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Abstract

The simulation of exit times for diffusion processes is a challenging task
since it concerns many applications in different fields like mathematical fi-
nance, neuroscience, reliability... The usual procedure is to use discretiza-
tion schemes which unfortunately introduce some error in the target dis-
tribution. Our aim is to present a new algorithm which simulates exactly
the exit time for one-dimensional diffusions. This acceptance-rejection al-
gorithm requires to simulate exactly the exit time of the Brownian motion
on one side and the Brownian position at a given time, constrained not
to have exit before, on the other side. Crucial tools in this study are the
Girsanov transformation, the convergent series method for the simulation
of random variables and the classical rejection sampling. The efficiency
of the method is described through theoretical results and numerical ex-
amples.

Key words and phrases: Exit time, Brownian motion, diffusion processes,
Girsanov’s transformation, rejection sampling, exact simulation, randomized
algorithm, conditioned Brownian motion.
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Introduction
First exit time distributions for general stochastic processes are of prime im-
portance in many contexts. In mathematical finance, they permit to appreciate
the risk of default for a given path-dependent option; in neuroscience, they
characterize for instance the interspike time distribution... Since diffusion pro-
cesses (solutions of stochastic differential equations) form an important family
of stochastic processes, we aim to describe quite precisely their exit times. Un-
fortunately a simple and explicit expression of their distribution is not generally
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available which leads us to consider numerical approximations. Our task is to
point out an algorithm which permits to simulate the exit time of the diffusion.
This objective was already concerned by several studies introducing a discretiza-
tion scheme for the corresponding stochastic differential equation. Most of them
are based on improvements of the classical Euler scheme (see for instance [7],
[12], [11]) which essentially consist in reducing the error stem from the approx-
imation procedure. Let us also note another point of view which consists in
approximating the probability density function of the exit time and therefore to
approximate the solution of an integral equation [19].

Our approach is completely different since we emphasize an exact simulation
procedure: the distribution of the random outcome of the algorithm is identical
to the distribution of the first exit time of the diffusion process. For such
simulation methods based on an acceptance-rejection sampling, the challenge
is to describe and reduce if possible the time consumption of the simulation.
Beskos & Roberts, in their founding work [5], already introduced the exact
simulation for diffusion paths on some fixed time interval. Meanwhile several
modifications of this algorithm have been proposed [3, 4, 15]. The basic idea
of the rejection sampling is to sequentially observe independent random objects
generated according to a proposal distribution until a condition is satisfied. That
means that each object is accepted or rejected according to a certain probability
weight.

For diffusion processes on a fixed interval [0, T ], the proposed object pointed
out by Beskos & Roberts is the Brownian paths (easy to simulate) and the
rejection weight can be computed using the Girsanov transformation which es-
sentially requires the simulation of Brownian bridges. In a previous work [13],
the authors proposed a similar procedure in order to exactly simulate the first
passage time of a one-dimensional diffusion through a given threshold: the pro-
posal object is then the Brownian first passage time (inverse gaussian random
variable) and the rejection weight requires the simulation of Brownian bridges
conditioned to stay under a given threshold (Bessel processes). In order to
adapt such a procedure to exit times, it suffices to generate Brownian exit times
and to use the rejection weight suggested by the Girsanov transformation. Un-
fortunately this random weight requires the simulation of a Brownian bridge
conditioned to stay in a given interval, which corresponds to a SDE with sin-
gular coefficients: there is no way to exactly simulate such a stochastic paths.
Such an intuitive generalization leads therefore to a deadlock.

That’s why we aim to present a quite different rejection sampling based on
a similar concept (Girsanov’s transformation) and avoiding the simulation of
the whole conditioned Brownian paths. Let us consider the stochastic process
(Xt, t ≥ 0), solution of the SDE:

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = x ∈ (a, b),

where (Bt, t ≥ 0) stands for the standard one-dimensional Brownian motion.
We denote by τa,b the first time the diffusion exits from the interval [a, b]:

τa,b(X) := inf{t > 0 : Xt /∈ [a, b]}. (0.1)

The aim of the study is to propose an efficient algorithm in order to simulate
the first exit time τa,b(X). Under suitable conditions, the Lamperti transform
permits to reduce the area of investigation to the constant diffusion case: σ(x) ≡
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1 providing to change the interval [a, b]. That’s why we shall only focus our
attention on the diffusion process:

dXt = µ(Xt)dt+ dBt, X0 = 0, (0.2)

for t ≤ τa,b(X) with a < 0 < b. The exact algorithm presented here (Section 3)
is essentially based on the Girsanov transformation which permits to relate the
diffusion (0.2) to a standard one-dimensional Brownian motion. Let us roughly
describe the crucial tools needed to execute such an algorithm. The proposal
random variable is the Brownian exit time of the interval [a, b], denoted Tprop.
The weight used in order to accept or reject this proposal depends both on the
conditional distribution of the Brownian paths (Bt) given that τa,b(B) = Tprop

and on a Poisson process defined on the time axis R+ which is independent of
the Brownian motion (Bt) and whose events occur at time T1, . . . , Tn, . . . Then
conditionally to τa,b(B) = Tprop, only the values of BTk , for any Tk ≤ Tprop,
and BTprop

(dots in Figure 1) are involved in the specific conditions associated
to the acceptance of Tprop.

T1 T2 T3 T4

τa,b(B)

a

b

x

1

Figure 1: Decomposition of the Brownian paths

The exact simulation of τa,b(X) therefore requires to describe:

1. The conditional distribution of Bt for a given t > 0, given that the first
exit of the interval τa,b(B) is larger than t (Section 1). Using the classi-
cal convergent series method, we propose an algorithm denoted by CON-

DITIONAL_DISTR (x,[a,b],t) for the simulation of the constrained Brownian
motion Bt with initial condition x.

2. The distribution of the Brownian exit time of the interval [a, b] as the
Brownian trajectory starts in x. The corresponding algorithm, presented
in Section 2, is denoted BROWNIAN_EXIT_ASYMM (x,[a,b]) .

The two main algorithms (DET) and (GDET) presented in Section 3 use these
two previous algorithms as basic components. They permit the exact simula-
tion of diffusion exit times under weak conditions on the coefficient µ. Efficiency
results are pointed out (Theorem 3.2 and Proposition 3.4) and numerical illus-
trations complete the study in Section 3.4
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1 Brownian motion constrained to stay in an in-
terval [a, b]

Let us first consider the Brownian motion in the space interval [a, b]. We need
to describe the distribution of Bt for a given t > 0, given that the first exit of
the interval τa,b(B) is larger than t. We fix the starting position of the Brownian
motion B0 = y ∈ (a, b). Due to both the translation invariance and the scaling
property of the Brownian motion, we get

E[F (Bt, t ≤ τa,b(B))|B0 = y] = E
[
F
(b− a

2
Bt +

a+ b

2
, t ≤ τ−1,1(B)

)∣∣∣B0 = x
]
,

where x = 2y−a−b
b−a . So if we denote Bx the Brownian motion starting in x, we

deduce easily the following distribution identity(
τa,b(B

y), Byτa,b(By)

)
(d)
=
( (b− a)2

4
τ−1,1(Bx),

b− a
2

Bxτ−1,1(Bx) +
a+ b

2

)
. (1.1)

In other words, it suffices to study precisely the first Brownian exit problem
from the normalized interval [−1, 1] with the initial condition B0 = x ∈ [−1, 1].
For notational convenience, we denote by

τx = inf{t > 0 : Bxt /∈ I} with I = [−1, 1]. (1.2)

Let us first emphasize a classical result on the exit position: since (Bt, t ≥ 0)
is a martingale, the identity function s(x) = x corresponds to the scale function
of the Brownian motion. The optimal stopping theorem permits therefore to
describe the probability to exit from the interval on one particular side:

P(Bxτ = 1) =
s(−1)− s(x)

s(−1)− s(1)
=
x+ 1

2
, ∀x ∈ [−1, 1]. (1.3)

1.1 Distribution of Bt given τ > t

Let us now focus our attention to the distribution of the constrained Brownian
motion. We introduce the killed Brownian motion: as soon as the process hits
the boundary of the interval, it jumps to a cemetery point x∗ /∈ [−1, 1]. Indeed
let us denote by p(t, x, dy) := P(Bxt ∈ dy, τ > t) the transition probability
of the Brownian motion joint with τ > t. It can be written as p(t, x, y) =
q(t, x, y)P(τx > t) where q(t, x, y) is the transition probability of the Brownian
motion conditioned to stay in the interval [−1, 1] till time t. For any non negative
or bounded measurable function ψ, we get

E[ψ(Bxt ), τx > t] =

∫ 1

−1

ψ(y)p(t, x, y)dy, x ∈ [−1, 1].

It is well known (see, for instance [14] Section 4.11 or [8] Section 5.7) that
(t, y) 7→ p(t, x, y) satisfies an Initial-Boundary value problem associated to the
heat equation: 

∂p
∂t (t, x, y) = 1

2
∂2p
∂y2 (t, x, y)

p(t, x, y)→ δx(y) as t→ 0,

p(t, x, y) = 0 for y ∈ {−1, 1}, t > 0.

(1.4)
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Milstein and Tretyakov [18] recall that the solution of (1.4) takes two different
expressions. The first one is obtained by the method of images and the second
one is based on a spectral decomposition of the heat equation. We introduce
the standard gaussian pdf and cdf : φ(x) = 1√

2π
e−x

2/2 and Φ(x) =
∫ x
−∞ φ(y)dy.

Then

p(t, x, y) =
1√
t

+∞∑
n=−∞

{
φ((x− y − 4n)/

√
t)− φ((x+ y − 2− 4n)/

√
t)
}

(1.5)

which is a convenient formula for small values of t. For large times t, we would
prefer the second formula:

p(t, x, y) =
∑
n≥1

exp
(
− n2π2t

8

)
sin
(nπ

2
(x+ 1)

)
sin
(nπ

2
(y + 1)

)
. (1.6)

Let us fix (t, x): since we get an explicit expression of p(t, x, y), we can point
out exact simulation algorithms based on the acceptance/rejection method even
if p(t, x, y) is not a probability density function. Indeed it suffices to divide by
P(τx > t) in order to obtain such a density (cf. Section 2.1). The method
applied here is a particular acceptance/rejection method presented in [10] as
the convergent series method.

1.2 Inequalities related to the series expansion
Let us consider f a non negative function satisfying a series expansion:

f(y) =
∑
n≥0

fn(y).

We assume that I(f) :=
∫
R f(y) dy <∞. The convergent series method permits

to simulate a random variable with the corresponding probability distribution
function f/I(f). It requires two important features:

• the existence of both a pdf h and a constant κ > 0 such that

f(y) ≤ κh(y), y ∈ R. (1.7)

• the existence of a positive sequence (rn)n≥0 which converges toward 0 and
satisfies the following reminder upper-bound

|Rn(y)| ≤ rn, ∀y ∈ R where Rn(y) :=
∑

k≥n+1

fk(y). (1.8)

CONVERGENT SERIES METHOD

Initialization. Nc = 0.

Step 1. Generate a random variable Y with density h.

Step 2. Generate a random variable U uniformly distributed on [0, 1] and
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define W = κUh(Y ).

Step 3. Initialization. Nl = 0, S = 0, Test = 0.

Step 4. While (Test = 0) do:

• S ← S + fNl(Y )

• Test = 1{|S−W |>rNl}

• Nl ← Nl + 1 and Nc ← Nc + 1.

Step 5. If W ≤ S then X = Y otherwise go to Step 1.

Outcome: the random variable X with density f/I(f) and the global
number of terms of the series expansions Nc used.

In order to simulate q(t, x, y), i.e. the conditional distribution of Bt given
t < τ , we need to choose the density h, to point out some constant κ and the
sequence (rn)n≥0 for each explicit expression of f given by (1.5) and (1.6). Let
us just note that it is challenging to find the smallest constant κ as possible since
the number of iterations of Step 1 in order to get an outcome is geometrically
distributed with average κ/I(f).

Some comments on the series expansion (1.5)

We note that (1.5) is not an alternating series and can be rewritten as

p(t, x, y) = a0(t, x, y) +

∞∑
n=1

(an(t, x, y) + a−n(t, x, y)),

where an(t, x, y) = 1√
t
(φ((x− y − 4n)/

√
t)− φ((x+ y − 2− 4n)/

√
t)). We first

observe that

a−n(t, x, y) < 0 and an(t, x, y) > 0, ∀n ≥ 1, ∀(x, y) ∈ [−1, 1]2. (1.9)

Moreover both increments of the function φ are computed on intervals whose
length does not depend on the variables x and n:

(x+ y − 2− 4n)− (x− y − 4n) = (x+ y − 2 + 4n)− (x− y + 4n) = 2y − 2.

For n large enough, the increments are decreasing and therefore an(t, x, y) +
a−n(t, x, y) becomes negative. Indeed by considering the four terms:

(x+ y − 2− 4n) < (x− y − 4n) < 0 < (x+ y − 2 + 4n) < (x− y + 4n),

it is straightforward to see that the smallest one in absolute value is |x+y−2+
4n|. Since the change of convexity of the curve x 7→ φ(x) appears for x = 1, the
sum an(t, x, y) + a−n(t, x, y) is negative as soon as x+ y − 2 + 4n ≥

√
t, which

is satisfied in particular if n ≥ n0 with

n0 =
⌊√

t/4
⌋

+ 2. (1.10)

Since the terms of the series are negative for n ≥ n0, the series (1.5) is obviously
not an alternating series.
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Bound of the series reminder in (1.5)

Let us fix (t, x) ∈ R∗+ × [−1, 1]. We introduce the reminder of the series (1.5):

Rn(y) :=
∑

k≥n+1

(ak(t, x, y) + a−k(t, x, y)), n ≥ 0.

In order to apply the convergent series method, we need to bound this reminder.
Since φ is a decreasing function, we obtain the following bound:

1√
t

∑
k≥n+1

φ((α+ 4k)/
√
t) ≤ 1√

t

∫ ∞
n

φ((α+ 4z)/
√
t)dz,

as soon as α+ 4n ≥ 0. Moreover, by symmetry,

1√
t

∑
k≥n+1

φ((α− 4k)/
√
t) ≤ 1√

t

∫ ∞
n

φ((α− 4z)/
√
t)dz,

as soon as α− 4n ≤ 0. If α = x− y or α = x+ y − 2, then the inequalities are
satisfied for any n ≥ 1. Finally, for n ≥ 1, we get

|Rn(y)| ≤ 1√
t

∑
k≥n+1

φ((x− y − 4k)/
√
t) + φ((x+ y − 2 + 4k)/

√
t)

≤ 1√
t

∫ ∞
n

φ((x− y − 4z)/
√
t)dz +

1√
t

∫ ∞
n

φ((x+ y − 2 + 4z)/
√
t)dz.

Let us now observe that we can obtain a bound which is uniform with respect
to both the variable x and y.

|Rn(y)| ≤ 1

8

(
1− erf

(4n− 2√
2t

))
+

1

8

(
1− erf

(4n+ 4√
2t

))
≤ rn(t) :=

1

4

(
1− erf

(4n− 2√
2t

))
.

Let us note that this upper-bound is efficient for small values of t.

Proposal distribution for the rejection method using (1.5)

The aim is to use the acceptance/rejection algorithm in order to simulate a
random variable with the target density q(t, x, y) = p(t, x, y)/P(τx > t) where
p(t, x, y) is given by (1.5). That’s why we are looking for a proposal pdf h and
a constant κ(t, x) independent of y satisfying

p(t, x, y) ≤ κ(t, x)ht,x(y), ∀y ∈ [−1, 1],

as explained in (1.7). We suggest here the following choice of the proposal
distribution:

ht,x(y) =
1√
t
φ((x− y)/

√
t),

that means that we choose a gaussian distribution centered in x with variance
t: it corresponds to the distribution of Bt without any conditioning. The rejec-
tion method shall permit to go from this initial distribution to the conditional
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distribution with respect to the event {τ > t}. The algorithm is therefore par-
ticularly efficient if the considered event is satisfied with a large probability, this
is namely the case for small values of t.

Let us now focus our attention to the upper-bound

p(t, x, y)

ht,x(y)
≤ 1 +

∑
n≥1

a−n(t, x, y)

ht,x(y)
+
an(t, x, y)

ht,x(y)
.

Since the sum a−n(t, x, y) + an(t, x, y) is negative as soon as n ≥ n0 (see the
definition of n0 in (1.10)), we obtain

p(t, x, y)

ht,x(y)
≤ 1 +

n0∑
n=1

a−n(t, x, y)

ht,x(y)
+
an(t, x, y)

ht,x(y)
.

Moreover an(t, x, y) is negative, and therefore

p(t, x, y)

ht,x(y)
≤ 1 +

n0∑
n=1

φ((x− y − 4n)/
√
t)

φ((x− y)/
√
t)

. (1.11)

In fact all the ratios considered just above have the same nice property: they are
smaller than 1. It suffices to notice that (x−y) ∈]−2, 2[ implies φ((x−y)/

√
t) ≥

φ(α/
√
t) for any α /∈]− 2, 2[. Hence, for α = (x− y− 4n) with n ≥ 1, the ratios

in the r.h.s. of (1.11) are smaller than 1. Using the definition of n0 in (1.10),
(1.11) becomes

p(t, x, y)

ht,x(y)
≤ 1 + n0 = 3 +

⌊√
t/4
⌋

=: κ(t, x). (1.12)

Let us note that this bound is uniform with respect to the variable x (starting
value of the Brownian paths).

Some comments on the series expansion (1.6)

Since q(t, x, y) can be characterized by two different series expansions, it is
useful to understand which kind of acceptance/rejection algorithm each series
produces. Let us now focus on the second series (1.6):

p(t, x, y) =
∑
n≥1

βn(t)an(x, y), t > 0, (x, y) ∈ [−1, 1]2,

where βn(t) = e−n
2π2t/8 and an(x, y) = sin

(
nπ
2 (x+1)

)
sin
(
nπ
2 (y+1)

)
. Let us

first notice that, for fixed t > 0, (βn(t))n≥1 is a decreasing sequence of positive
real numbers which converges towards 0. Since an is defined as the product
of two sine functions, one idea to bound the reminder of the series is to use
the Abel transform and to prove that

∑N
n=1 an(x, y) is bounded as N tends to

infinity. It is quite easy to obtain some bound when x 6= y but for the particular
case x = y, the sequence of partial sums is increasing (sum of squares) and tends
to infinity. In conclusion, we cannot apply technics based on the Abel transform
for the series (1.6). We shall therefore present an other approach.
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Bound of the series reminder in (1.6)

Let us define the reminder of the series (1.6):

R̂n(y) :=
∑

k≥n+1

βk(t)ak(x, y), t > 0, (x, y) ∈ [−1, 1]2.

Let us find a bound of this reminder. Since |ak(x, y)| ≤ 1 for any k ∈ N and
any (x, y) ∈]− 1, 1[2, we obtain

|R̂n| ≤
∑

k≥n+1

βk(t), n ≥ 0.

Moreover, u 7→ e−u
2π2t/8 is a decreasing function on R+, and therefore we get

the following bound

|R̂n| ≤
∫ ∞
n

e−u
2π2t/8du =

√
2

πt

(
1− erf

(
nπ
√
t

2
√

2

))
:= r̂n(t), n ≥ 0. (1.13)

Note that this bound is sharp for large value of t.

Proposal distribution for the rejection method using (1.6)

The aim is to use an acceptance /rejection method in order to simulate a random
variable with the target density p(t, x, y)/P(τ > t) based on the equation (1.6),
as already done for (1.5). We are looking for a probability distribution function
h(y) and a constant κ(t, x) > 0 independent of y such that:

p(t, x, y) ≤ κ(t, x)h(y), ∀y ∈ [−1, 1],

as explained in (1.7). Our particular choice for the function h is

h(y) =
π

4
sin
(π

2
(y + 1)

)
, y ∈ [−1, 1],

which corresponds to the invariant probability measure of the Brownian motion
conditioned to stay in the interval [−1, 1]. Let us now determine a constant
κ(t, x). We have

p(t, x, y) =
4

π
h(y) sin

(π
2

(x+ 1)
)∑
n≥1

βn(t)sn(x)sn(y),

where

sn(x) =
sin(nπ2 (x+ 1))

sin(π2 (x+ 1))
. (1.14)

Using the formula an − bn = (a− b)(an−1 + an−2b+ . . .+ bn−1) applied to the
sine function, we observe that |sn(x)| ≤ n for all x ∈ [−1, 1]. Hence

p(t, x, y) ≤ 4

π
h(y) sin

(π
2

(x+ 1)
)∑
n≥1

n2βn(t), t > 0.
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Moreover the function x 7→ x2 e−x
2π2t/8 is decreasing as soon as x ≥ 2

√
2

π
√
t
, we

obtain the following upper bound:∑
n≥n0+1

n2βn(t) ≤
∫ ∞
n0

z2e−z
2π2t/8dz, (1.15)

where n0 =
⌊

2
√

2
π
√
t

⌋
+ 1.

The integration by parts formula and a change of variables lead to∫ ∞
n0

z2e−z
2π2t/8dz =

4n0

π2t
e−n

2
0π

2t/8 +
4

π2t

∫ ∞
n0

e−z
2π2t/8 dz

=
4

π2t
e−n

2
0π

2t/8

(
n0 +

∫ ∞
0

e−u
2π2t/8−n0uπ

2t/4 du

)
≤ 4

π2t
e−n

2
0π

2t/8
(
n0 +

√
2

πt

)
≤ C1(t) :=

8n0

π2t
e−n

2
0π

2t/8,

since
√

2
πt ≤

√
πn0/2 ≤ n0. We just note that

C1(t) =
8

π2t

(⌊
2
√

2

π
√
t

⌋
+ 1

)
e−n

2
0π

2t/8 ∼ 8

π2t
e−π

2t/8,

as t becomes large. Moreover

n0∑
n=1

n2βn(t) ≤ C2(t) := n3
0 β1(t) =

(⌊
2
√

2

π
√
t

⌋
+ 1

)3

e−π
2t/8. (1.16)

Finally we can choose the constant κ(t, x) := 4
π (C1(t) + C2(t)) sin(π2 (x + 1)).

Let us note that κ(t, x) ∼ 4
π sin(π2 (x+1))e−π

2t/8 as t tends to infinity. Since the
averaged number of iterations in the acceptance/rejection method corresponds
to κ(t, x)/Px(τ > t) and since both κ(t, x) and Px(τ > t) are of the same order
in the large time limit, the efficiency of the algorithm using (1.6) still remains
strong when the time variable enlarges. Indeed let us decompose the following
probability:

Px(τ > t) =
∑
n≥0

Rn(t, x)

where

Rn(t, x) :=
4

π

1

2n+ 1
exp

(
− (2n+ 1)2π2

8
t
)

sin
(

(2n+ 1)(x+ 1)
π

2

)
.

Using the definition (1.14), we obtain

Px(τ > t)

R0(t, x)
= 1 +

∑
n≥1

s2n+1(x)

2n+ 1
exp

(
− n(n+ 1)

2
π2t
)
.

The inequality |sn(x)| ≤ n for any x ∈ [−1, 1] and n ≥ 1 leads to

Px(τ > t)

R0(t, x)
≥ 1−

∑
n≥1

exp
(
− n(n+ 1)

2
π2t
)
.
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We observe that each term of the series converges in a monotonous way towards
0 as t tends to ∞ which implies that the ratio tends towards 1 by the Lebesgue
theorem. We therefore deduce that for any θ > 1, there exists tθ > 0 such
that the average number of iterations in the acceptance/rejection algorithm is
smaller than θ as soon as t ≥ tθ.

1.3 Algorithm and numerics
Let us now describe the algorithms used in the following in order to simu-
late q(t, x, dy), the conditional distribution of the Brownian motion at time t
given τ > t. We know that p(t, x, dy) admits two different series expansion
presented in (1.5) and (1.6). As introduced in Section 1.2, the classical con-
vergent series method requires both a proposal distribution h, satisfying the
inequality (1.7) that is p(t, x, y) ≤ κ(t, x)ht,x(y) (also necessary for classical ac-
ceptance/rejection methods), and a precise description of the series reminder
characterized by the sequence (rn(t))n and (r̂n(t))n, see (1.8).

We just recall the results obtained in the previous section:

Table 1: Series expansion (1.5)

Proposal distribution: ht,x(y) 1√
t
φ((x− y)/

√
t)

Constant: κ(t, x) 3 +
⌊√

t/4
⌋

Reminder bounds: rn(t) 1
4

(
1− erf

(
4n−2√

2t

))

Table 2: Series expansion (1.6)

ht,x(y) π
4 sin

(
π
2 (y + 1)

)
κ(t, x) 4

π sin
(
π
2 (x+ 1)

){
8n0

π2t e
−n2

0π
2t/8 + n3

0 e
−π2t/8

}
where n0 =

⌊
2
√

2
π
√
t

⌋
+ 1

r̂n(t)
√

2
πt

(
1− erf(nπ

√
t

2
√

2
)
)

It is straightforward that the convergent series method using (1.5) is conve-
nient for small values of t while (1.6) is rather convenient for large t. That’s
why we choose a threshold tc > 0 (threshold for the conditional distribution)
such that (1.5) is used for t ≤ tc and (1.6) otherwise. For practical purposes,
we fix tc = 0.7, this choice is motivated by the curves in Fig. 2 and will be held
for all numerical illustrations presented in this study. Applying the convergence
series algorithm either for small times or large times permits to obtain the sim-
ulations presented in Fig. 3. We observe that, even if x 6= 0, the condition t < τ

11



leads to a distribution which looks like symmetric as t becomes large and which
converges towards ht,x(y) the invariant measure of the diffusion conditioned to
stay in the interval [−1, 1].

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9
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Figure 2: Comparison between the constants κ(t, x) obtained either from the series
expansion (1.5) or (1.6) as time elapses ad for different initial values x ∈ [0, 1).

Figure 3: Conditional distribution (probability density function and normalized his-
togram) for x = 0.5, t = 0.2 (left) or t = 1 (right) and 100 000 simulations.

Efficiency of the algorithms
Let us just recall classical results concerning the efficiency of the convergent
series method introduced in Section 1.2. We introduce Nc the random number
of computations of terms fn used in order to simulate just one random variable
X. In fact Nc also corresponds to the number of random variable S generated
before the algorithm halts. We also define Nl the local counter depending on
Y which represents the number of terms fn used till the decision of acceptance

12



Figure 4: Average value of the algorithm counter Nc versus the time variable, for
the starting position x = 0.5 (solid line) and x = 0.2 (dashed line) with tc = 0.7 and
100 000 simulations.

or rejection of the variable Y can be taken. Theorem IV.5.2 in Devroye [10]
emphasizes the following upper-bound:

E[Nl|Y ] ≤ 2

κh(Y )

∞∑
n=0

Rn(Y ) (1.17)

where Rn(y) is the reminder of the series expansion defined in the general frame-
work (1.8). Let us also notice that the starting idea behind this bound is quite
classical: it suffices to use the classical expansion: E[Nl|Y ] ≤

∑∞
n=0 P(Nl >

n|Y ). In the study developed in the previous section, we obtained precise bounds
for the reminder terms only for n ≥ 1. So we shall modify the bound isolating
the term n = 0 - instead of (1.17) - which plays a crucial role for the description
of the algorithm efficiency:

E[Nl|Y ] ≤ 1 +
2

κh(Y )

∞∑
n=1

Rn(Y ).

Since the uniform bound |Rn(y)| ≤ rn holds for n ≥ 1, and since the average
number of iterations is κ/I(f), Wald’s inequality immediately implies that the
total number Nc satisfies for general positive integrable functions f :

E[Nc] ≤
κ

I(f)

∫ 1

−1

E[Nl|Y = y]h(y) dy ≤ 1

I(f)

(
κ+ 4

∞∑
n=1

rn

)
. (1.18)

Let us describe the consequences of this general statement to our particular
algorithms.

For small values of the time variable t.
For small t, it is useful to use the series expansion (1.5) and the associated
reminder bounds presented in Table 1.
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Proposition 1.1. For t > 0 and x ∈ [−1, 1], we observe the following bound
for the number of computations in the convergent series algorithm associated to
the expansion (1.5):

E[Nc]Px(τ > t) ≤ U1(t) := 3 + b
√
t/4c+

√
t

2
√

2π
ϑ2(0, e−8/t), (1.19)

where ϑ2 stands for the Jacobi theta function given by

ϑ2(z, q) := 2q1/4
∞∑
n=0

qn(n+1) cos((2n+ 1)z),

see [20] for instance. In particular the r.h.s of the previous inequality tends to
3 as t tends to 0.

Proof. The arguments are based on the upper-bound (1.18). Let us recall that

rn(t, x) =
1

4

(
1− erf

(4n− 2√
2t

))
, for n ≥ 1.

Using the bound

1− erf(x) ≤ 1

x
√
π
e−x

2

, (1.20)

we obtain

I(f)E[Nc] ≤ κ+

√
2t√
π

∞∑
n=1

e−
(4n−2)2

2t

4n− 2
≤ κ+

√
t√

2π
e−2/t

∞∑
n=1

e−
(4n−2)2−4

2t

≤ κ+

√
t√

2π
e−2/t

∞∑
n=0

(
e−

8
t

)n(n+1)

≤ κ+

√
t

2
√

2π
ϑ2(0, e−8/t).

In order to conclude, it suffices to replace κ by (1.12) and to notice that I(f) =
Px(τ > t).

For large values of the time variable t.
For large values of t it is more convenient to use the series expansion (1.6). A
similar approach to Proposition 1.1 easily leads to the upper bound:

Proposition 1.2. Let t ≥ 0 and x ∈ [−1, 1]. The number of computations Nc
for the convergent series algorithm associated to the expansion (1.6) satisfies

E[Nc]Px(τ > t) ≤ U2(t) := κ(t, x) +
8

π2t

(
ϑ3(0, e−π

2t/8)− 1
)
, (1.21)

where the constant κ(t, x) associated to (1.6) is described in Section 1.3 and ϑ3

stands for the Jacobi theta function given by

ϑ3(z, q) := 1 + 2

∞∑
n=1

qn
2

cos(2nz).

Since the proofs of Proposition 1.2 and Proposition 1.1 are similar, we let
the details of the proof to the reader.
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2 Distribution of the Brownian first exit time
In this section, we focus our attention to the distribution of the first Brownian
exit (τ,Bxτ ), where Bx stands for the one-dimensional Brownian motion starting
in x and τ the exit time of the interval [−1, 1] as defined in (1.2).

2.1 Distribution of the first exit time τ
Since p(t, x, y) satisfies two different series expansions (1.5) and (1.6), we can
also obtain two series for the cumulative distribution of the exit time τ :

Px(τ ≤ t) = 1− Px(τ > t) = 1−
∫ 1

−1

p(t, x, y)dy.

Therefore (1.5) becomes

Px(τ ≤ t) = 1−
+∞∑

n=−∞

{
− Φ((x− 1− 4n)/

√
t) + Φ((x+ 1− 4n)/

√
t)

− Φ((x+ 1− 2− 4n)/
√
t) + Φ((x− 1− 2− 4n)/

√
t)
}

= 1− 2

+∞∑
n=−∞

{
− Φ((x− 1− 4n)/

√
t) + Φ((x+ 1− 4n)/

√
t)
}

= 1 + 2

+∞∑
n=−∞

(−1)nΦ((x− (2n+ 1))/
√
t).

We deduce easily the expression of the pdf :

pτ (t) =

+∞∑
n=−∞

(−1)n+1 (x− (2n+ 1))

t3/2
φ((x− (2n+ 1))/

√
t). (2.1)

Of course the particular case x = 0 ensures simplifications: the symmetry of the
function φ implies φ(−(2n+ 1)/

√
t) = φ(−(2× (−n− 1) + 1)/

√
t) and therefore

pτ (t) =

+∞∑
n=0

(−1)nR1(2n+ 1, t) with R1(n, t) :=
2n

t3/2
φ
( n√

t

)
. (2.2)

Such an expression for the pdf of τ is of prime interest for simulation purposes.
Let us note that the reminder of the series is small for small values of t. Indeed
the sequence (R1(2n+ 1, t))n≥1 is a decreasing sequence under the assumption
t ≤ 9. For large values t, it is more convenient to consider (1.6) which leads to

Px(τ > t) =
4

π

∑
n≥0

1

2n+ 1
exp

(
− (2n+ 1)2π2

8
t
)

sin
(

(2n+ 1)(x+ 1)π/2
)
,

(see also (3.3) in Milstein and Tretyakov [18]). We deduce the expression

pτ (t) =
π

2

+∞∑
n=0

(2n+ 1) exp
(
− (2n+ 1)2π2

8
t
)

sin
(

(2n+ 1)(x+ 1)π/2
)
. (2.3)
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Here also the case x = 0 plays a crucial role due to its simple expression:

pτ (t) =

+∞∑
n=0

(−1)nR2(2n+ 1, t) with R2(n, t) :=
πn

2
exp

(
− n2π2

8
t
)
. (2.4)

This expression is of prime interest as soon as the variable t is large. Indeed the
series becomes alternating with a decreasing sequence (R2(2n+ 1))n≥1 as soon
as t ≥ 4/(9π2).

2.2 Algorithms and numerics
The aim is to describe an algorithm which permits to simulate both the Brown-
ian exit time τ and the exit position Bxτ of the interval [−1, 1]. In the previous
section, we have pointed out two different series (2.1) and (2.3) corresponding to
the pdf of τ . We could therefore apply the classical convergent series method for
simulation purposes. But here, we prefer to introduce another method based on
an iterative procedure, the advantage of our approach is to deal with alternative
series rather than general convergent series and therefore the reminder of the
series is easier to bound.

First of all, we shall focus our attention to the case x = 0. In this case
the interval is symmetric and the expression of the pdf of τ is simplified, see
(2.2) and (2.4). Moreover these series are alternating for suitable conditions
on the time variable t. So we can apply the alternating series method for the
simulation of the exit time τ , the exit location being just uniformly distributed
in {−1, 1}. The alternating series method is an acceptance/rejection method.
We need therefore a proposal distribution and an acceptance procedure. For the
proposal distribution, let us first fix te > 0 (threshold for the exit distribution).
Let us consider a standard gaussian random variableG. We define a new variable
Y as follows: if 1/G2 ≤ te then Y = 1/G2 otherwise Y = te − 8

π2 log(U) where
U is uniformly distributed on [0, 1] and independent of G. The density function
of Y which corresponds to the proposal distribution of the algorithm satisfies:

ĥ(t) =
1

t3/2
φ
( 1√

t

)
1{t≤te} +

π

4κ
e−

π2

8 t1{t>te}, (2.5)

where κ−1 = π erf(
√

1/(2te)) eπ
2te/8/2. Using (2.2) and (2.4), we deduce the

following link between the proposal distribution and the target distribution:

pτ (t) =

 2 ĥ(t)
(

1− R1(3,t)
R1(1,t) + R1(5,t)

R1(1,t) − . . .
)

for t ≤ te,

2κ ĥ(t)
(

1− R2(3,t)
R2(1,t) + R2(5,t)

R2(1,t) − . . .
)

for t > te.
(2.6)

Let us present now the acceptance/rejection method applied to this particular
situation which permits to simulate the exit time τ in the symmetric case.

BROWNIAN EXIT TIME FOR SYMM. INTERVALS (with parameter te)

BROWNIAN_EXIT_SYMMETRIC

First initialization: Ns = 0.
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Step 0: Second initialization. n = 0, Test = 0, L0 = 0, U0 = 1.

Step 1. Generate a random variable Y with pdf ĥ given by (2.5). If Y ≤ te
then set i = 1 and C = 1 else set i = 2 and C = κ.

Step 2. Generate a random variable V uniformly distributed on [0, 1].

Step 3. While (V < CUn) & (Test = 0) do:

• n← n+ 1 and Ns ← Ns + 1,

• Ln = Un−1 − Ri(4n−1,Y )
Ri(1,Y ) , Un = Ln + Ri(4n+1,Y )

Ri(1,Y )

• Test = 1{V≤CLn}

Step 4. If Test = 1 then Z = Y otherwise go to Step 0.

Outcome: the random variable Z with density pτ and the number of in-
crementations needed Ns.

The outcome variable distribution pτ corresponds to the target one as soon
as the sequences (Ri(2n + 1, t)/Ri(1, t))n≥1 appearing in (2.6) are decreasing.
This is an easy adaptation of the classical alternating series method (proof left
to the reader). Such a property leads to the condition:

4

9π2
≤ te ≤ 1. (2.7)

Let us just note that the probability of acceptance A = {Accept Y } in the
acceptance/rejection algorithm satisfies:

P(A) = P(A, Y ≤ te) + P(A, Y > te)

= P
(
V ≤ C pτ (Y )

2Cĥ(Y )
, Y ≤ te

)
+ P

(
V ≤ C pτ (Y )

2Cĥ(Y )
, Y > te

)
=

1

2
. (2.8)

We deduce that the number of random variables Y simulated in order to obtain
Z is geometrically distributed with average 2 and does not depend on the choice
of te. Nevertheless the parameter te has an influence on the efficiency of the
algorithm as illustrated in Fig. 5. This figure represents the averaged value of
the number of iterations of Step 3 needed by the algorithm in order to simulate
one r.v. with the p.d.f. pτ . This figure suggest to choose a parameter te of the
order of 1/2. For this parameter, we obtain:

κ−1 ≈ 2.4529458

Proposition 2.1. Let us note that Ns is the random number of iterations of
Step 3 used in the previous algorithm called BROWNIAN_EXIT_SYMMETRIC in
order to simulate just one random variable Z with density pτ . Then

E[Ns] ≤
√
te
2π

e−
1

2te +
3

2
erfc

( 1√
2te

)
+

4

π
e−

π2te
8 +

4

5π

e−25π
2te
8

1− e−5π2te
, (2.9)

where x 7→ erfc(x) is the complementary error function and te is the parameter
appearing in the algorithm and satisfying (2.7).
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Figure 5: The estimated average value of the counter Ns versus the barrier te with
100 000 simulations for the estimation (stars) and the upper-bound function given by
(2.9) (solid line).

In particular, for te = 1/2, the value of the upper bound is approximatively
1.027 which emphasizes that the inequality is quite sharp in comparison with
the estimated number of iterations in Figure 5 (solid line/stars). Moreover
the bound is reasonably small which permits to confirm the efficiency of the
proposed algorithm.

Proof. The arguments are quite similar to those developed in Theorem 5.1 in
Devroye [10] for the efficiency of the alternating series method. Let us denote by
N loop
s the number of steps of type 3 used in order to go from Step 1 to Step 4, in

other words: the number of increments n← n+ 1 during one loop. By Wald’s
equation and since the number of Steps 0 in this algorithm is geometrically
distributed with parameter 1/2 (see (2.8)), we get

E[Ns] = 2E[N loop
s ].

Let us first compute the probability of the following event {N loop
s > 0}. This

event corresponds to {V < C}. In the following, we shall just recall that the
constant C so as L1, U1... depend on Y , that’s why we use from now on the
notation C = CY . We obtain:

P(N loop
s > 0|Y ) = P(V < CY |Y ) = CY ,

since 0 ≤ CY ≤ 1 a.s. Let us now consider the event {N loop
s > 1}. This event

corresponds to {CL1 < V < CU1} and therefore

P(N loop
s > 1|Y ) = CY (U1 −max(L1, 0)) ≤ CY (U1 − L1).

The definition of L1 and U1 leads to

P(N loop
s > 1|Y ) ≤ CY ·

Ri(5, Y )

Ri(1, Y )
,
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where i = 1 for Y ≤ te and i = 2 otherwise. The same arguments lead to

P(N loop
s > k|Y ) = P(CY Lk < V < CY Uk|Y )

= CY (Uk − Lk) = CY ·
Ri(4k + 1, Y )

Ri(1, Y )
.

We deduce

E[N loop
s |Y ] =

∑
k≥0

P(N loop
s > k|Y ) = CY

∑
k≥0

Ri(4k + 1, Y )

Ri(1, Y )
.

Using the distribution of the random variable Y with density ĥ in (2.5), we
obtain

E[N loop
s ] =

∑
k≥0

∫ te

0

R1(4k + 1, y)

R1(1, y)
ĥ(y)dy + κ

∑
k≥0

∫ ∞
te

R2(4k + 1, y)

R2(1, y)
ĥ(y)dy

=
1

2

∑
k≥0

∫ te

0

R1(4k + 1, y) dy +
1

2

∑
k≥0

∫ ∞
te

R2(4k + 1, y) dy

=:
1

2
A1(te) +

1

2
A2(te). (2.10)

Combining the definition of R1 in (2.2) and the change of variable w = y
(4k+1)2

leads to∫ te

0

R1(4k + 1, y) dy =
2(4k + 1)√

2π

∫ te

0

e−
(4k+1)2

2y

y3/2
dy =

√
2

π

∫ te
(4k+1)2

0

e−
1

2w

w3/2
dw.

By Fubini’s theorem, we obtain

A1(te) =

√
2

π

∫ ∞
0

(∑
k≥0

1{w≤ te
(4k+1)2

}

)e− 1
2w

w3/2
dw

=

√
2

π

∫ ∞
0

⌊1

4

√
te
w

+
3

4

⌋e− 1
2w

w3/2
dw

≤
√
te
8π

∫ te

0

1√
w

e−
1

2w

w3/2
dw +

3√
8π

∫ te

0

e−
1

2w

w3/2
dw.

By the change of variable z = 1/w, we get√
te
8π

∫ te

0

1√
w

e−
1

2w

w3/2
dw =

√
te
8π

∫ ∞
1/te

e−z/2 dz =

√
te
2π

e−
1

2te . (2.11)

Moreover, using the change of variable w = r−2/2, we have

3√
8π

∫ te

0

e−
1

2w

w3/2
dw =

3√
π

∫ ∞
1/
√

2te

e−r
2

dr =
3

2
erfc

( 1√
2te

)
. (2.12)

Combining (2.11) and (2.12) we obtain the following upper-bound:

A1(te) ≤
√
te
2π

e−
1

2te +
3

2
erfc

( 1√
2te

)
. (2.13)
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Let us note that A1(te) becomes small as te becomes small. Let us now focus
our attention to A2 defined in (2.10).

A2(te) = 4
∑
k≥0

exp(−(4k + 1)2 π2te
8 )

(4k + 1)π

≤ 4

π
e−

π2te
8 +

4

5π
e−25π

2te
8

∑
k≥1

exp
(
− ((4k + 1)2 − 52)

π2te
8

)
≤ 4

π
e−

π2te
8 +

4

5π
e−25π

2te
8

∑
k≥0

e−5kπ2te

=
4

π
e−

π2te
8 +

4

5π

e−25π
2te
8

1− e−5π2te
. (2.14)

Combining (2.13) and (2.14) permits to obtain the announced bound.

Let us now come to the exit simulation in the asymmetric case. Since we
know how to handle with symmetric intervals, we shall use this first algorithm
BROWNIAN_EXIT_SYMMETRIC in an iteration procedure in order to solve the
asymmetric case. The main idea consists in the following :

• starting in x, we consider the largest interval centered in x of the type
[x− δ, x+ δ] and included in [−1, 1].

• We simulate the exit time of this interval denoted by T1 and the exit
position will be uniformly distributed in {x− δ, x+ δ}.

• If BxT1
∈ {−1, 1} then we set T = T1 and X = BxT1

else we start a new
simulation for the exit time and position of a Brownian motion B̃x starting
in x = BT1

from the largest symmetric interval centered in x and included
in [−1, 1]. This exit time is denoted by T2.

• As above, if B̃xT2
∈ {−1, 1} then we set X = B̃xT2

and T = T1 + T2 else we
start again with a new initial position in the interval [−1, 1].

BROWNIAN EXIT TIME FOR ASYMMETRIC INTERVALS [a, b]

BROWNIAN_EXIT_ASYMM

Input: x (initial value of the Brownian paths) and [a, b].

Step 0: Initialization.
X = x, T = 0, test = 0, L = a, U = b and Nas = 0.

While (test=0) do:

Step 1. Set D = min(X−L,U−X). Generate a random variable τ (and the
number of iterations Ns) using the algorithm BROWNIAN_EXIT_SYMMETRIC

and define S = D2τ . Set T ← T + S and Nas ← Nas +Ns.

Step 2. Generate a random variable V uniformly distributed on {−D,D}.
Set X ← X + V
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Figure 6: Histogram of the algorithm counter corresponding to the Brownian exit
from the interval [−1.5, 2] (left), p.d.f. and histograms of the exit time when exiting
at the top or at the bottom of this interval (right). A sample of 100 000 simulations
has been used for these figures and te = 0.5.

Step 3. If X ∈ {a, b} then test = 1 else set L← X − L and U ← U −X.

End While

Outcome: the exit time T and the exit location X of the interval [a, b] and
the total number of iterations Nas.

The number of iterations is stochastically upper-bounded by a geometrically
distribution with parameter 1/2 since we only deal with symmetric intervals.
Moreover this random number is independent of the generation cost of any
Brownian symmetric exit time and position. Let us finally note that (T,X) and
(τ,Bxτ ) are obviously identically distributed.

This algorithm can be illustrated by Fig. 6 for the standard Brownian exit
time of the asymmetric interval [−1.5, 2]. Of course the algorithm is not re-
stricted to the standard Brownian case, it takes into account any initial position
x belonging to the interval [a, b].

Corollary 2.2. The algorithm BROWNIAN_EXIT_ASYMM involves a random
number of calls to BROWNIAN_EXIT_SYMMETRIC whose efficiency is character-
ized by the number of iterations Ns. That’s why the total number of iterations
Nas is directly linked to the efficiency of BROWNIAN_EXIT_ASYMM. We have

E[Nas] ≤ 2E[Ns] ≤
√

2te
π
e−

1
2te + 3 erfc

( 1√
2te

)
+

8

π
e−

π2te
8 +

8

5π

e−25π
2te
8

1− e−5π2te
,

where x 7→ erfc(x) is the complementary error function and te is the parameter
appearing in BROWNIAN_EXIT_SYMMETRIC.

The statement is a direct consequence of the geometrical distributed upper-
bound of the number of calls to the symmetric case algorithm on one hand
(Wald’s identity therefore leads to E[Nas] ≤ 2E[Ns]) and of Proposition 2.1 on
the other hand.
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3 First exit time for one-dimensional diffusion
This section is concerned with the exit problem for a one-dimensional diffu-
sion. Let us first consider (Xt, t ≥ 0) the solution of the following stochastic
differential equation:

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = x ∈ [a, b], (3.1)

where (Bt, t ≥ 0) stands for the standard one-dimensional Brownian motion.
As already introduced in (0.1), we denote by τa,b(X) the first exit time of the
interval [a, b]. It suffices to assume the existence of a unique weak solution to
the equation, see for instance [16] for the corresponding conditions. In order to
simplify the presentation of all algorithms, we restrict our study to the constant
diffusion case: σ(x) ≡ 1. Using the classical Lamperti transform, we observe
that this restriction is not sharp at all. That is why, from now on, X stands for
the unique solution of

dXt = µ(Xt)dt+ dBt, t ≥ 0, X0 = x ∈ [a, b]. (3.2)

Let us note that, for the particular Brownian case: µ(x) ≡ 0, the first exit time
has already been presented in Section 2. The aim is to use the results developed
in the previous sections when considering the general diffusion case and the
important tool for such a strategy is Girsanov’s formula.

3.1 First Exit Time Algorithm (DET)
Let us now consider the exact simulation algorithm which permits to handle
with the diffusion exit problem.

DIFFUSION EXIT TIME (DET)
Parameter: γ0, input functions γ(·) and β(·)

First initialization: Ntot = 0.

Step 0: Initialization. Z = x, T = 0, test = 0. Here x stands for the
initial value of the diffusion.

While (test=0) do:

Step 1. Generate an expon. distr. random variable E with parameter
γ0 and U and V two random variables uniformly distributed on [0, 1], the
variables E, U and V being independent.

Step 2. Simulate the Brownian exit time and location

(S, Y,Nas) = BROWNIAN_EXIT_ASYMM (Z,[a,b])

and set Ntot ← Ntot +Nas.

Step 3. If S < E then

• if U ≤ β(Y ) then set test = 1, Z ← Y and T ← T + S
else go to Step 0 end if,
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else

• simulate the Brownian location at time E given that the exit time
is larger than E: (Yc,Nc) = CONDITIONAL_DISTR (Z,[a,b],E), and set
Ntot ← Ntot +Nc.

• if γ0V ≤ γ(Yc) then go to Step 0 else set Z ← Yc and T ← T + E.

end if.

End While

Outcome: the exit location Z, the exit time T of the interval [a, b] and the
efficiency index Ntot.

Let ρ ≥ 0 such that γ(x) := µ2(x)+µ′(x)
2 +ρ is a non negative function on the

interval [a, b]. We introduce γ+ = supx∈[a,b] γ(x) and define ∆ =
∫ b
a
µ(y)dy and

β(x) = min
(

1, e−∆
)

exp

∫ x

a

µ(y) dy. (3.3)

Let us just notice that 0 ≤ β(a) ≤ 1 and 0 ≤ β(b) ≤ 1.

Theorem 3.1. The outcome (Z, T ) of the Algorithm (DET) with parameter
γ0 = γ+ and input functions γ(·) and β(·) satisfies: for any non-negative mea-
surable functions f and g,

E[f(T )g(Z)] =
Ex
[
f(τa,b(X))e−ρ τa,b(X)g(Xτa,b(X))

]
Ex[e−ρ τa,b(X)]

, (3.4)

where X stands for the diffusion defined by (3.2). In particular, if µ′ + µ2 is
a non-negative function on the interval [a, b] (we set ρ = 0), then the outcome
(Z, T ) has the same distribution as (Xτa,b(X), τa,b(X)).

Proof. The proof of Theorem 3.1 is organized as follows: first we introduce a
stochastic theoretical model which is based on the one-dimensional Brownian
motion and on an independent Poisson process. This model is closely related
to the exact simulation introduced by Beskos and Roberts in [5]. Secondly we
consider in details the outcome of Algorithm (DET) and point out the strong
link between the outcome and random variables derived from the theoretical
model of the first step. Finally we shall use the Girsanov transformation in
order to conclude the proof.
Step 1. A theoretical model. Let us consider for any non-negative functions f
and g:

I(x, f, g) := Ex
[
f(τB)g(BτB )e−

∫ τB
0 γ(Bs) ds

]
, (3.5)

where τB means τa,b(B) for notational simplicity and B represents a Brownian
motion starting in x ∈ [a, b] and γ a non negative continuous function. Let
us now introduce a Poisson point process N on the space R+ × [0, γ+] with
Lebesgue intensity measure and independent of the Brownian paths. If we reor-
ganize the points of the Poisson process with respect to the abscissa, we obtain
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a sequence of points defined by (ξn, Un)n≥1 where (Un) are independent uni-
formly distributed r.v. on [0, γ+] and ξn :=

∑n
j=1 ej with (ej)j≥1 a sequence of

independent exponentially distributed r.v. with parameter γ+. Both sequences
(Un)n and (en)n are independent. Therefore, for any subset A of R+ × [0, γ+],
we get

N(A) =
∑
n≥1

1{(ξn,Un)∈A} and P(N(A) = 0) = e−λ(A),

where λ(·) is the Lebesgue measure. In particular, if A is defined as follows:

A :=
{

(t, y) ∈ [0, τB ]× [0, γ+] : y ≤ γ(Bt)
}

the independence of both the Brownian motion and the Poisson process implies

I(x, f, g) = Ex
[
f(τB)g(BτB )1{N(A)=0}

]
=
∑
n≥0

In(x, f, g)

where

In(x, f, g) :=


Ex
[
f(τB)g(BτB )1{N(A)=0}1{ξn<τB≤ξn+1}

]
, for n ≥ 1,

Ex
[
f(τB)g(BτB )1{N(A)=0}1{τB≤ξ1}

]
, n = 0.

Let us first observe that {τB ≤ ξ1} ⊂ {N(A) = 0} which implies that

I0(x, f, g) = Ex
[
f(τB)g(BτB )1{τB≤ξ1}

]
. (3.6)

For n ≥ 1, due to the Markov property of the Brownian path and since the
Poisson process is independent of the Brownian motion, we have

In(x, f, g) = Ex
[
f(τB)g(BτB )1{U1>γ(Bξ1 ),...,Un>γ(Bξn )}1{ξn<τB≤ξn+1}

]
= Ex

[
In−1(Bξ1 , f(ξ1 + ·), g)1{U1>γ(Bξ1 ), ξ1<τB}

]
. (3.7)

Since ξ1 is exponentially distributed and independent of the Brownian motion,
we get

In(x, f, g) =

∫ ∞
0

Ex[In−1(Bt, f(t+ ·), g)1{U1>γ(Bt),t<τB}]γ+e
−γ+t dt

=

∫ ∞
0

Ex[In−1(Bt, f(t+ ·), g)1{U1>γ(Bt)}|t < τB ]p(t, x)γ+e
−γ+t dt

=

∫
R+×[a,b]

In−1(y, f(t+ ·), g)Γ(y)p(t, x)M(x, dt, dy), (3.8)

where Γ(y) := P(U1 > γ(y)) and p(t, x) = Px(τB > t). The probability mea-
sureM(x, dt, dy) represents the distribution of the couple (T, Y ) where T is an
exponentially distributed r.v. with parameter γ+ and Y represents the distribu-
tion of BT the value of the Brownian motion at time T starting in x and given
{τB > T}, T and (Bt) being independent. The recurrence relations (3.7) and
(3.8) are satisfied for any n ≥ 1.

24



Step 2. Relation between Algorithm (DET) and the Brownian-Poisson theoreti-
cal model presented in Step 1.
If we denote by N0 the number of Step 0 used during the procedure which leads
to the computation of the outcome (Z, T ) and N1 the number of exponentially
distributed random variables generated (Step 1 ), then we obviously obtain

Ex[f(T )g(Z)1{N0=1, N1=1}] = E[f(S)g(Y )1{U≤β(Y ), S<E}]

= E[f(S)g(Y )β(Y )1{S<E}] = Ex
[
f(τB)g(BτB )β(BτB )1{τB≤ξ1}

]
= I0(x, f, g × β) (3.9)

using (3.7).
Let us now consider that N1 > 1. On the event {N0 = 1} ∩ {N1 > 1}, we
observe that

• the first exponentially distr. r.v. E satisfies E < S where S is given by
Step 2 and corresponds to the Brownian exit time of the interval [a, b].

• Yc given that E < S satisfies V > γ(Yc), where V is uniformly distributed
and Yc becomes the new starting point for the next use of the exit problem.

In other words, if we denote by In := Ex[f(T )g(Z)1{N0=1, N1=n+1}] then (3.6)
leads to I0(x, f, g) = I0(x, f, g · β). Moreover by (3.7)

I1(x, f, g) = Ex[f(T )g(Z)1{N0=1, N1=2}]

= Ex[I0(Yc, f(E + ·), g · β)1{V >γ(Yc),E<S}]

= Ex[I0(Bξ1 , f(ξ1 + ·), g × β)1{U1>γ(Bξ1 ),ξ1<τB}] = I1(x, f, g × β),

and using the same arguments, we prove easily that In satisfies the recurrence
relations (3.7) and (3.8). We deduce that

In(x, f, g) = In(x, f, g × β), ∀n ≥ 0.

Therefore

I(x, f, g × β) =
∑
n≥0

In(x, f, g × β) =
∑
n≥0

In(x, f, g) = Ex[f(T )g(Z)1{N0=1}].

(3.10)
Since the Algorithm (DET) is an acceptance/rejection algorithm, (3.10) leads
to

Ex[f(T )g(Z)] =
Ex[f(T )g(Z)1{N0=1}]

P(N0 = 1)
=
I(x, f, g × β)

I(x, 1, β)
.

By (3.5)

Ex[f(T )g(Z)] =
Ex
[
f(τB)g(BτB )β(BτB )e−

∫ τB
0 γ(Bs) ds

]
Ex
[
β(BτB )e−

∫ τB
0 γ(Bs) ds

] . (3.11)

Step 3. The Girsanov transformation. In this last part of the proof, the aim
is to link the distribution of (T,Z) described in (3.11) to the distribution of
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(Xτa,b(X), τa,b(X)) whereX is the diffusion defined by (3.2). Using the definition
of the function β and Itô’s formula, we obtain that

Mt :=
β(Bt)

β(B0)
eρ t−

∫ t
0
γ(Bs) ds = exp

{∫ Bt

B0

µ(y) dy − 1

2

∫ t

0

µ′(Bs) + µ2(Bs) ds
}

= exp
{∫ t

0

µ(Bs) dBs −
1

2

∫ t

0

µ2(Bs) ds
}
, (3.12)

is an exponential martingale. Moreover the stopped martingale (Mt∧τB )t≥0 is
bounded. The stopping theorem therefore implies Ex[MτB ] = 1 which means
that

Ex
[
β(BτB )eρ τB−

∫ τB
0 γ(Bs) ds

]
= β(x).

The expression (3.11) and Girsanov’s transformation permits to obtain

Ex[f(T )g(Z)] =
Ex
[
f(τB)g(BτB )MτBe

−ρτB
]

Ex
[
MτBe

−ρτB
]

=
Ex
[
f(τa,b(X))e−ρ τa,b(X)g(Xτa,b(X))

]
Ex[e−ρ τa,b(X)]

,

where X stands for the diffusion defined by (3.2). In particular, if ρ = 0 that is
µ2 + µ′ is a non-negative function, we get

Ex[f(T )g(Z)] = Ex
[
f(τa,b(X))g(Xτa,b(X))

]
.

3.2 Efficiency of the algorithm
Let us now focus our attention to the analysis of Algorithm (DET). Of course
since the algorithm permits to simulate exactly the random variables desired,
there is no error terms to deal with, it suffices therefore to describe the time
needed by the algorithm. We introduced in Algorithm (DET) the random vari-
able Ntot which permits to have a precise idea of the efficiency. Let us just add
the information concerning the starting position of the Brownian motion B0 = x
with the following notation Ntot = N x

tot. Let us also note that the efficiency of
Algorithm (DET) in particular depends on two different parameters: te which
appears in the use of the algorithm BROWNIAN_EXIT_SYM and therefore also in
BROWNIAN_EXIT_ASYMM and tc ∈ R+ which appears in CONDITIONAL_DISTR

(if t ≤ tc we consider the algorithm associated to the small values of t and for
t > tc the algorithm associated to the large values).

Using informations concerning the cost of each part of the algorithm, namely
Proposition 1.1, Proposition 1.2 and Proposition 2.1, we obtain a bound for
E[N x

tot].

Theorem 3.2. The random variable N x
tot which is one of the outcomes of Al-

gorithm (DET) and represents its cost satisfies the following bound: there exists
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a constant C(tc, te) > 0 independent of both the interval [a, b] and the starting
position x, such that

E[N x
tot] ≤

C(tc, te)

Ex[e−ρτa,b(X)]E(a+b)/2[e−γ+τa,b(B)]
, ∀x ∈]a, b[.

We recall that τa,b stands for the first exit time of the interval [a, b]. The pa-
rameters ρ and γ+ are defined in the introduction of Theorem 3.1.

Each term appearing in the denominator, that is Ex[e−ρτa,b(X)] on one hand
and E(a+b)/2[e−γ+τa,b(B)] on the other hand, tends to 0 when the interval size
b− a tends to infinity. It is therefore important to choose ρ and γ+ as small as
possible in order to obtain a sharper bound. The exit problem of the Brownian
motion can be precisely described using classical results on Laplace transforms
and differential equations, see for instance [9] or [6]. We obtain

E(a+b)/2[e−γ+τa,b(B)] =
{

cosh
(√γ+

2
(b− a)

)}−1

.

Let us also note that Ex[e−ρτa,b(X)] can be linked to the two linearly independent
solutions of the differential equation (see, for instance [9])

1

2

d2u

dx2
+ µ(x)

du

dx
− λu = 0,

which permits to describe the asymptotic behaviour as b−a tends to infinity. For
the link between the Laplace transform and the speed measure, see for instance
[2].

Proof. The counter Ntot introduced in the algorithm can be decomposed as
follows:

N x
tot =

∑
k≥1

N x,k
tot ,

where N x,k
tot represents the number of counter increases observed in-between the

k-th and (k+1)-th passage through the item Step 0. We recall that we definedN0

in the proof of Theorem 3.1: it corresponds to the number of Step 0 necessary to
obtain the desired outcome. Since Algorithm (DET) is an acceptance-rejection
algorithm, the random variable N0 is geometrically distributed. Let us also note
that N x,k

tot = 0 a.s. on the event {N0 < k} and conditionally to {N0 ≥ k}, N x,k
tot

has the same distribution as N x,1
tot . Hence

E[N x
tot] =

∑
k≥1

E[N x,k
tot ] =

∑
k≥1

E[N x,k
tot 1{N0≥k}] = E[N x,1

tot ]
∑
k≥1

P(N0 ≥ k)

=
E[N x,1

tot ]

P(N0 = 1)
=

E[N x,1
tot ]

Ex[e−ρτa,b(X)]
. (3.13)

The last equality is related to the third step in the proof of Theorem 3.1.
Let us now describe E[N x,1

tot ]. Let (S, Y,Nas) stands for the result of the first
use of the function BROWNIAN_EXIT_ASYMM and (Yc,Nc) of the first use of
CONDITIONAL_DISTR , we can therefore distinguish two different cases.

• if S < E then N x,1
tot = Nas.
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• if S > E then N x,1
tot = Nas + Nc + N̂ Yc,1

tot 1{γ0V >γ(Yc)} where N̂ x,1
tot is an

independent copy of N x,1
tot . Such a property is essentially based on the

Markov property of the Brownian paths.

We deduce

E[N x,1
tot ] ≤ E[Nas] + E[Nc1{S>E}] + E[N̂ Yc,1

tot 1{S>E}1{γ0V >γ(Yc)}]

≤ E[Nas] + E[Nc1{S>E}] + E[N̂ Yc,1
tot 1{S>E}]

≤ E[Nas] + E[E[Nc|E]1{S>E}] + P(S > E) sup
x∈[a,b]

E[N x,1
tot ]. (3.14)

• Let us note that P(S > E) = Px(τa,b(B) > ξ) where τa,b(B) is the exit
time of the Brownian motion from the interval [a, b] and ξ is exponentially
distributed with parameter γ+. Using the scaling property (1.1), we have

Px(τa,b(B) > ξ) = Py(τ > 4ξ(b− a)−2),

where τ is the first Brownian exit time of the normalized interval [−1, 1]
and y = 2x−a−b

b−a . Since y 7→ Py(τ > 4ξ(b − a)−2) is a concave function
whose derivative vanishes for y = 0 (see the expression (2.3)), we get

Px(τa,b(B) > ξ) ≤ P0(τ > 4ξ(b− a)−2).

• Since Nas is the cost of the function BROWNIAN_EXIT_ASYMM (x, [a, b]) and
using the scaling property (1.1), we obtain that it is equal to the cost of
BROWNIAN_EXIT_ASYMM (y, [−1,+1]) which satisfies due to Corollary 2.2:
E[Nas] ≤ C0(te) with

C0(te) :=

√
2te
π
e−

1
2te + 3 erfc

( 1√
2te

)
+

8

π
e−

π2te
8 +

8

5π

e−25π
2te
8

1− e−5π2te
,

where x 7→ erfc(x) is the complementary error function and te is the
parameter appearing in BROWNIAN_EXIT_SYMMETRIC. This parameter te
satisfying (2.7) can be chosen in order to minimize this average.

• Moreover we need some information on Ex[Nc|E = t] where Nc is the
cost of the function CONDITIONAL_DISTR (x, [a, b], t). Due to the scaling
property (1.1), we know that the cost of this function is identical as the
cost of CONDITIONAL_DISTR (y, [−1, 1], 4t(b−a)−2). We choose a parameter
tc > 0 such that 4t(b − a)−2 ≤ tc corresponds to the algorithm for small
time values and 4t(b − a)−2 > tc corresponds to large times. Combining
Proposition 1.1 and Proposition 1.2 permits to have the following bound:
for any x ∈ [a, b],

Ex[Nc|E = t] ≤ Θ(4t(b− a)−2)

Py(τ > 4t(b− a)−2)
with Θ(t) = U1(t)1t≤tc + U2(t)1t>tc .

Let us introduce C1(tc) := supt≥0 Θ(t) <∞, then

E[E[Nc|E]1{S>E}] =

∫ ∞
0

γ+E[E[Nc|E = t]1{S>t}]e
−γ+t dt

≤
∫ ∞

0

γ+P(S > t)
Θ(4t(b− a)−2)

Py(τ > 4t(b− a)−2)
e−γ+t dt

≤ C1(tc)

∫ ∞
0

γ+ e
−γ+t dt = C1(tc).
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Using these three items and (3.14), we obtain

E[N x,1
tot ] ≤

E[Nas] + E[E[Nc|E]1{S>E}]

P0(τ ≤ 4ξ(b− a)−2)
≤ C0(te) + C1(tc)

E0[e−γ+(b−a)2τ/4]
.

The identity (3.13) permits to conclude the proof.

3.3 Modifications of Algorithm (DET)
Under the drift condition µ′ + µ2 ≥ 0, Algorithm (DET) permits to simulate
in an exact way the exit time of the interval [a, b] for diffusion processes. Let
us now improve this algorithm in order to deal with any one dimensional dif-
fusion. This generalization first requires a modified algorithm with outcome
(Xτa,b(X)∧κ, τa,b(X) ∧ κ) for any κ > 0. The simulation of (Xτa,b(X), τa,b(X))
can then be obtained by iteration due to the diffusion Markov property.

Let us present Algorithm (κ-DET).

MODIFIED DIFFUSION EXIT TIME (κ-DET)
Parameters: ρ and γ0, input functions γ(·) and βm(·)

First initialization: Ntot = 0.

Step 0: Initialization. K = κ, Z = x, T = 0, test = 0. Here x stands
for the initial value of the diffusion and κ the time upper-bound.

While (test=0) do:

Step 1 Generate an expon. distr. random variable E with parameter γ0

and U , V and W three random variables uniformly distributed on [0, 1], the
variables E, U , V and W being independent.

Step 2. Simulate the Brownian exit time and location

(S, Y,Nas) = BROWNIAN_EXIT_ASYMM (Z,[a,b])

and set Ntot ← Ntot +Nas.

Step 3. If S = min(K,E, S) then

• if U ≤ βm(Y ) and W ≤ e−ρ (K−S)

then set test = 1, Z ← Y and T ← T +K
else go to Step 0 end if,

elseif K = min(K,E, S)

• simulate the conditional Brownian location at time K:
(Yc,Nc) = CONDITIONAL_DISTR (Z,[a,b],K) and set Ntot ← Ntot +Nc.

• if U ≤ βm(Yc) then set test = 1, Z ← Y and T ← T + S
else go to Step 0 end if,

elseif E = min(K,E, S)
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• simulate the conditional Brownian location at time E:
(Yc,Nc) = CONDITIONAL_DISTR (Z,[a,b],E) and set Ntot ← Ntot +Nc.

• if V ≤ γ(Yc) then go to Step 0 else set Z ← Yc, T ← T + E and
K ← K − E.

end if.

End While

Outcome: the stopping time T corresponding to the minimum between the
diffusion exit time of the interval [a, b] and the constant time κ, the location
Z of the stopped diffusion at time T and the efficiency index Ntot.

Let ρ ≥ 0 such that γ(x) := µ2(x)+µ′(x)
2 +ρ is a non negative function on the

interval [a, b]. We recall that γ+ and β are defined in (3.3). We introduce

βm(x) =
β(x)

supx∈[a,b] β(x)
. (3.15)

Let us just notice that 0 ≤ βm(x) ≤ 1 for any x ∈ [a, b].

Theorem 3.3. The outcome (Z, T ) of the Algorithm (κ-DET) with parameter
ρ, γ0 = γ+ and input functions γ(·) and βm(·) has the same distribution as
(Xτa,b(X)∧κ, τa,b(X) ∧ κ), where X stands for the diffusion defined by (3.2).

Proposition 3.4. The random variable N x
tot which is one of the outcomes

of Algorithm (κ-DET) satisfies the following bound: there exists a constant
C(tc, te) > 0 independent of both the interval [a, b] and the starting position
x, such that

E[N x
tot] ≤

C(tc, te) eρ κ

βm(x) E(a+b)/2[e−γ+(τa,b(B)∧κ)]
, ∀x ∈]a, b[.

We recall that τa,b stands for the first exit time of the interval [a, b]. The pa-
rameters ρ and γ+ are defined in the introduction of Theorem 3.1.

The proof of Proposition 3.4 is just a slight modification of the proof of
Theorem 3.2. The details are left to the reader (see Appendix).

Proof of Theorem 3.3. The key arguments are similar to those used in the proof
of Theorem 3.1 and the structure of the proof is the same.
Step 1. The Poisson-Brownian model. Let us define the following expression
depending on the Brownian paths (Bt)t≥0, on the first exit time of the interval
[a, b] denoted by τB and on the independent Poisson process N :

I(x, f, g, κ) := Ex
[
f(τB ∧ κ)g(BτB∧κ)e−

∫ τB∧κ
0 γ(Bs) ds

]
= Ex

[
f(τB ∧ κ)g(BτB∧κ)1{N(A)=0}

]
,

with
A :=

{
(t, y) ∈ [0, τB ∧ κ]× [0, γ+] : y ≤ γ(Bt)

}
.
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Let us introduce the following series expansion:

I(x, f, g, κ) =
∑
n≥1

In(x, f, g, κ),

the definition of In(x, f, g, κ) is similar to the definition appearing in the proof
of Theorem 3.1, it suffices to replace in the definition τB by τB ∧ κ. Therefore

I0(x, f, g, κ) = Ex[f(τB ∧ κ)g(BτB∧κ)1{τB∧κ≤ξ1}],

where (ξ1, U1) stands for the coordinates of the Poisson process point with the
smallest abscissa. Moreover we obtain the following step by step property:

In(x, f, g, κ) = Ex
[
In−1(Bξ1 , f(ξ1 + ·), g, κ− ξ1)1{U1>γ(Bξ1 ),ξ1<τB∧κ}

]
. (3.16)

Step 2. Relation between Algorithm (κ-DET) and the Brownian-Poisson theo-
retical model presented in Step 1.
If we denote by N0 the number of Step 0 used during the procedure which leads
to the computation of the outcome (Z, T ) and N1 the number of exponentially
distributed random variables generated (Step 1 ), then we obviously obtain for
In(x, f, g, κ) := Ex[f(T )g(Z)1{N0=1, N1=n+1}],

I0(x, f, g, κ) = E
[
f(S)g(Y )1{S<E∧K,U≤βm(Y ),W≤e−ρ(κ−S)}

]
+ E

[
f(κ)g(Yc)1{κ≤E∧S, U≤βm(Yc)}

]
= E

[
f(τB ∧ κ)e−ρ(κ−τB∧κ)g(BτB∧κ)βm(BτB∧κ)1{ξ1≥τB∧κ}

]
= I0(x, f × e−ρ(κ−·), g × βm, κ).

Using similar arguments, we can prove that In satisfies the same step by step re-
lation as(3.16). So by identification, we get In(x, f, g, κ) = In(x, f×e−ρ(κ−·), g×
βm, κ) for all n ≥ 0 and therefore

E[f(T )g(Z)1{N0=1}] = I(x, f, g, κ) =
∑
n≥0

In(x, f, g, κ)

= I(x, f × e−ρ(κ−·), g × βm, κ).

Since Algorithm (κ-DET) is an acceptance rejection algorithm, we have

E[f(T )g(Z)] =
E[f(T )g(Z)1{N0=1}]

P(N0 = 1)
=
I(x, f × e−ρ(κ−·), g × βm, κ)

I(x, e−ρ(κ−·), βm, κ)
.

The link between βm and β leads to

E[f(T )g(Z)] =
I(x, f × e−ρ(κ−·), g × β, κ)

I(x, e−ρ(κ−·), β, κ)

=
Ex
[
f(τB ∧ κ)g(BτB∧κ)MτB∧κ

]
Ex[MτB∧κ]

,

where Mt is the exponential martingale defined in (3.12). It is actually im-
portant to note that since the time interval is bounded (upper-bounded by κ)
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we can use the time reversal expression e−ρ(κ−·) and the ratio in the previous
equation verifies a cancellation of the terms e−ρκ.
Finally it suffices therefore to use the Girsanov transformation in order to obtain
the announced result: E[f(T )g(Z)] = Ex[f(τX ∧ κ)g(XτX∧κ)].

Let us now focus our attention on the exact simulation of (Xτa,b , τa,b) for
any diffusion process with regular drift term and constant diffusion coefficient.
We have already seen that Algorithm (DET) permits to reach such objective
however it is restricted to drift terms satisfying µ′+µ2 ≥ 0 on the interval [a, b].
If such a condition is not verified, we propose the following procedure: first we
choose some time parameter κ > 0, then we apply:

GENERAL DIFFUSION EXIT TIME (GDET)
parameters: κ, a and b.

Initialization. Z = x, T = 0, Nit = 0

While Z /∈ {a, b} do:

• Simulate (S, Y ) = κ-DET(Z, κ)

• T ← T + S, Z ← Y and Nit ← Nit + 1.

End While

Outcome: the couple of random variables (Z, T ) and the number of itera-
tions Nit.

Due to the Markov property, it is obvious that the outcome of such an algo-
rithm and (Xτa,b(X), τa,b(X)) are identically distributed. Moreover the number
of iterations of GDET has the same distribution as b τa,b(X)

κ c+ 1. Hence

Ex[Nit] ≤ 1 +
Ex[τa,b(X)]

κ
.

It is evident that the number of iterations decreases as κ becomes large but
we should be careful for a clever choice of κ since the number of rejections in
Algorithm (κ-DET) grows exponentially fast when κ enlarges, see Proposition
3.4. A reasonable choice is therefore κ ≈ ρ−1.

3.4 Examples and numerics
The aim of this section is to emphasize the efficiency of Algorithm (DET) and
Algorithm (κ-DET) through the analysis of two examples. The first situation
concerns a diffusion whose drift term b satisfies the condition µ′ + µ2 ≥ 0 and
consequently only requires the basic Algorithm (DET). The second situation
concerns the Ornstein-Uhlenbeck process which plays an essential role in several
applications namely in neuroscience. For both examples, we set the parameters
appearing in the algorithms: tc = 0.7 and te = 0.5.

3.4.1 Example with the Algorithm (DET)

We first consider a stochastic differential equation which was already presented
in [13] for the simulation of the first passage time. Here the objective is clearly

32



different since we focus our attention to the exit time and exit position of the
diffusion and the algorithm is different too. Let us also note that a similar
diffusion process was also introduced in [5].

We consider the following stochastic differential equation:

dXt = (2 + sin(Xt)) dt+ dBt, t ≥ 0, X0 = 0. (3.17)

We first observe that γ(x) = (µ2(x) + µ′(x))/2 = ((2 + sin(x))2 + cos(x))/2
satisfies 0 ≤ γ ≤ 5. We deduce that we can apply Theorem 3.1 with the
particular choice ρ = 0: the outcome (Z, T ) of Algorithm (DET) has therefore
the same distribution as (Xτa,b(X), τa,b(X)). The algorithm permits to obtain
the histograms of respectively the exit time (Fig. 7 left) and the counter Ntot

illustrating the efficiency of the algorithm DET (right). These histograms use a
sample of size 100 000 and concerns the interval [a, b] = [−0.5, 0.5]. The average
value of the counter is 8.5 and its estimated standard deviation is 8.88. Let us
just compare the approximated results obtained by Algorithm (DET) for the
interval [a, b] = [−0.5, 0.5] with a classical Euler method with step size 0.0001
and 100 000 samples.

Algo. E[τa,b] σ(τa,b) E[τa,b1{Xτa,b=a}] P(Xτa,b = a)

Euler method 0.18262 0.13796 0.18446 0.12530

(DET) 0.17927 0.13667 0.18018 0.12685

When considering larger intervals like for instance [−1, 2] (Fig. 8), the
counter becomes large (average: 1205) and the algorithm DET is rather time
consuming (C++ progaming: CPU 1,77 sec for 100 000 samples of the exit from
the interval [−0.5, 0.5] and CPU 230,8 sec for the interval [−1, 2]). Figure 9
is an illustration of the high level of rejection for the algorithm (DET) as the
interval size increases.

Figure 7: Simulation of the first exit time from the interval [a, b] = [−1/2, 1/2] for
the diffusion (3.17) (100 000 samples). Histograms of the exit time variable (left) and
of the counter Ntot (right).
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Figure 8: Simulation of the first exit time from the interval [a, b] = [−1, 2] for the
diffusion (3.17) (100 000 samples). Histograms of the exit time variable (left) and of
the counter Ntot (right).

Figure 9: FET from the interval [a, b] = [−1, 2] for the diffusion (3.17) (100 000
samples). Empirical c.d.f. of the exit times when the exit occurs at the top – lower
curve – or at the bottom of the interval – upper curve – (left). Simulation of the FET
from the interval [−a, a] for the diffusion (3.17) (10 000 samples). Average counter
E[Ntot] in logarithmic scale versus a (right).

3.4.2 The Ornstein-Uhlenbeck case.

Let us now consider the Ornstein-Uhlenbeck process given by the following SDE

dXt = −µ0Xt dt+ dBt, X0 = 0. (3.18)

We shall determine the distribution of the exit time and location from the
interval [−a, a] with a > 0. The drift term is defined by µ(x) = −µ0x, we can
therefore find ρ such that

γ(x) :=
µ2(x) + µ′(x)

2
+ ρ =

µ2
0x

2 − µ0

2
+ ρ ≥ 0.

It suffices to choose ρ = µ0

2 . Such a choice implies

sup
x∈[−a,a]

γ(x) ≤ µ2
0a

2

2
.
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Since the coefficient ρ is strictly positive (for positive µ0 > 0), we cannot use the
(DET)-algorithm in order to simulate the exit time. We shall therefore use the
(κ-DET) algorithm in order to simulate exactly the couple (Xτ−a,a(X)∧κ, τ−a,a(X)∧
κ) for any given constant time κ > 0. Fig. 10 represents the distribution
of Xτ−a,a(X)∧κ and Fig. 11 illustrates the time distribution and describes the
counter values Ntot. In order to simulate exactly the exit time for the Ornstein-

Figure 10: Distribution of Xτ−a,a(X)∧κ with a sample of size 10 000, for the drift
parameter µ0 = 2, the interval size a = 1 and the constant time upper-bound κ = 0.5:
histogram (left) and cumulative distribution (right).

Figure 11: Cumulative distribution of τ−a,a(X) ∧ κ with a sample of size 10 000, for
the drift parameter µ0 = 2, the interval size a = 1 and the constant time upper-bound
κ = 0.5 (left, blue curve) or κ = 1 (left, black curve) and the corresponding histogram
of the counter Ntot for κ = 0.5 (right).

Uhlenbeck process, we use the (GDET)-algorithm. The histogram in Figure 12
emphasizes the distribution of the exit time for the particular case: µ0 = 2 and
a = 1 and the efficiency of the algorithm for such a simulation. We can easily
observe that the exit time increases as the parameter µ0 increases, see Fig. 13.
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Figure 12: Histogram of the exit time distribution for the Ornstein-Uhlenbeck process
with parameter µ0 = 2 and interval [−1, 1] (left), histogram of the associated counter
Ntot (right).

Figure 13: Cumulative distribution on the time interval [0, 15] for the O.-U.- exit time
from the interval [−1, 1]

Figure 14: Average counter for the (GDET)-algorithm versus the intensity of the
drift (µ0 varies between 0.3 and 6) in logarithmic scale (time constant: κ = 0.5,
sample size: 10 000) (left), average counter versus the time parameter κ used in the
(GDET)-algorithm (right).
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Appendix
Proof of Proposition 3.4. The counter Ntot depends on the parameter κ. So we
set Ntot = Nκ,tot. This number can be decomposed as follows:

N x
κ,tot =

∑
k≥1

N x,k
κ,tot,

where N x,k
κ,tot represents the number of counter increases observed in-between the

k-th and (k+ 1)-th passage through the item Step 0. Since Algorithm (κ-DET)
is an acceptance-rejection algorithm, the random variable N0 is geometrically
distributed. Let us also note that N x,k

κ,tot = 0 a.s. on the event {N0 < k} and
conditionally to {N0 ≥ k}, N x,k

κ,tot has the same distribution as N x,1
κ,tot. Hence

E[N x
κ,tot] =

E[N x,1
κ,tot]

P(N0 = 1)
= eρκ

E[N x,1
κ,tot]

βm(x)
, (3.19)

since P(N0 = 1) = I(x, e−ρ(κ−·), βm, κ) = e−ρκβm(x)Ex[MτB∧κ] = e−ρκβm(x),
the martingale (Mt) being defined in (3.12).

Let us now describe E[N x,1
κ,tot]. Let (S, Y,Nas) stands for the result of the

first use of the function BROWNIAN_EXIT_ASYMM and (Y tc ,N t
c ) of the first use

of CONDITIONAL_DISTR at time t, we can therefore distinguish three different
cases.

• if S < E ∧ κ then N x,1
κ,tot = Nas.

• if κ < E ∧ S then N x,1
κ,tot = Nas +N κ

c .

• if E < S∧κ then N x,1
κ,tot = Nas +NE

c +N̂ Y Ec ,1
κ−E,tot1{γ0V >γ(Y Ec )} where N̂ x,1

κ,tot

is an independent copy of N x,1
κ,tot.

We deduce

E[N x,1
κ,tot] ≤ E[Nas] + E[N κ

c 1{S∧E>κ}] + E[NE
c 1{S∧κ>E}]

+ E[N̂ Y Ec ,1
κ−E,tot1{S∧κ>E}1{γ0V >γ(Y Ec )}]

≤ E[Nas] + E[N κ
c 1{S>κ}]P(E > κ) + E[NE

c 1{S∧κ>E}]

+ E[N̂ Y Ec ,1
κ−E,tot1{S∧κ>E}] (3.20)

Using the same arguments as those developed in the proof of Theorem 3.2,
we get the existence of two constants C0(te) > 0 and C1(tc) > 0 such that
E[Nas] ≤ C0(te) and E[N t

c1{S>t}] ≤ C1(tc) for all t ≥ 0. We then deduce

E[N x,1
κ,tot] ≤ C0(te) + C1(tc) + sup

y∈[a,b]

E[N̂ y,1
κ−E,tot]P(a+b)/2(S ∧ κ > E).
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This result can be generalized for any K ≤ κ and therefore we obtain

P(a+b)/2(S ∧ κ ≤ E) sup
x∈[a,b], K≤κ

E[N x,1
K,tot] ≤ C0(te) + C1(tc). (3.21)

Let us note that P(a+b)/2(S ∧ κ ≤ E) = P(a+b)/2(τa,b(B)∧ κ ≤ ξ) where τa,b(B)
is the exit time of the Brownian motion from the interval [a, b] and ξ is expo-
nentially distributed with parameter γ+. Using the scaling property (1.1), we
have

P(a+b)/2(τa,b(B) ∧ κ ≤ ξ) = E(a+b)/2[e−γ+(τa,b(B)∧κ)]. (3.22)

Combining (3.21) (3.22) and (3.19), we obtain

E[N x
κ,tot] ≤ eρκ

E[N x,1
κ,tot]

βm(x)
≤ eρκ C0(te) + C1(tc)

βm(x) E(a+b)/2[e−γ+(τa,b(B)∧κ)]
.
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