Fi∪ (uivi)

+ui for some words ui,vi and some finite set of
words Fi according to Theorem 3 of [8]. If X is required to be a palindrome then its
solution-set contains either a finite set of palindromes Fi or Fi∪ (uivi)

+ui, where ui, vi,
are such that α = uivi, β = viui according to Lemma 7 and Theorem 3 of [8].

The algorithm now continues as in the previous length with rcons case: if two
solution-sets are related by length equations, satisfiability may be checked by solving a
finite set of linear diophantine equations.

5 Some illustrative examples

The following simple examples illustrate how our methods presented above will
operate (either directly, or indirectly) in concrete situations.

Example 1. Consider the system formed of two ‘list equations’:
cons(x,X) ≈? rev((cons(y,Y )), cons(a,X) ≈? rev(cons(a,rev(X)))

As described in Section 3, this system will first get transformed to a system of two word
equations: xX ≈? Y R y, aX ≈? X a.

We can apply the Splitting step of algorithm A to the first word equation, and derive:
X ≈? Z y, Y R ≈? xZ, where Z is fresh; the latter of these two will get transformed to the
solved form: Y ≈? ZRx. We have thus derived two solved forms: X ≈? Z y, Y ≈? ZRx.
Propagating for X from the first of these solved forms in the second word equation
would a priori give: aZ y ≈? Z ya, so Pruning would imply: y = a. And the variable Z
has to satisfy: aZ ≈? Z a; which is true for any of the assignments: Z = nil, Z = a, Z =
aa, Z = aaa, etc. If we choose Z = nil, and x = a, we get the following solution for
the given list equations: X = rcons(nil,a), Y = rcons(nil,a).

Example 2. Consider the single 1-variable word equation abX ≈? X ba.
For solving this 1-variable equation, (instead of appealing to the general result

of [8]) we could choose to see the equation as an instance of a 2-variable equation,
and use Splitting, as an ad hoc technique: i.e., replace the X on the lhs by Z ba, and the
X on the rhs by abZ.

The equation would then become: abZ ba ≈? abZ ba, on the single variable Z,
which admits any value of Z as a solution. Now, each of the assignments Z = a, Z =
aba, Z = ababa satisfies the equalities X = abZ = Z ba. So each of the assignments
X = aba,X = ababa,X = abababa, is a solution for the given problem.

Example 3. We consider now the set of word equations: abX ≈? Y ba, Y ≈? XR.



The equations are first replaced as: abX ≈? XR ba and the equality Y = XR. For
solving the former we use Splitting, and write: X ≈? Z ba and XR ≈? abZ. The fresh
variable Z has then to satisfy the condition that Z ba = ZR ba. That is to say: Z must
be a palindrome. Any palindrome (on the given alphabet) is actually a solution. We
thus deduce that the assignments X = Z ba, Y = abZ, where Z is any palindrome, is a
solution for the given set of equations.

Note: This also shows that unification modulo the theory rev is infinitary. (It is not
difficult to see that unification modulo the theory rcons is not finitary either.)

Example 4. We consider now the set of word equations, subject to a length constraint:
abX ≈? X ba, X ≈? ababY, length(Y ) = 1

This set would be transformed into a set of word equations:
{abX ≈? X ba, X ≈? ababY, Y ≈? yZ, Z ≈? nil}.

Propagation of the first dependency would give us the 1-variable equation
abababY ≈? ababY ba, which, once pruned, would become: abY ≈? Y ba. Propaga-
tion of the other dependencies would give us the equation aby ≈? yba; which admits as
solution y = a. Thus the given problem admits as solution: X = ababa, Y = a, Z = nil.

Suppose now, that the length constraint given is either length(Y )= 0, or length(Y )=
3, instead of the one given above. Then, by what we have seen in the previous two ex-
amples (we know the forms of the possible solutions for Y , after the propagation of the
first dependency; therefore) the problem thus modified would be unsatisfiable.

6 Conclusion and Future Work

We have shown that unifiability modulo the two theories RCONS, REV are both NP-
complete. For that we have identified a new class of word equations, simple sets, which
can be solved in NP. One possible direction for our future work would be to investigate
other problems for these list theories; for instance we can show that that the uniform
word problem for RCONS is undecidable (cf. [1], Appendix B). A second direction of
future work would be to identify a class of non-simple sets of word equations, which
can be solved by a suitable adaptation (and extension) of the algorithm A.

We also plan to investigate the interesting question of whether the results, such as
membership in NP, hold with the addition of linear constant restrictions (as in [5, 26]),
to the theory of REV. This could lead to a method to solve the positive fragment of REV.
Disunification modulo REV is another interesting problem to investigate, and that may
be reducible to the previous one.
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