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24 rue Lhomond, 75005 Paris, France

E-mail: dongsheng.ge@ens.fr, giuseppe.policastro@ens.fr
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complexity of free bosons and fermions, in any dimension, we consider the 1+1 dimensional
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the same state from both the bosonic and the fermionic perspectives. This allows us to

study the dependence of the complexity on the choice of the set of gates, which explains the

discrepancy. We study the effect in two classes of states: i) bosonic-coherent / fermionic-

gaussian states; ii) states that are both bosonic- and fermionic-gaussian. We consider

the complexity relative to the ground state. In the first class, the different complexities

can be related to each other by introducing a mode-dependent cost function in one of

the descriptions. The differences in the second class are more important, in terms of the

structure of UV divergencies and the overall behavior of the complexity.
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1 Introduction

Recently, much attention has been devoted to the study of quantum complexity in connec-

tion with the holographic correspondence. Quantum complexity is a concept that has its

origin in quantum computation theory as a means of characterizing the difficulty (in the

sense of the amount of resources needed) of performing a task on a quantum computer;

more precisely, if the task can be described as producing a certain quantum state |ψT 〉 from

a given initial state |ψR〉 using a circuit made of elementary unitary operations (gates),

the quantum complexity can be defined as the minimum number of gates required for

such a circuit. It has been suggested by Susskind and collaborators [4–7] that the notion
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of complexity may be an important component in our understanding of the properties of

emergent spacetime, and possibly point to a solution of the information loss paradox, by

giving additional insight, beyond what can be obtained from entanglement entropy, into

the information-theoretic properties associated to spacetime and in particular to the region

inside black hole horizons (see the recent lectures [8]).

It was further conjectured that, similarly to entanglement entropy which is described

holographically by the area of a minimal surface [9], quantum complexity is also captured,

in a theory with a holographic dual, by a simple gravitational observable. However what

precisely is the observable is unclear. There are two different proposals: one takes the

volume of a maximal spatial slice of the geometry [5], the other takes the action evaluated

on the Wheeler-DeWitt patch [10, 11]. Each proposal has its merits and drawbacks, and

a clear-cut way to choose one over the other has not been found yet. In particular, both

prescription lead to similar behavior for the late-time growth of complexity during the

formation of a black-hole (i.e., linear growth in time, albeit with different coefficients [12,

13]), and have similar structure of UV divergence

C ∼ a V

δd−1
(1 +O(δ)) , (1.1)

where d is the spacetime dimension of the dual field theory, δ is a short-distance cutoff,

and a is a coefficient that depends on the prescription.1

Even in cases when the two prescriptions give different results (e.g., in the case of an

AdS3 space with a defect brane, as we found in our paper with S. Chapman [16]), we do

not have at present a criterion for choosing one over the other, absent any independent

calculation that can serve as benchmark. By contrast, in the case of the entanglement

entropy, one can compute it in a 2d CFT, for an interval of length `, and obtain the

famous exact result [17]

SEE =
c

3
log

(
`

δ

)
, (1.2)

which depend only on the central charge c. Because the coefficient of the log does not

change under a rescaling of the cutoff, it can be considered a universal quantity with a

well-defined physical meaning. By analogy, one could try to attribute a similar universal

meaning to the coefficient of the log in the complexity, but the situation is less clear.

The problem is that the definition in terms of gates, which is applicable to a finite

quantum system, does not translate easily to a definition that is applicable to a continuum

quantum field theory. In other words, we do not know how to associate the notion of

complexity to a well-defined observable in QFT. This problem was considered in [1, 18], who

provided a partial answer by proposing a definition of complexity for free scalar fields. The

proposal of [1] used the Nielsen’s approach of geometrization of quantum computation [19],

while [18] used a method based on the Fubini-Study metric.2 In Nielsen’s method, described

1In the case of the action, there can be a further divergence of the form 1
δd−1 ln δ [14], but it can be

removed by a boundary counterterm [15] which is also needed to make the prescription reparametrization

invariant.
2For other approaches and follow-ups see [20–28].
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in more detail in section 4, the circuit is replaced by a continuous version that is a path in

the space of unitary operators, of the form

U(s) = Pexp

(
−i
∫ s

0
ds′ Y I(s′)OI

)
, (1.3)

The functions Y I(s) are determined by minimization of a certain functional F [Y I(s)] that

determines the cost associated to a given path. The complexity of a unitary operator

V is then defined as the minimum of the cost functional over all paths (1.3) such that

U(s = 1) = V .

What is important to notice here is that this definition of complexity depends on

several choices: the choice of the allowed space of operators used to build the circuit,3 and

indeed of a specific basis OI , the choice of a cost functional, and a choice of parametrization

of the path.

The space of unitary operators acting on the Hilbert space of a QFT is very large,

but one of the main points of [1] was to reduce it to a tractable setup by considering

operators that act within the subset of Gaussian states. This allows one to consider the

complexity of any state that is the ground state of any Hamiltonian quadratic in the

fields. Discretizing the free scalar field to a set of N harmonic oscillators, a Gaussian state

is described by a symmetric 2N × 2N matrix, and the group of unitary operators that

preserves the Gaussian states is Sp(2N). In [1] the behaviour of the complexity between

Gaussian states was investigated for various choices of cost functions, mostly focusing on

the one corresponding to the Cartan-Killing metric on the symplectic group.

The approach used in [18] considers a path in the space of states; the complexity

is identified with the minimal length of a path connecting two states, calculated in the

standard Fubini-Study metric on the space of normalized states. For a parametrized path

of quantum states |ψ(σ)〉, the line element is

ds = dσ
√
〈∂σψ(σ)|∂σψ(σ)〉 − | 〈ψ(σ)|∂σψ(σ)〉 |2 . (1.4)

This definition may seem more canonical, but if one allows the most general path in the

space of states, then the geodesic distance between normalized states is always less or equal

to π/2. In order to have a sensible measure of complexity, one must somehow restrict the

possible paths. The proposal of [18] is to use paths that can be obtained using unitary

operators similar to (1.3), with the basis operators being a subset of the bilinears the

creation and annihilation operators; thus in both approaches one does not leave the space

of Gaussian states, and the results are comparable.

Nielsen’s approach was extended to the case of free fermions in [2, 3]. In comparison to

the bosonic case, the main difference is that the relevant group of operators acting on Gaus-

sian states is SO(2N), which is a compact group, with the consequence that the complexity

(again measured using the Cartan-Killing metric) cannot grow very large. Considering a

field theory in d spacetime dimension with spatial volume V and a UV cutoff Λ, it turns

out that the leading divergent term in the bosonic complexity is

CbΛ ∼ V Λd−1| ln(Λ/ω0)|κ, (1.5)

3If the space of all operators is allowed, then obviously all circuits would have the same complexity.
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where ω0 is an arbitrary reference scale and κ is a parameter related to the choice of the

cost function, whereas for a free fermion field theory is

CfΛ ∼ V Λd−1. (1.6)

The discrepancy seems at odds with the holographic interpretation, as the holographic

result is relatively blind to the fermionic or bosonic nature of the dual fields. Moreover, for

the case of a two-dimensional theory, we might think that the bosonization map between

bosons and fermions should imply the equality of the two results. These observations do not

constitute a strong objection to the results of [1–3, 18], because states with a holographic

dual are not Gaussian states, the theory is strongly coupled whereas (1.5) and (1.6) are

obtained for free fields, and complexity is not a well-defined field theory observable in

the usual sense, as we stressed. Nevertheless, they provide the motivation for the present

paper, where we look more closely at the complexity for bosons and fermions in 1+1

dimensions, comparing states that are related by bosonisation. From this point of view,

the results (1.5) and (1.6) do not constitute a discrepancy, rather they illustrate the effect

of a different choice of operator spaces.

In the context of quantum computation, the question of the choice of gates is of obvious

importance, and there are some known results: when the gates act on arrays of qubits, it is

possible to show that there is a universal finite set of gates, such that any unitary operator

can be approximated by a circuit made of universal gates with an arbitrarily small error ε

(see e.g. [29]), and the size of the circuit is O(lnc(1/ε)), for some constant c. Moreover, if a

circuit has complexity m with some choice of basic gates, a different choice will give com-

plexity O(m lnc(m/ε)) [30], so the dependence on the basis choice is at most logarithmic.

It would be nice to establish similar results in the QFT context, but so far almost

nothing can be said about the gate dependence. In most of the works on the complexity,

the choice of gates was restricted to gates quadratic in the fields, in order not to depart

from the space of Gaussian states. No fundamental reason underlies this choice except

that it allows to do explicit computations, and it is not obvious how to make an alternative

choice: in general it is difficult to find an algebraically closed set of gates that is larger

than the set of quadratic operators but not as large as the full space [24, 31]. But it turns

out that such a set is provided by the magic of bosonisation.

The reason for this is that the bosonisation map is very non-linear, so Gaussian states in

one description generically do not correspond to Gaussian states in the other, and similarly

gates that are oscillator bilinears in one description will map to more complicated gates in

the other. Thus we can have a completely solvable example where it is possible to explore

the effect of different choice of gate sets on the complexity.

We have started to undertaken this exploration in the present paper. We are not yet

in a position to make general statements about the effect of a change of gates, since we are

limited to the states whose complexity can be computed using the available technology. We

have identified two such classes of states. In the first class, the states are bosonic-coherent

and fermionic-gaussian. For the states in this class, we can compute the complexity analyt-

ically, and we find that it has a similar form in the two descriptions, see the results in (3.19)

and (5.20), however the fermionic complexity appears to have a cost that depends on the
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mode number of the bosonic oscillator that is excited. Thus, the difference of complexity

can become arbitrarily large, even with a single mode.

In the second class, the states are both bosonic-gaussian and fermionic-gaussian.4

These states can be understood as ground states of a system with a free but inhomogeneous

hamiltonian. They are parametrized by an arbitrary function; we considered some exam-

ples with the function having only one or only two Fourier components. We cannot find

analytic results in this case but have to resort to numerics. The numerical results are given

in figures 5, 6 and 7, and show striking differences between the bosonic and the fermionic

result. The bosonic complexity for these states is cutoff-independent, and smoothly depen-

dent on the parameters corresponding to the Fourier modes, whereas for fermions it grows

like ln(Λ), and it is much less regular (it appears to be quasi-periodic in the simplest case).

The plan of the paper is the following: in section 2 we recall the basic properties of

the bosonisation equivalence and the correspondence between fermionic and bosonic states.

In section 3 we compute the complexity of a class of bosonic coherent states in terms of

bosonic gates by using the Fubini-Study metric method. In section 4 we review the Nielsen

method applied on free fermonic and bosonic field theory, and in section 5 we use it to

compute the complexity of bosonic coherent states using fermionic gates. In section 6 we

describe a class of states that are of gaussian type both in the fermionic and in the bosonic

description, and we compare the results for the complexity computed in either description.

In section 7 we present our conclusions. Some additional details of the computations are

presented in the appendices.

2 2D bosonisation

2.1 Basic results

In this section, we will review the basics of the 2D bosonisation formalisms, for free bosons

and fermions, which we will use in the rest of the paper. We follow the presentation in [32].

In two dimensions, the bosonisation can be proved exactly for a system on a finite size

interval [−L/2, L/2]. In such a system, the unbounded momentum k satisfies

k =
2π

L

(
nk −

δb
2

)
, nk ∈ Z, δb ∈ [0, 2) (2.1)

where δb depends on the periodicity condition of the fermionic fields, 0 for complete peri-

odicity and 1 for anti-periodicity. If there are M chiral fermions with periodic conditions

(δb = 0) in the system, an index η could be used to denote different types of fermions, and

the mode decomposition for each fermion type is given as

ψη(x) =

(
2π

L

)1/2 ∞∑

n=−∞
e−i

2πn
L
xcnη, cnη = (2πL)−1/2

∫ L/2

−L/2
dxei

2πn
L
xψη(x) , (2.2)

4The existence of such states has not been remarked before, to our knowledge.
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where η = 1, 2, . . . ,M , can be spin, handedness, flavor etc. The bosonic chiral fields are

given by the mode decomposition

φη(x) = −
∑

n>0

1√
n

(e−i
2πn
L
xbnη + ei

2πn
L
xb†nη)e

−aπn
L , (2.3)

where the zero mode is omitted. Notice that only n > 0 modes are included, because of

the chirality. The a appearing in the last factor is a regularisation parameter that should

be sent to zero when computing physical quantities.5

By construction, there is an operator identity at the level of annihilation and creation

operators between fermions and bosons,

bnη =
−i√
n

∞∑

l=−∞
c†l−n ηclη, b†nη =

i√
n

∞∑

l=−∞
c†l+n ηclη (2.4)

from where we see that the bosonic operators are always an infinite sum of fermionic

operators of quadratic type containing both the creation and annihilation ones. We can

take (2.4) as a definition of the bosonic modes; the proof of bosonisation amounts to

showing that, with this definition, the bosonic commutation relations are satisfied if the

fermionic ones are:

{clη, c†l̃η̃} = δηη̃δll̃ = [blη, b
†
l̃η̃

]. (2.5)

The bosonisation formula can also be stated in terms of the local fields:

i∂xφη(x) =:ψ†η(x)ψη(x): , (2.6)

with the colon denoting normal ordering. The inverse formula is more complicated:

ψη(x) = Fη a
−1/2e−i

2π
L

(N̂η−
δb
2

)x :e−iφη(x):, (2.7)

where N̂η =
∑

l : c†l ηcl η : is the fermionic number operator with respect to the ηth spiecies.

From (2.4), it is easy to see that the bosonic operators commute with the fermionic number

operator, i.e.

[bn η, N̂η] = 0, [b†n η, N̂η] = 0 , (2.8)

so only fermionic operators that don’t change the fermion number can strictly speaking be

bosonised. The so-called Klein factor Fη in (2.7) has the role of compensating the mismatch

in fermion number (this factor is often omitted in many presentations of bosonisation).

However we will not need its explicit expression.

The commutation relation between bosonic and fermionic modes is

[bl, cl̃] =
i√
l
cl̃+l, [b†l , c

†
l̃
] =

i√
l
c†
l̃+l
, (2.9)

[bl, c
†
l̃
] =
−i√
l
c†
l̃−l, [b†l , cl̃] =

−i√
l
cl̃−l. (2.10)

5Notice that the bosonisation is exact only when all the modes are included. In practice we often need

to introduce a UV cutoff on the mode number; we still expect that we can match quantities that are

cutoff-independent.
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Intuitively we can think that b†l creates, and bl annihilates, a particle-hole pair of total

momentum l.

In the following, we will consider the simplest case with only two chiral fermions and

one chiral bosons, thus the species index will be omitted.

2.2 Fermionic Fock space

In the fermionic Fock space F , a unique vacuum |0〉 is defined in terms of the fermionic

modes,

cn |0〉 = 0, n > 0; c†n |0〉 = 0, n ≤ 0. (2.11)

In the bosonised picture, the Fock space can be reorganised as a direct sum of all the

Hilbert space with fixed fermionic particle number, i.e.,

F = ⊕NHN . (2.12)

Each HN with fixed fermion number can be regarded as the bosonic Hilbert space since the

bosonic operators commute with the fermionic number operator as mentioned before. The

condition for a bosonic ground state is to be annihilated by all the bosonic annihilation

operators

bn |GB〉 = 0, n > 0. (2.13)

This condition uniquely defines a state in each module HN ; then the ground state |GB〉 in

the N -particle module is denoted as

|GNB 〉 =





c†Nc
†
N−1 · · · c

†
1 |0〉 , N > 0

|0〉 , N = 0

cN+1cN · · · c0 |0〉 , N < 0

. (2.14)

Figure 1 gives a depiction of the Fock space as a bundle, with the base given by the

ground states and the fiber by the bosonic Hilbert space. The bosonic operators act inside

a single fiber, whereas fermionic operator can move between different fibers.

2.3 Correspondence between states

Our main purpose in this note is to compare the circuit complexity of states in the bosonic

and fermionic descriptions. We cannot consider the most general state, since the techniques

developed so far only allow to deal with Gaussian states or coherent states. Our first task

is to determine the correspondence between Gaussian/coherent states in both descriptions.

It is clear that, since the bosonisation relations (2.6)–(2.7) are non-linear, Gaussian

states in one description will not correspond in general to Gaussian states in the other. It

is shown in [2] that all Gaussian states can be obtained from the fermionic vacuum (2.11)

by the action of a unitary operator of the form

OF = eA
lmclcm+Blmclc

†
m+Dlmc†l c

†
m . (2.15)

Equivalently, each such states is a vacuum under a set of modes related to the original ones

by a Bogoliubov transformation

c̃l = Almcm + Blmc†m . (2.16)
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Figure 1. The base manifold GB is made of all the bosonic ground states which are denoted as the

red crosses. The vertical blue lines are modules of the fermionic fock space where each represents

a bosonic Hilbert space with fixed fermion number. The operators of bosonic type can only move

vertically while the fermionic ones span the whole Fock space with a single fermionic operator

moving horizontally.

It is easy to see then that states of the form

c†n1
c†n2
· · · c†nkcm1cm2 · · · cmq |0〉 (2.17)

with n1 > n2 > · · · > nk > 0 ≥ m1 > m2 > · · · > mq, are Gaussian states; these include in

particular the bosonic ground states of (2.14).

Another class of fermionic Gaussian states is given by

|{αk, nk}, N〉 = e
∑
k αkb

†
nk
−α∗kbnk |GNB 〉 , (2.18)

obtained from the ground state with the action of the displacement operator which is a

fermion bilinear (see (2.4)). These are bosonic coherent states, therefore not Gaussian but

still tractable. In the next sections we will analyze the complexity of the last class of states,

first from the bosonic and then from the fermionic perspective.

3 Fubini-Study metric method for bosonic coherent states

The complexity of coherent states of a set of harmonic oscillators was considered in [33]

using both the Nielsen approach and the Fubini-Study approach. In order to use the

Nielsen’s approach with bosonic gates, we would need to embed the coherent states in a

larger space acted on by GL(n), therefore in this section we will use the FS method for

simplicity. The results of [33] show that the FS complexity is very closely related to the

Nielsen complexity with the cost function given by the invariant metric on the group. See

also [34] for a different approach based on Finsler geometry.

In the FS approach, the complexity C(|ψ1〉, |ψ2〉) is computed as the geodesic distance

between two states |ψ1〉 and |ψ2〉, with respect to the Fubini-Study metric on the projective
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Hilbert space H/C∗. The metric can be described as follows: given a parametrised path

|ψ(σ)〉 on the manifold of normalized states, the line element, i.e. the length of the tangent

vector to the path, is

ds = dσ
√
〈∂σψ(σ)|∂σψ(σ)〉 − | 〈ψ(σ)|∂σψ(σ)〉 |2 . (3.1)

Equivalently, for a family of states ψ(λ) parametrized by coordinates λi, the FS metric is

gijdλ
idλj , with

gij = 〈∂(iψ|∂j)ψ〉 − 〈∂iψ|ψ〉 〈ψ|∂jψ〉 . (3.2)

Let us consider the coherent states as described in the previous section. For simplicity

we start with the case of a displacement operator acting only on one mode of the bosons.

We consider the one-complex-parameter family of states

|ψ(α)〉 = |α, n,N〉 = Un(α) |GNB 〉 , (3.3)

where the displacement operators

Un(α) = eαb
†
n−α∗bn = eαb

†
ne−α

∗bne−
1
2
αα∗ , (3.4)

U †n(α) = e−αb
†
n+α∗bn = e−αb

†
neα

∗bne−
1
2
αα∗ (3.5)

satisfy

∂αUn(α) = b†n Un(α)− 1

2
α∗ Un(α), ∂α∗Un(α) = −Un(α)bn −

1

2
αUn(α), (3.6)

∂αU
†
n(α) = −b†nU †n(α)− 1

2
α∗ U †n(α), ∂α∗U

†
n(α) = U †n(α)bn −

1

2
αU †n(α) . (3.7)

It is useful to notice the commutation relations

[bn, Ul(α)] = δln αUn(α), [U †l (α), b†n] = δln α
∗ U †n(α) , (3.8)

from which it follows that

〈U †n(α)bnUn(α)〉 = α , 〈U †n(α)b†nUn(α)〉 = α∗ , (3.9)

where 〈. . .〉 denotes the vev in the state |GNB 〉. The FS metric components can be computed:

gαα = 〈∂αU †n(α) ∂αUn(α)〉 − 〈∂αU †n(α)Un(α)〉〈U †n(α)∂αUn(α)〉 = 0 , (3.10)

gα∗α = 〈∂α∗U †n(α) ∂αUn(α)〉 − 〈∂α∗U †n(α)Un(α)〉〈U †n(α)∂αUn(α)〉 = 1 . (3.11)

We obtain then that the FS metric is a flat Kähler metric

ds2 = dα dα∗, (3.12)

as expected, since it is known that in quantum mechanics coherent states form a two-

dimensional Kähler manifold which can be parametrized by classical phase space vari-

ables [35].
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For our purposes it is important to notice that the result does not depend on either

the fermion number N , or the bosonic oscillator number n. We can easily understand

the N -independence since all the bosonic Hilbert spaces HN are equivalent to each other.

The independence on the mode number indicates that the FS metric corresponds to a cost

function that assigns the same cost to all displacement operators Un. This is also natural

since the FS metric is derived from the scalar product in the Hilbert space, which has no

information about the energy levels apart from the fact that they are orthogonal to each

other. It is trivial to compute the geodesic length in the flat metric:

CFS(|GNB 〉 , |ψ(α)〉) = |α| . (3.13)

This agrees with the result of [34]; the result of [33] is CFS(α) = arccosh(1 + |α|2
2 ), which

agrees with (3.13) for small α, while for larger α it is smaller, which means that one can

find shorter geodesics if the coherent states are embedded in the larger space mentioned at

the beginning of this section.

The general case of coherent states contains displacement operators acting on several

modes:

|ψ(α)〉 =
k∏

i=1

Uni(αi) |GNB 〉 , (3.14)

with ni 6= nk for i 6= k. In order to compute the metric it is enough to consider the case of

two modes:

|ψ(α, β)〉 = |α, β;m,n;N〉 = U(α, β) |GNB 〉 , U(α, β) = Um(α)Un(β) . (3.15)

The off-diagonal metric components are

gαβ =
1

2
〈∂αU †∂βU〉+

1

2
〈∂βU †∂αU〉 − 〈∂αU †U〉〈U †∂βU〉 = 0 , (3.16)

gα∗β = 〈∂∗αU †∂βU〉 − 〈∂∗αU †U〉〈U †∂βU〉 = 0 . (3.17)

It is easy to see that since the displacement operators of different modes commute, this

applies for any number of excited modes. Therefore the metric is a direct product of the

metrics for the individual modes:

ds2 =
∑

i

dαidα
∗
i (3.18)

and the complexity of a general coherent state is

CFS(|GNB 〉 ,
k∏

i

Uni(αi) |GNB 〉) =

√√√√
k∑

i=1

|αi|2 . (3.19)

4 Nielsen method for gaussian states

The Nielsen method can be understood as a way to geometrize the notion of complexity.

In this section, we will review the Nielsen method and its application to fermionic and

bosonic Gaussian states, along the lines developed in [1, 2, 23].

– 10 –



J
H
E
P
1
0
(
2
0
1
9
)
2
7
6

In Nielsen’s method, the circuit is replaced by a continuous path of unitary operators

U(s) = Pexp

(
−i
∫ s

0
ds′ Y I(s′)OI

)
, (4.1)

such that U(s = 1) gives the desired unitary operator (i.e., implements the circuit we

want), and OI is a basis of operators that can be used to build the circuit (we can think of

them as the generators of the infinitesimal gates eiεOI ). One can think that the final state

is being prepared by means of an evolution in a fictitious time s with a time-dependent

Hamiltonian H = Y I(s)OI . The complexity is then determined by the choice of a suitable

cost functional

C[U(s)] =

∫ 1

0
F (U(s), Y (s)) . (4.2)

The minimization of this functional will determine the form of the functions Y I(s) and

thus the optimal circuit. With an appropriate choice, the cost functional determines a

distance on the space of unitary operators, and the problem of minimizing the complexity

of a circuit is mapped to the problem of finding a geodesic path on a Riemannian manifold.

The cost functional can for instance have the form

F2 (U(s), Y (s)) =
√
GIJ(U(s))Y I(s)Y J(s) . (4.3)

Often the metric GIJ(U) is choosen to be a right-invariant metric, but not necessarily the

canonical biinvariant metric defined by 〈A,B〉 = tr(AB) for A,B self-adjoint. In fact, the

possibility of choosing different metrics can be thought of as introducing penalty factors

for moving along certain directions, corresponding to gates that may be more difficult to

implement (for instance, in a system of qubits, one wants to penalize gates that act on

many qubits simultaneously). A more general choice of the cost functional would lead to

a Finsler geometry, where there is notion of a distance but not induced by a metric on the

tangent space [1]. For instance one can consider the family of cost functionals dependent

on a parameter κ:

Fκ (U(s), Y (s)) =
∑

I

|Y I |κ . (4.4)

Sometimes the ambiguity is reduced: the functional (4.4) with κ = 1 is parametrization-

independent. Another cost functional, which we will use in this paper, is basis-independent

and makes use of the Schatten p-norm:6

Fp (U(s), Y (s)) = ||Y I(s)OI ||p , (4.5)

||A||p ≡
(

tr(A†A)
p
2

) 1
p
. (4.6)

4.1 Application on gaussian states in free fermionic field theory

In Nielsen’s approach, the metric is defined not on the space of states, but on the manifold

of a group of operators that act on the states. For fermions, the relevant group turns out

6Despite a certain resemblance, the Schatten p-norm is not directly related to the κ cost function (4.4),

although one might speculate that the two give the same result for a particular choice of basis.
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to be the orthogonal group [2]. To see this, it is convenient to use the Majorana basis

ξa = {q+∞, . . . , q1, q0, q−1, . . . , q−∞, p+∞, . . . , p1, p0, p−1 . . . p−∞} (4.7)

which is related to the annihilation and creation modes in the following way

c†l =
1√
2

(ql − ipl), cl =
1√
2

(ql + ipl). (4.8)

In the Majorana basis the anticommutation relations read {ξa, ξb} = δab.

A general Gaussian state |ψ〉 is completely characterized by the two-point function, or

covariance matrix,

〈ψ| ξaξb |ψ〉 =
1

2
(Gab + iΩab

ψ ) (4.9)

which can be decomposed in the symmetric and antisymmetric part, respectively Gab and

Ωab
ψ . The symmetric part is determined by the anticommutation relation, therefore it

is state-independent, while the antisymmetric part encodes the state. In terms of the

covariance matrix, the fermionic vacuum state |0〉 defined in (2.11) would be expressed as,

Gab = δab, Ωab
0 =

(
0 C

−C 0

)
with C =

(
1 0

0 −1

)
. (4.10)

As discussed in section 2.3 the Gaussian states are obtained by Bogoliubov transformations;

in the Majorana basis, these are linear transformations ξ̃ = Mξ that leave the anticom-

mutation relation invariant, therefore they are orthogonal transformations. If we put a

UV cutoff so that there are 2N modes, M ∈ SO(2N).7 However there is a subgroup that

acts trivially on the state, which only change the state by a phase. The covariance matrix

transforms as

Ω̃ = MΩMT . (4.11)

The covariance matrix of the vacuum can be considered as a symplectic form, from this

we see that the orthogonal matrices that leave Ω invariant should be symplectic as well,

i.e., they should be unitary. The manifold of Gaussian states is then SO(2N)/U(N). A

convenient way to parametrize this coset is by using the relative covariance matrix

∆(M) = Ω̃ Ω−1
0 = MΩ0M

TΩ−1
0 . (4.12)

Conversely, if we are given the reference and target states Ω0 and Ω̃, we can recover

the transformation matrix up to a unitary transformation. The polar decomposition of

orthogonal matrices allows us to write M = uM̂ with u ∈ U(N) and M̂ antisymmetric. In

this manner, u and M̂ are uniquely defined by the polar decomposition.

At the level of Lie algebra, the splitting so(2N) = u(N) ⊕ asym(N) is an orthogonal

decomposition with respect to the Killing metric of so(2N). We expect then that the

shortest path in the coset space will be obtained by moving only along the second subspace.

7We consider for simplicity only the component connected with the identity. It turns out that this is

the subgroup that does not change the parity (−1)F of the fermion number of the state.
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Indeed it is shown in [2] that the geodesic connecting Ω0 and Ω̃ is given by a straight curve

γ(s) = esA with s ∈ [0, 1] which has a constant direction A ∈ asym(N). Finally the

geodesic length is given by the norm of A = 1
2 ln ∆, which is the inner product with itself

||A|| =
√
〈A,A〉 using the embedded metric on the Lie manifold SO(2N). This definition

of norm is basis independent and will coincide with the Schatten p = 2 norm. The Schatten

p−norm for a general matrix T is defined as

||T ||p =


∑

n≥1

spn(T )




1/p

(4.13)

with sn(T ) being the singular values of the n × n matrix T , i.e., the eigenvalues of the

matrix
√
T †T . Due to the decreasing monotonicity of the Schatten p−norm, an interesting

case is the p = 1 norm, defined as

||T ||p = Tr(
√
T †T ) =

∑

n≥1

sn(T ) (4.14)

which will impose an upper bound to the p = 2 norm. The p = 1 norm has been considered

before for quantum information purposes, for example it has been found that it is the only

one among the p-norms to provide a consistent measure for quantum correlations, called

quantum discord [36].

To summarize, the complexity of fermionic Gaussian states, defined as the geodesic

length with respect to the Killing metric on the orthogonal group:

Cf (|0〉 , |ψ〉) ≡ ||A|| = ||A||p=2 =
1

2

√
Tr|(i ln ∆)2| = 1

2

√∑

r

(i lnλr)2 (4.15)

≤ ||A||p=1 =
1

2
Tr|i ln ∆| = 1

2

∑

r

|i lnλr|. (4.16)

In the above formula λi are the eigenvalues of ∆ which come in pairs e±iθ since ∆ ∈ SO(2N).

Although the p = 1 norm loses its geometric meaning in the current case, it is interesting

because in some cases discussed in the later sections, it poses an analytical bound on the

Gaussian state complexity.

4.2 Translation to gaussian states in free bosonic field theory

In the case of free bosonic theory with N degrees of freedom, the gates group corresponding

to Gaussian states is Sp(2N). Contrary to the fermionic case, the role of covariance matrices

G and Ω defined in (4.9) is exchanged, in the way that G represents the state and Ω encodes

the algebraic relation. The main objective is still to find the relative covariance matrix

relating the reference state and the target state, given as

∆ = G̃G0 = MG0M
TG−1

0 (4.17)

where M ∈ Sp(2N) encodes the basis transformation. Similar to the fermionic case, ∆ is

an element in the coset space Sp(2N)/U(N) and the geodesic connecting G̃ and G0 will be

– 13 –



J
H
E
P
1
0
(
2
0
1
9
)
2
7
6

again γ(s) = esA with however A ∈ sym(N) being an element in the symmetric algebra.

In the same manner, the geodesic length is given by the norm of A = 1
2 ln ∆, hence the

complexity

Cb(|0〉 , |ψ〉) ≡ ||A|| = ||A||p=2 =
1

2

√
Tr|(ln ∆)2| = 1

2

√∑

r

(lnλr)2 (4.18)

≤ ||A||p=1 =
1

2
Tr| ln ∆| = 1

2

∑

r

| lnλr|. (4.19)

Compared to the eq. (4.15), there is an “i” difference, which is due to the fact that the

eigenvalues of a real symmetric symplectic matrix are in pairs of e±r with r ∈ R. If the

covariance matrix G for the reference state is the identity matrix, the covariance matrix

will simply be ∆ = MMT , which we shall use in section 6. Detailed studies of the free

bosonic complexity can be found in [2, 23].

5 Application of Nielsen method on bosonic coherent states

In this section, we apply the method introduced in the last section 4.1 on the bosonic

coherent states with instead fermionic gates.

5.1 Complexity between bosonic ground states

As a first simple application of the formalism, we can compute the complexity of the

bosonic ground states GNB defined in (2.14), which constitute a subset of the fermionic

gaussian states, as already noticed. These states are labeled by the fermion number N .

The Bogoliubov transformation that takes from |G0
B〉 to |GmB 〉 is (for m positive)

c̃l = c†l , c̃†l = cl , 1 ≤ l ≤ m. (5.1)

The corresponding matrix M changes the sign of pl, 1 ≤ l ≤ m and it is in SO(2N) only

if m is even. As noticed before, we can only find geodesic paths between states that have

the same parity of fermion number.

The covariance matrix ∆ in this case is the identity, except for 2n diagonal entries that

are equal to −1. Applying (4.15) we find

C(|GmB 〉 , |Gm+2k
B 〉) = 2π|k| . (5.2)

As observed before, the bosonic operators act vertically in the fibers, so there is no corre-

sponding bosonic complexity in this class of states.

5.2 Bosonic coherent states with one excited mode

We consider next the coherent states analysed in section 3, but now in the fermionic

description. We start again from the coherent states involving excitations of only one

bosonic mode, namely the states Un(α) |GNB 〉 and consider within the states module of zero

fermion number N = 0, the analysis can be applied in the same manner to the other states

module having a different fermion number with only a shift in the fermionic modes.
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As discussed in section 2.3, the unitary operator Un(α) = eαb
†
n−α∗bn is the exponential

of a fermion bilinear, therefore the states are fermionic gaussian and the formalism devel-

oped in the first part of this section can be applied. Using the Baker-Campbell-Hausdorff

formula

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + · · · , (5.3)

we can find the transformation of the oscillators in closed form, writing α = |α|eiθ we have

c̃q(n) = Un(α)cqU
†
n(α) =

∑

l,m≥0

(α∗)lαm

m!l!

( −i√
n

)l+m
cq+(l−m)n

=
∑

r≥0

(−i)re−irθJr
(

2|α|√
n

)
cq+nr +

∑

r<0

ire−irθJ−r

(
2|α|√
n

)
cq+nr, (5.4)

c̃†q(n) = Un(α)c†qU
†
n(α) =

∑

l,m≥0

(α∗)lαm

m!l!

(
i√
n

)l+m
c†q−(l−m)n

=
∑

r≥0

ireirθJr

(
2|α|√
n

)
c†q+nr +

∑

r<0

(−i)reirθJ−r
(

2|α|√
n

)
c†q+nr, (5.5)

where Jr

(
2|α|√
n

)
is the Bessel function of the first kind and n is the excitation mode of

boson. Notice that the mixing occurs only within fermionic modes that differ by a multiple

of n. In the Majorana basis the transformation reads

q̃l =
∑

r

J|r|

(
2|α|√
n

)
cos
(π

2
|r|+ rθ

)
ql+nr +

∑

r

J|r|

(
2|α|√
n

)
sin
(π

2
|r|+ rθ

)
pl+nr, (5.6)

p̃l =
∑

r

J|r|

(
2|α|√
n

)
cos
(π

2
|r|+ rθ

)
pl+nr −

∑

r

J|r|

(
2|α|√
n

)
sin
(π

2
|r|+ rθ

)
ql+nr , (5.7)

and the corresponding orthogonal matrix has the form

M(n) =

(
A(n) B(n)

−B(n) A(n)

)
(5.8)

which is indeed orthogonal as we show in appendix A for the case that θ = 0. Recall that

the fermionic Gaussian state |ψ〉 is given in terms of the transformed oscillators by

c̃q(n) |ψ〉 = 0, q > 0; c̃†q(n) |ψ〉 = 0, q ≤ 0. (5.9)

We observe that the θ-dependence in (5.4), (5.5) can be eliminated by the following field

redefinition

cq → eiqθ/ncq , c̃q(n)→ eiqθ/nc̃q(n) , (5.10)

which does not affect the state (5.9). It is a unitary transformation, so it does not affect

the complexity, as discussed in section 4.1. This is also in agreement with the result for

the bosonic complexity (3.13) which is independent of the phase of α. We find that the

most convenient choice for the present calculation is to set θ = π/2.
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In this case the off-diagonal block B(n) of the transformation matrix M(n) vanishes

identically, and the non-vanishing entries of A(n) are given by

A(n)i(i+nj) =




J|j|

(
2|α|√
n

)
(j ≤ 0)

(−1)jJ|j|

(
2|α|√
n

)
(j > 0)

, (5.11)

The relative covariance matrix ∆(n) is made of two identical blocks

∆(n) =

(
A(n)CAT (n)C 0

0 A(n)CAT (n)C

)
, (5.12)

with C given in (4.10). We can observe that AT (n) and A(n) are related by an orthogonal

transformation

AT (n) = OTA(n)O (5.13)

with Oij = (−1)iδij , which is symmetric and also commutes with C. The diagonal block can

be rewritten as (A(n)OC)2, so the problem is reduced to the diagonalization of A(n)OC.

We have not been able to obtain the eigenvalues analytically. Instead, we notice that

the matrix elements A(n)ij (and those of A(n)OC as well, they just differ by some minus

signs) are of the form of Bessel functions Jν(z) with index ν = |i−j| and argument z = 2α√
n

.

Recalling the power series expansion

Jν(z) =
(z

2

)ν ∞∑

k=0

(
− z2

4

)k

k!Γ(ν + k + 1)
, (5.14)

we see that for small z the matrix is dominated by the diagonal elements, while off-diagonal

ones are suppressed exponentially with the distance from the diagonal. This has the conse-

quence that the eigenvalues can be computed numerically with good accuracy, and they are

weakly dependent on the cutoff that we put on the length of the matrix considered. One has

to keep in mind that each entry in eq. (5.12) contains the full contributions of all the modes.

Result with p = 1 norm. In figure 2 we plot the complexity with p = 1 norm, as a

function of α, for different values of the number n, the excited bosonic mode. The cutoff

is chosen to be 10n, although the result does not depend on it. We observe that the ratio

between the complexity Cp=1 and |α|√
n

which is the argument of the Bessel function, is

constant in α.

Therefore, we claim that the complexity between the bosonic ground state |GNB 〉 and

the coherent state |α, n〉 generated from it by using the Schatten p = 1 norm is

Cp=1(|GNB 〉 , Un(α) |GNB 〉) = 4
√
n|α| (5.15)

where we have taken into account the two diagonal blocks and an overall factor 1/2 in (4.16).

Comparing to the result (3.13) obtained in terms of bosonic gates, we see that the fermionic

complexity has an extra dependence on the excitation mode n.
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Figure 2. Complexity Cp=1 over α√
n

is constant in |α|, for n ∈ [20, 100] with an interval of 20,

where n labels the bosonic excitation b†n in (3.3). The cutoff on the size of the matrices A(n) and

B(n) is set equal to 10n.

�������
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α
n
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25
C

n=2
n=4
n=6
n=8
n=10

Figure 3. Complexity Cp=2 increases when |α| increases for n ∈ [2, 10] with an interval of 2, where

n labels the bosonic excitation b†n in (3.3). The length of the matrices A(n) and B(n) is cut to be

twenty times of the bosonic excitation n for the plot.

Result with p = 2 norm. The Schatten p = 2 norm, as aforementioned, endows the

complexity with the meaning of geodesic length on the gates’ manifold. In figure 3, we

plot the complexity similar to the previous case with different number of excitations n. We

see here that the complexity is still increasing but not at all in a linear manner. The rate

of the increase in each curve decreases with |α|, consistently with the monotonicity of the

p−norms.

Finally the complexity with the p = 2 norm is bounded by p = 1 norm result

C(|GNB 〉 → Un(α) |GNB 〉) = Cp=2(|GNB 〉 → Un(α) |GNB 〉) ≤ 4
√
n|α|. (5.16)

5.3 Complexity for bosonic coherent states with shifts in more modes

As has been considered in section 3, one can also extend the result (5.15) to shifts

in more modes in terms of fermionic gates, i.e., the complexity between |GNB 〉 and

Un1(α1) · · ·Unk(αk) |GNB 〉. Like for the single mode shift, the complexity would be inde-

pendent of which bosonic ground state we are considering. Thus for simplicity as in the
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(a) Two-mode shifts, Cp=1.
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(b) Two-mode shifts, Cp=2.

Figure 4. Complexity for two-mode shifts with n1 = 10, n2 = 17. The cutoff is chosen to be

N = 200 for the two-mode shift covariance matrice, which is similar to one of the diagonal blocks

in (5.12).

last section, one should focus on the case that |GNB 〉 is chosen to be the fermionic vacuum

|0〉. The procedure is quite similar, first we have to obtain the transformation between the

old and new basis in the following way,

ĉl = U †nk(αk)U
†
nk−1

(αk−1) · · ·U †n1
(α1)clUn1(α1)Un2(α2) · · ·Unk(αk)

=
∑

j,m,...,i,q

R
(k)
lj (αk, nk)R

(k−1)
jm (αk−1, nk−1) · · ·R(1)

iq (α1, n1)cq (5.17)

where

U †nk(αk)clUnk(αk) =
∑

j

R
(k)
lj (αk, nk)cj , (5.18)

and the entries of R(k)(αk, nk) can be read out from (5.4) and (5.5). Since U †nk(αk)s are all

commuting among themselves, R(k)(αk, nk)s forming a matrix representation are totally

commuting as a result. In general, the arguments αk are complex numbers αk = |αk|eiθk ;

one overall phase can be reabsorbed with a redefinition of cj and c̃j as in (5.10). The

numerical results we obtained for the two-mode shifts show that the complexity is in fact

independent of both phases. We conjecture that this is true in general, although we cannot

give a proof.

Result with p = 1 norm. Applying the method in the last section 5.2 for two-mode

shifts Un1(α1) and Un2(α2), one could obtain the complexity Cp=1 plotted as in figure 4a

where n1 and n2 are taken to be n1 = 10 and n2 = 17. From the plot, we can see that for the

|α2| = 0 curve, the complexity is a linear function of |α1| with a proportionality constant

being 4
√
n1. While for the other |α2| 6= 0 curves, we see that as |α1| becomes dominant they

asymptotes to be linear in |α1| again with the same slope as for the curve |α2| = 0. There-

fore, from the shape of the curves, we could deduce that the complexity for two-mode shift is

Cp=1(|GNB 〉 , Un1(α1)Un2(α2) |GNB 〉) = 4
√
n1|α1|2 + n2|α2|2, (5.19)
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which fits nicely with the results and reduces to (5.15) when |α2| = 0. It is reasonable to

suppose that the result will generalize to multi-mode shifts as follows:

Cp=1(|GNB 〉 , Un1(α1)Un2(α2) · · ·Unk(αk) |GNB 〉) = 4

√√√√
k∑

i=1

ni|αi|2 . (5.20)

Result with p = 2 norm. We plot the complexity Cp=2 with the same setup in figure 4b.

As in figure 4a, the complexity increases as either α1 or α2 increases, and all the curves

converge to a certain curve as |α1|√
n1

becomes much larger than |α2|√
n2

, which is expected since

then the effect of the first shifting mode becomes dominant.

Finally, the upper bound for the complexity with Schatten p = 2 norm is given by

Cp=2(|GNB 〉 , Un1(α1)Un2(α2) |GNB 〉) ≤ 4
√
n1|α1|2 + n2|α2|2 , (5.21)

and similarly for the general case.

6 A class of fermionic and bosonic Gaussian states

In the previous sections, we have shown that the bosonic coherent states of the type in (3.14)

are fermionic gaussian states and we have also seen how to obtain the corresponding com-

plexity by using Fubini-Study method and Nielsen method in terms of bosonic gates and

fermionic gates respectively. However the bosonic coherent states are only a subset of all

the fermionic gaussian state, whereas a state that is fermionic gaussian is not generically

also bosonic gaussian.

In this section we show that there is a large class of states that are simultaneously

bosonic and fermionic gaussian. This allows us to study the effect that different choices of

gates have on the complexity of a given state, since in the fermionic description we allow

gates that are fermion bilinears, whereas in the bosonic description we use gates that are

bosonic bilinears. Notice that neither set of gates is a subset of the other, so we cannot

establish a priori a bound between the two complexities.

6.1 A bosonisation identity

Starting with the fundamental bosonisation formula (2.7), it is possible to obtain the

following relation [32]:

:iψ†(x)∂xψ(x):=
2π2

L2
(N̂+N̂2)+

π

L
∂xφ(x)+

1

2
:(∂xφ(x))2: +

2π

L
N̂∂xφ(x)+

i

2
∂2
xφ(x) . (6.1)

Taking the integral over space of this relation, we obtain on the two sides the fermionic and

bosonic hamiltonian respectively, which is the basic property of the bosonisation formalism.

Formula (6.1) shows that the equality holds at the level of the hamiltonian density, up to

total derivative terms which, crucially for our purposes, are linear in the boson field, hence

fermion bilinears, if we work on a subspace of fixed particle number. For definiteness we

can consider the case N̂ = 0, i.e., the module with fermion number zero. Therefore if we

consider the inhomogeneous hamiltonian Hf =
∫
dxf(x) :iψ†(x)∂xψ(x):, dependent on an
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arbitrary function f(x), the corresponding ground state will be fermionic gaussian, and

also bosonic gaussian.

It is unlikely that further identities of this type exist, therefore we conjecture that the

states obtained this way are the only ones that are gaussian in both descriptions. If we

write down the same relation in Fourier components, taking

f(x) =
∑

k

fke
i 2πkx
L (6.2)

and integrating each term of (6.1) multiplied by f(x) over the whole space [−L/2, L/2]

gives

∫ L/2

−L/2

dx

2π
f(x)∂xφ(x) = −i

∑

n>0

√
n(fnb

†
n − f−nbn), (6.3)

∫ L/2

−L/2

dx

2π
f(x) :(∂xφ(x))2: = −2π

L

∑

m,n>0

√
mn

× (fm+nb
†
mb
†
n + f−m−nbmbn − 2fn−mb

†
nbm), (6.4)

∫ L/2

−L/2

dx

2π
f(x)(i∂2

xφ(x)) =
2πi

L

∑

n>0

n3/2(fnb
†
n + f−nbn), (6.5)

∫ L/2

−L/2

dx

2π
f(x) :iψ†(x)∂xψ(x): =

2π

L

∑

l,k

kfl−k :c†l ck:=
2π

L

∑

l,k

k :c†k+lck: fl, (6.6)

putting all terms together we have the following relation

∑

l

l :c†l cl: f0 +
∑

n 6=0,l

(
l +

n− 2N̂ − 1

2

)
c†l+nclfn

=
1

2
(N̂ + N̂2)f0 −

1

2

∑

m,n>0

√
mn(fm+nb

†
mb
†
n + f−m−nbmbn − 2fn−mb

†
nbm) . (6.7)

Once again we see that identifying the coefficient of f0, we obtain the usual identity for

fermionic and bosonic Hamiltonians

∑

k

k :c†kck:=
∑

m>0

mb†mbm +
1

2
(N̂ + N̂2). (6.8)

6.2 An example with one mode

We consider now one particular example of states in this family, corresponding to a function

that has only Fourier modes n = ±2. The operator identity for f2 which can be read from

eq. (6.7) is

∑

l

(
l +

1− 2N̂

2

)
c†l+2cl = −1

2
b†1b
†
1 +

∑

m>0

√
(m+ 2)mb†m+2bm, (6.9)
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and for f−2 we have the hermitian conjugate of the above. The two identities will help

build the following unitary operator Wf (β) = Wb(β), given in terms of fermionic modes

and bosonic modes, respectively, as

Wf (β) = exp

(∑

l

(
l +

1− 2N̂

2

)
(βc†l+2cl − β∗c

†
l cl+2)

)
, (6.10)

Wb(β) = exp

(
−β

2
b†1b
†
1 +

β∗

2
b1b1 +

∑

m>0

√
m(m+ 2) (βb†m+2bm − β∗b†mbm+2)

)
. (6.11)

We will assume β ∈ R and focus on the sector N̂ = 0 in the following part with the

reference state being the fermionic vacuum |0〉. The adjoint action of these operators on

the modes cannot be obtained in an analytically closed form as in (5.4), (5.5). We must

resort to a fully numerical computation. We put a cutoff on the number of modes, find

the matrices representing 1
β lnWf and 1

β lnWb, respectively Rf and Rb, and compute the

exponential of those two matrices, which give the change of basis ξ̃fi = (eβRf )ijξ
f
j and

ξ̃bi = (eβRb)ijξ
b
j . The relative covariance matrix is then computed as in (4.12), (4.17), and

the eigenvalues are found numerically. There is one case when we can find an exact result:

the bosonic covariance ∆b has the form ∆b(β) = eβRbeβR
T
b , and

Rb =

(
Ab Sb
Sb Ab

)
∼
(
Ab + Sb 0

0 Ab − Sb

)
(6.12)

where Ab is antisymmetric and Sb is symmetric, which is consistent with the fact that

∆b ∈ Sp(2N). Equation (6.12) means that ln ∆b can always be block diagonalized as

ln ∆b(β) =

(
ln
(
eβ(Ab+Sb)eβ(Sb−Ab)

)
0

0 ln
(
eβ(Ab−Sb)eβ(−Ab−Sb)

)
)
. (6.13)

We notice that if one of the two blocks is positive definite, the other would be negative

definite, due to the fact that the eigenvalues of ∆b always come in pairs e±r (this is because

∆b is symplectic and orthogonal). In this case one can show that the antisymmetric part

does not contribute to the complexity; then it is easy to see that, setting Ab = 0 in (6.13),

the complexity Cp=1 can be computed exactly and is linear in the trace of the symmetric part

Sb. However we do not have a criterion to determine when the blocks will be postive definite.

Result with p = 1 norm. The results are shown in figure 5. The behavior appears to

be very different for bosons and fermions. The bosonic complexity (see figure 5a) grows

linearly without bound; this linear growth can be explained, as discussed above, by the

positive-definiteness of the blocks of the covariance matrix. On comparison, the fermionic

complexity is oscillating (see figure 5b) in a way that suggests a quasi-periodic function. The

maximum complexity of the first peak seems to grow linearly w.r.t. the logarithm of the cut-

off ln(N) as in figure 6a, this is consistent with the fact that the orthogonal group SO(2N)

becomes non-compact as N → ∞. For bosons, on the other hand, this particular class of

states has a complexity that is independent of the cutoff, even though the transformation

at finite β mixes all the modes among themselves and not just a finite number of them.
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Figure 5. The complexity for bosonic and fermionic gaussian states with p = 1 and p = 2 norms.

(a) and (c) represent the bosonic case while (b) and (d) represent the fermionic case. The cutoff is

chosen to be N = 40.
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Figure 6. The maximum complexity for the fermionic case grows w.r.t. the logarithm of the cutoff,

linearly for the p = 1 norm and quasi-linearly for the p = 2 norm.

Result with p = 2 norm. The complexities for gaussian states complexity with p = 2

norm are plotted in figure 5c for the bosonic case and in figure 5d for fermionic one. The

trends appear to be similar as the p = 1 case, except that the values of the complexity are

smaller.
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6.3 An example with two modes

We consider next a function f(x) with two modes; the simplest case would be to use the

operator identities for f±2 and f±3. In this case, the unitary operator for fermions

Wf (β, γ) = exp

[∑

l

(
l +

1− 2N̂

2

)
(βc†l+2cl − β∗c

†
l cl+2)

+
∑

l

(
l + 1− N̂

)
(γc†l+3cl − γ∗c

†
l cl+3)

]
, (6.14)

and for bosons

Wb(β, γ) = exp

[
− β

2
b†1b
†
1 +

β∗

2
b1b1 +

∑

m>0

√
m(m+ 2) (βb†m+2bm − β∗b†mbm+2) (6.15)

−
√

2γb†1b
†
2 +
√

2γ∗b1b2 +
∑

m>0

√
m(m+ 3) (γb†m+3bm − γ∗b†mbm+3)

]
,

depend on two parameters, β and γ, coupling to the n = 2 and n = 3 mode respectively.

For simplicity, we consider the case where β and γ are real and proportional to each other

as γ = mβ. In figure 7, we plotted the complexity for both the bosonic state (figure 7a

and 7c) and the fermionic state (figure 7b and 7d) as a function of β and for various

values of m. We notice that in the bosonic case, the mixing of the modes does not have a

dramatic effect (although the curves are no longer exactly linear), while for fermions the

quasi-periodic behavior is destroyed. Again we observe that the qualitative features are

the same using the p = 1 and the p = 2 norm.

7 Conclusions

In this paper, we made a first step to consider the relations between fermionic and bosonic

field theory complexity. We investigate such relations in the 2D free boson/free fermion

model, where a highly nonlinear exact relation between the scalar field and the fermion

field is present, encoded in eq. (2.7) that expresses the fermion field as the vertex operator

of the scalar field. In this setup, the fermonic Fock space can be decomposed into modules

according to their fermionic number (see eq. (2.12)), and each module can be identified with

the bosonic Hilbert space. Moreover, the space of quadratic operators in one description

is mapped to a space of non-quadratic ones in the other, and this allows us to study how

the choice of the set of allowed gates influences the complexity of an operator.

In the current framework of calculable field theory complexity, not all the states can

be treated on equal footing. We identified two classes of states that can be considered from

both sides. The first type is bosonic-coherent and fermionic-gaussian, a direct consequence

of eq. (2.6) where a single bosonic operator is a sum of bilinears of fermionic ones. We ap-

plied the Fubini-Study metric method on the bosonic side, with the analytical results given

in (3.13) for a single mode shift and in (3.19) a generalization to multi-mode shift. The gen-

eral multi-mode result shows that different modes are orthogonal in the FS metric which is
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Figure 7. The complexity for bosonic and fermionic gaussian states with p = 1 and p = 2 norms.

(a) and (c) represent the bosonic case while (b) and (d) represent the fermionic case. The cutoff is

chosen to be N = 24 and the ratio varies from 0 to 1 with an interval of 0.25.

a flat Euclidean metric. On the fermionic side, we applied instead the Nielsen method de-

veloped in [2], with numerical result plotted in figure 2, 4a for Schatten p = 1 norm, and fig-

ure 3, 4b for p = 2 norm. Based on those numerics, an analytical result for multimode shift

with p = 1 norm is obtained in eq. (5.20), which differ from the bosonic result (3.19) by an

extra dependence on the mode number. This means that if we assign a mode-number depen-

dent cost in the bosonic case, the two results would be equivalent up to a total factor. This

result is a bit surprising, since it is for the p = 2 norm that we can interpret the complexity

in terms of Riemannian geometry, so we should expect that the FS metric would compare

more directly to that case. The p = 1 norm gives the space the structure of a Finsler

manifold. It would be interesting to understand better the structure of this geometry;

this could also shed some light on the relation between bosonic states and fermionic states

holographically, since bosonic coherent states in the bulk constitute a sector of states that

can be explcitly described both in the bulk and in the boundary (see the recent work [37]).

The second class of states is identified through the relation (6.1) which is a local (in

space) relation between bosonic bilinears and fermionic ones, thus relating the gaussian

states on both sides. These states can be understood as the ground states for an inhomo-

geneous Hamiltonian, obtained integrating (6.1) with an arbitrary function f(x), that has

the interpretation of a space-dependent Fermi velocity. We obtain a one-function family of

bigaussian states, out of which we studied some of the simplest cases using Nielsen method.

For the case of a function with the only Fourier component f±2 = α, the numerical results

for bosons and fermions are plotted in figure 5, which show qualitatively the same behavior
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using the p = 1 and p = 2 norm. The most notable features are: the bosonic complexity

grows linearly with α, and is independent of the UV cutoff, while the fermionic complexity

is roughly periodic in α, reaching peaks with value scaling like lnN in the cutoff. This

shows that the states are special in some sense, since a generic point in the group manifold

SO(2N) would be at a distance ∼
√
N from the identity (at least in the p = 2 norm).

We also considered the next simplest two-mode case, with components f2 and f3. The

results, plotted in figure 7, show that the effect of the mixing of the modes is small on the

bosonic complexity, but more dramatic one on the fermionic one. It would be interesting

to understand what is the behavior for a generic function f .

Incidentally, it would be also interesting to know whether these bi-Gaussian states

have applictions in situations of physical interest (e.g., in problems of electron transport

in 1D [38]).

A natural extension of our work would be to consider the interacting model, namely

the massless Thirring fermion model [39] that is dual to a free compact boson. In this case

one can hope that the free theory on one side will give insight into the complexity of an

interacting theory. The massive Thirring model is dual to a sin-Gordon model, it would

be interesting to see if this case could be analyzed using integrability techniques.
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A Orthogonality of the rotational matrix M(n) for α ∈ R

The orthogonality is independent of the bosonic mode n, for simplicity, in this section we

will take n = 1, thus neglect the explicit dependence of n for the matrices. Since A and B

are both symmetric, which means

MMT =

(
A2 +B2 BA−AB
AB −BA A2 +B2

)
. (A.1)

To prove the orthogonality of M is to show that (A2 +B2)ik = δik and (AB −BA)ik = 0,

this will be given explicitly in the following part.

A.1 (A2 +B2)ik = δik

To start with, k is required to be k = i + 2m(m ∈ Z) since it is easy to see that if k and

i differ by an odd number the corresponding entry would give zero. The diagonal entries
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correspond to the case m = 0, which are given as

(A2 +B2)ii =
∑

r

Ai(i+2r)A(i+2r)i +Bi(i+2r+1)B(i+2r+1)i

=
∑

r

J2
|2r| +

∑

r

J2
|2r+1|

= J2
0 + 2

∑

r=1

J2
r = 1 (A.2)

which is known as Neumann’s theorem of Bessel functions. Without loss of generality, we

will assume that m > 0 in the following case for the off-diagonal entries. The calculation

shows

(A2 +B2)ik =
∑

r>m

(−1)mJ2rJ2(r−m) +
∑

r≥m
(−1)mJ(2r+1)J2(r−m)+1

+
∑

0≤r≤m
(−1)mJ2rJ2(m−r) +

∑

0≤r<m
(−1)m+1J2r+1J−1−2(r−m)

+
∑

r<0

(−1)m(J−2rJ2(m−r) + J−2r−1J−1−2(r−m))

= (−1)m
∑

r≥1

JrJ2m+r + (−1)m
2m∑

r=0

(−1)rJrJ2m−r + (−1)m
∑

r≥1

JrJ2m+r

= (−1)m




2m∑

r=0

(−1)rJrJ2m−r + 2
∑

r≥1

JrJ2m+r


 = 0 (A.3)

where in the second step we used the property of Bessel function J−l = (−1)lJl and the

last step is another theorem of Neumann. Therefore, we have proved that

A2 +B2 = 1 (A.4)

is an identity matrix.

A.2 (AB −BA)ik = 0

In this case, the non-zero entries would require k = 2m + 1(m ∈ Z). The calculation

follows,

(AB)i(i+2m+1) =
∑

r

Ai(2r+i)B(2r+i)(i+2m+1)

=
∑

r

(−1)ri|(2(m−r)+1|−1J2|r|J|2(m−r)+1| (A.5)

and

(BA)i(i+2m+1) =
∑

r

Bi(2r+1+i)A(2r+i)(i+2m+1)

=
∑

r

(−1)m−ri|2r+1|−1J2|m−r|J|2r+1|

=
∑

r

(−1)ri|(2(m−r)+1|−1J2|r|J|2(m−r)+1| (A.6)
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therefore,

(AB −BA)ik = 0. (A.7)

Combining (A.4) and (A.7), one shows that M is an orthogonal matrix as expected.
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