Green’s Functions with Oblique Neumann Boundary Conditions in the Quadrant - Archive ouverte HAL
Article Dans Une Revue Journal of Theoretical Probability Année : 2020

Green’s Functions with Oblique Neumann Boundary Conditions in the Quadrant

Résumé

We study semi-martingale obliquely reflected Brownian motion with drift in the first quadrant of the plane in the transient case. Our main result determines a general explicit integral expression for the moment generating function of Green’s functions of this process. To that purpose we establish a new kernel functional equation connecting moment generating functions of Green’s functions inside the quadrant and on its edges. This is reminiscent of the recurrent case where a functional equation derives from the basic adjoint relationship which characterizes the stationary distribution. This equation leads us to a non-homogeneous Carleman boundary value problem. Its resolution provides a formula for the moment generating function in terms of contour integrals and a conformal mapping.
Fichier principal
Vignette du fichier
GreenFunctions_Franceschi.pdf (752.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02123641 , version 1 (08-05-2019)
hal-02123641 , version 2 (24-09-2020)

Identifiants

Citer

Sandro Franceschi. Green’s Functions with Oblique Neumann Boundary Conditions in the Quadrant. Journal of Theoretical Probability, 2020, ⟨10.1007/s10959-020-01043-8⟩. ⟨hal-02123641v2⟩
125 Consultations
677 Téléchargements

Altmetric

Partager

More