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We introduce a new variable selection method, called SgenoLasso, that handles extreme data.
Our method relies on the construction of a specific statistical test, a transformation of the data
and by the knowledge of the correlation between regressors. It is appropriate in genomics since
once the genetic map has been built, the correlation is perfectly known. This new technique
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1. Introduction

1.1. Context and goal of the study

As in [1, 2], we study a backcross population: A×(A×B), where A and B are purely
homozygous lines and we address the problem of detecting Quantitative Trait Loci,
so-called QTL (genes influencing a quantitative trait which is able to be measured)
on a given chromosome. The trait is observed on n individuals (progenies) and we
denote by Yj , j = 1, ..., n, the observations, which we will assume to be independent
and identically distributed (i.i.d.). The mechanism of genetics, or more precisely
of meiosis, implies that among the two chromosomes of each individual, one is
purely inherited from A while the other (the “recombined” one), consists of parts
originated from A and parts originated from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance on
[0, T ] is called the genetic distance, it is measured in Morgans (see for instance
[3, 4]). The genome X(t) of one individual takes the value +1 if, for example, the
“recombined chromosome” is originated from A at location t and takes the value
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−1 if it is originated from B. The admitted model for the stochastic structure of
X(.) is called the Haldane model [5]. It states that:

X(0) ∼ 1

2
(δ+1 + δ−1), X(t) = X(0)(−1)N(t)

where for any b ∈ R, δb denotes the point mass at b and N(.) is a standard
Poisson process on [0, T ]. In a more practical point of view, the Haldane model [5]
assumes no crossover interference and the Poisson process represents the number
of crossovers on [0, T ] which happen during meiosis. In what follows, r(t, t′) will
denote the probability of recombination between two loci (i.e. positions) located at
t and t′. Calculations on the Poisson distribution show that

r(t, t′) := P
(
X (t)X

(
t′
)

= −1
)

= P
(∣∣N (t)−N

(
t′
)∣∣ odd

)
=

1

2

(
1− e−2|t−t′|

)
,

we set in addition

r̄(t, t′) = 1− r(t, t′), ρ(t, t′) = e−2|t−t′|.

We assume an “analysis of variance model” for the quantitative trait (see [3] for
instance):

Y = µ +

m∑
s=1

X(t?s) qs + σε (1)

where µ is the global mean, ε is a Gaussian white noise independent of X(.), σ2

is the environmental variance, m is the number of QTLs, and qs and t?s denote
respectively the QTL effect and the location of the sth QTL. Indeed, it is well
known that there is a finite number of loci underlying the variation in quantitative
traits (e.g. in aquaculture and livestock, see [6]). Besides, we will consider 0 < t?1 <
... < t?m < T . We denote by ~t? the vector (t?1, · · · , t?m).

We will study the concept of QTL mapping: we will look for associations between
allele variations at the QTLs and variation in the quantitative trait of interest.

Usually, in the classical problem of QTL mapping, the “genome information”
is available only at fixed locations t1 = 0 < t2 < ... < tK = T , called genetic
markers. Note that in the following, the word “genotype” will refer to the genome
information at all the marker locations. So, usually an observation is

(Y, X(t1), ..., X(tK))

and the challenge is that the number m of QTLs and their locations t?1, ..., t?m are
unknown.

In this paper, we consider the classical problem, but in order to reduce the
costs of genotyping, a selective genotyping has been performed: we consider two
real thresholds S− and S+, with S− 6 S+ and we genotype if and only if the
phenotype Y is extreme, that is to say Y 6 S− or Y > S+. Selective genotyping
was first introduced by [7] who noticed that most of the information about QTL is
present in the extreme phenotypes (i.e. extreme traits). Later, [8] formalized this
approach and called it selective genotyping (cf. our studies [9, 10] for more details).
Although genotyping costs have largely dropped recently, selective genotyping or
extreme sampling, is still a relevant concept in the modern genomic era. Today,
application fields of selective genotyping lie in Genome Wide Association Study
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(GWAS) (e.g. plants [11], animals [12], humans [13]), and in Genomic Selection
(GS). GWAS is a popular QTL mapping technique and GS is a very hot topic in
genomics (e.g. plants [14, 15]), that consists in selecting individuals on the basis
of genomic predictions. We can also find applications of selective genotyping in
biotechnology [16].

If we call X(t) the random variable such as

X(t) =

{
X(t) if Y /∈ [S− , S+]

0 otherwise ,

then, in our problem, one observation is now(
Y, X(t1), ..., X(tK)

)
.

Note that with our notations:

• when Y /∈ [S− , S+], we have X(t1) = X(t1), ..., X(tK) = X(tK)
• when Y ∈ [S− , S+], we have X(t1) = 0, ..., X(tK) = 0, which means that the

genome information is missing at the marker locations.

We consider that we have n observations
(
Yj , Xj(t1), ..., Xj(tK)

)
, j = 1, . . . , n

which are i.i.d. . The main aim of our study is to propose a new variable selection
method to estimate the number m (i.e. m > 1) of QTLs, their locations t?1, ...,
t?m and their effects q1, ..., qm. Since our new method is built on a very popular
technique in genetics (see [3, 4]), called the “Interval Mapping” ([8]), let us briefly
recall this concept. “Interval Mapping” consists in scanning the genome, and leads
to the study of stochastic processes along the genome. When there is only one
QTL (i.e. m = 1), the location t?1 is considered as an unknown parameter t and the
likelihood process will also depend on this parameter t. The absence of a QTL is
given by the null hypothesis H0:“q1 = 0,” and the likelihood ratio test (LRT) of H0

against its alternative, has test statistic supt Λn(t), where Λn(t) is the LRT statistic
at location t. Note that arg supt Λn(t) is a natural estimator of the QTL location
t?1. In statistics, the distributions of the “score process”, Sn(·), and of the “LRT
process”, Λn(·), have been studied extensively by [2, 17–23] under the complete data
situation (i.e. S− = S+), and more recently by [10, 24] under selective genotyping.
However, although the use of the test statistic sup Λn(.) is appropriate for testing
and localizing one QTL on [0, T ], it is not so rewarding when more than one QTL
(i.e. m > 1) lie on [0, T ].

So, the main aim of our study is to propose a new variable selection method
to estimate the number m (i.e. m > 1) of QTLs, their locations and their effects,
with the help of the “score process” and the “LRT process”. Our new method,
suitable under selective genotyping and under the complete data situation, will be
helpful for building a prediction model in GS. The programs used in this study are
available at “http://charles-elie.rabier.pagesperso-orange.fr/doc/articles.html”.

1.2. Roadmap

In Section 2, we present our theoretical results. Theorem 2.2 gives the asymptotic
distribution of the score process and the LRT process under the alternative hypoth-
esis that there exist m QTLs located at t?1, ..., t?m with effects q1, ..., qm. Lemma
2.3 gives the Asymptotic Relative Efficiency (ARE) with respect to the complete
data situation. Recall that the ARE determines the sample size required to obtain
the same local asymptotic power as the one of the test under the complete data
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situation where all the genotypes are known. Theorem 2.4 shows that the signal is
largely increased by genotyping extreme individuals, provided that the phenotyp-
ing is free. Corollary 2.5 deals with interactions between QTLs (so-called epistasis
phenomenon). Indeed, it is well known that interactions can be responsible for a
non-negligible part of the genetic variability of a quantitative trait (see for instance
[3]). According to Corollary 2.5, interaction effects are unidentifiable since they are
not present in the mean function of the process. Last, Corollary 2.6 tackles the
reverse configuration of selective genotyping, where only non extreme individuals
are genotyped (i.e. the individuals for which Y ∈ [S−, S+]).

The theoretical results of Section 2 allow us to propose a new method, called
SgenoLasso (for Selective genotyping Lasso), to estimate the number of QTLs,
their positions and their effects using the Lasso ([25]). This method is described in
Section 3. SgenoLasso differs from the classical Lasso since it models explicitly the
extremes (see the appendix for some intuition on asymptotic theory). SgenoLasso
enjoys all known statistical properties of Lasso since the problem has been replaced
in a L1 penalized regression framework. Typically, it is not the case for Lasso in
presence of extreme data. As its famous ancestor Lasso, SgenoLasso has multiple
cousins, each one imposing its own penalty on parameters: we can cite for instance
SgenoElasticNet (a mixture of L1 and L2 penalties) and SgenoGroupLasso (penalty
by group). Section 4 investigates theoretical properties of SgenoLasso, such as the
rate of convergence for prediction and the consistency of the variable selection.

Next, Section 5 illustrates performances of our new method and proposes a com-
parison with existing methods in a GWAS context. As expected, the signal to noise
ratio is largely increased by considering extreme individuals. SgenoLasso and its
cousins outperformed existing methods (Lasso, [25], Group Lasso, [26], Elastic Net,
[27], RaLasso, [28] and BayesianLasso, [29]), specially when a unidirectional selec-
tive genotyping was performed (i.e. only the individuals for which Y > S+ are
genotyped, i.e. the so-called best individuals). Section 5.5 is devoted to a rice data
analysis. Our study ends with Section 6 where we show that SgenoLasso presents
the best performances for genomic prediction.

2. Theoretical results

For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, let us define t` and tr as :

t` = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (t`, tr).
Let us consider the case m = 1 (i.e. one QTL located at t?1), and let θ1 = (q1, µ, σ)

be the parameter of the model at t fixed. Since all the information is contained
in the flanking markers of the putative QTL location t, the focus is only on the
triplet

(
Y, X(t`), X(tr)

)
. According to [10], the likelihood of

(
Y, X(t`), X(tr)

)
with respect to the measure λ ⊗ N ⊗ N , λ being the Lebesgue measure, N the
counting measure on N, is ∀t ∈ [t1, tK ]\TK :

Lt(θ
1) =

[
p(t) f(µ+q1,σ)(Y )1Y /∈[S−,S+] + {1− p(t)} f(µ−q1,σ)(Y )1Y /∈[S−,S+] (2)

+
1

2
f(µ+q1,σ)(Y )1Y ∈[S−,S+] +

1

2
f(µ−q1,σ)(Y )1Y ∈[S−,S+]

]
g(t)

where f(µ,σ) is the Gaussian density with parameters (µ, σ), p(t) is the probability
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P
{
X(t) = 1 | X(t`), X(tr)

}
and

p(t)1Y /∈[S−,S+] = Q1,1
t 1X(t`)=11X(tr)=1 + Q1,−1

t 1X(t`)=11X(tr)=−1

+Q−1,1
t 1X(t`)=−11X(tr)=1 + Q−1,−1

t 1X(t`)=−11X(tr)=−1

with

Q1,1
t =

r̄(t`, t) r̄(t, tr)

r̄(t`, tr)
, Q1,−1

t =
r̄(t`, t) r(t, tr)

r(t`, tr)

Q−1,1
t =

r(t`, t) r̄(t, tr)

r(t`, tr)
, Q−1,−1

t =
r(t`, t) r(t, tr)

r̄(t`, tr)
.

We can notice that we have

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

t .

Moreover, in formula (2), g(t) is the following quantity:

g(t) = P
{
X(t`), X(tr)

}
1Y /∈[S−,S+] + 1Y ∈[S−,S+] (3)

with

P
{
X(t`), X(tr)

}
1Y /∈[S−,S+] =

1

2

{
r(t`, tr)1X(t`)X(tr)=1 +r(t`, tr)1X(t`)X(tr)=−1

}
.

As a result, the likelihood is a function of Y , X(t`), X(tr), which was not obvious at
first reading. However, the expression given in formula (2) will be very convenient
for the generalization to several QTLs. Note that the true probability distribution
is Lt?1(θ1).
The score statistic of the hypothesis “q1 = 0” at t, for n independent observations,
is defined as

Sn(t) =

∂l
n

t

∂q1
|θ10√

Var
(
∂l

n

t

∂q1
|θ10
) , (4)

where Var is the variance, l
n
t denotes the log likelihood at t, associated to n obser-

vations, and θ1
0 = (0, µ, σ) refers to the parameter θ1 under H0. In the same way,

the LRT statistic at t, for n independent observations, is defined as

Λn(t) = 2
{
l
n
t (θ̂1)− lnt (θ̂1|H0

)
}

, (5)

where θ̂1 is the maximum likelihood estimator (MLE) of the parameters (q1, µ, σ),

and θ̂1|H0
the MLE under H0. As previously said, the processes Sn(·) and Λn(·)

respectively defined by (4) and (5) for t ∈ [0, T ] are respectively called the score
process and the LRT process.
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2.1. Main results

Before giving our first main result, let us define the following quantities:

γ := PH0
(Y /∈ [S−, S+]) (6)

γ+ := PH0
(Y > S+) (7)

γ− := PH0
(Y < S−) (8)

A := σ2
{
γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
(9)

where ϕ(x) and zα denote respectively the density of a standard normal distribu-
tion taken at the point x, and the quantile of order 1 − α of a standard normal
distribution.
When there is no selective genotyping (complete data situation): γ = 1, γ++γ− = 1
and A = σ2.

Notation 2.1: ⇒ is the weak convergence,
F.d.→ is the convergence of finite-

dimensional distributions and
L−→ is the convergence in distribution.

Our first main result is given in the following theorem. We obtain the asymp-
totic distribution of the score process Sn(·) and the LRT process Λn(·) under the
null hypothesis that there is no QTL on [0, T ] and under the general hypothesis
that there exist m QTLs on [0, T ]. The originality is that the test processes are
constructed under the hypothesis that there is a QTL at t and we look for their
asymptotic distributions under the general hypothesis that there exist m QTLs on
[0, T ]. This leads to asymptotic processes with mean function depending on the
locations and effects of the m QTLs. Using a variable selection method we will
propose in the next section a new QTL detection procedure.

Theorem 2.2 : Suppose that the parameters (q1, ..., qm, µ, σ
2) vary in a com-

pact and that σ2 is bounded away from zero, and also that m is finite. Let H0

be the null hypothesis of no QTL on [0, T ], and let define the following local al-
ternatives Ha~t?: “there are m QTLs located respectively at t?1, · · · , t?m with effect
q1 = a1/

√
n, · · · , qm = am/

√
n where a1 6= 0, · · · , am 6= 0”. Then, as n→ +∞,

Sn(.)⇒ V (.) , Λn(.)
F.d.→ V 2(.) , sup Λn(.)

L−→ supV 2(.) (10)

under H0 and Ha~t? where V (.) is the Gaussian process with unit variance such as

V (t) =
α(t) V (t`) + β(t) V (tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
,

Cov {V (tk), V (tk′)} = ρ(tk, tk′) = e−2|tk−tk′ | ∀(tk, tk′) ∈ TK × TK

with α(t) = Q1,1
t − Q

−1,1
t , β(t) = Q1,1

t − Q
1,−1
t . The mean function of V (·) is

such that:

• under H0, m(t) = 0
• under Ha~t?,

m~t?(t) =
α(t) m~t?(t`) + β(t) m~t?(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)



November 10, 2021 SgenoLassoRabierDelmasFinalForHal

The SgenoLasso and its cousins for selective genotyping and extreme sampling 7

where

m~t?(t`) =

m∑
s=1

as
√
A ρ(t`, t?s) / σ

2 , m~t?(tr) =

m∑
s=1

as
√
A ρ(tr, t?s) / σ

2 ,

and A is defined in (9).

The proof of Theorem 2.2 is given in Section 2 of Supplement A. It is based on
[10, 30–32]. The case m > 1 differs from the case m = 1 since the true proba-
bility distribution is the one of

(
Y,X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

)
. Indeed, all

the information is contained in the flanking markers of all QTLs locations. This
probability distribution is given in Section 1 of Supplement A.

According to Theorem 2.2, under this general alternative, the LRT process is still
asymptotically the square of a “non linear interpolated process”, as in Theorem
4.1 of [10] where the focus was only on the case m = 1 under selective genotyp-
ing. Besides, as in [10], the difference between the complete data situation and
the selective genotyping approach is translated by a difference between the mean
functions of the asymptotic processes: they are proportional of a factor linked to
the selective genotyping. However, contrary to [10] and [23], the mean function
depends here on the number of QTLs, their positions and their effects.

Note that Theorem 2.2 gives also the asymptotic distribution of the statistic
sup Λn(.) when m > 1, since this test can be viewed as a global test or max test (see
for instance [33]). In this context, sup Λn(.) matches the test statistic corresponding
to the statistical test with the smallest p-value in a multiple testing framework.
It could be used before performing our new gene mapping method SgenoLasso, in
order to look for “some signal” on the chromosome.

In the following lemma, we study the Asymptotic Relative Efficiency (ARE).
Recall that the ARE determines the relative sample size required to obtain the same
local asymptotic power as the one of the test under the complete data situation
where the genome information at markers is known for all the individuals.

Lemma 2.3: Let κ denote the Asymptotic Relative Efficiency, then we have

i) κ = γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

ii) κ reaches its maximum for γ+ = γ− = γ/2 .

where ϕ(x) and zα denote respectively the density of a standard normal distribu-
tion taken at the point x, and the quantile of order 1 − α of a standard normal
distribution.

This lemma is a generalization of Theorem 4.2 of [10] where the focus was only
on the case m = 1. To prove Lemma 2.3, just use the same proof as the one of
Theorem 4.2 of [10].

According to i) of Lemma 2.3, the ARE with respect to the complete data
situation, does not depend on the number of QTLs m, the constants a1, ..., am
linked to the QTL effects, and the QTLs locations t?1, ..., t?m. Indeed, since the mean
functions (complete data situation and selective genotyping) are proportional of a
factor

√
A/σ, it is obvious that the ARE does not depend on those parameters.

As a consequence, we have exactly the same ARE as the one obtained in [10] for
m = 1. On the other hand, according to ii) of Lemma 2.3, if we want to genotype
only a percentage γ of the population, we should genotype the γ/2% individu-
als with the largest phenotypes and γ/2% individuals with the smallest phenotypes.
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Let us consider now n? individuals for a selective genotyping experiment, and
let us assume that we have the relationship n = n?γ. In other words, we focus on
the case where, for economical reasons, we are allowed to genotype only n individ-
uals. By considering n = n?γ, we are allowed to genotype n extreme individuals,
provided that the overall population size has been increased to n?. In this context,
following the same lines as the proof of Theorem 2.2, we obtain:

Theorem 2.4 : Suppose that the parameters (q1, ..., qm, µ, σ
2) vary in a compact

and that σ2 is bounded away from zero, and also that m is finite. Assume that n? =
n/γ. Let H0 be the null hypothesis of no QTL on [0, T ], and let define the following
local alternatives Ha~t?: “there are m QTLs located respectively at t?1, · · · , t?m with
effect q1 = a1/

√
n, · · · , qm = am/

√
n where a1 6= 0, · · · , am 6= 0.” Then, as n →

+∞,

Sn?(.)⇒ V?(.) , Λn?(.)
F.d.→ V 2

? (.) , sup Λn?(.)
L−→ supV 2

? (.) (11)

under H0 and Ha~t? where V?(.) is the Gaussian process with unit variance such as

V?(t) =
α(t) V?(t

`) + β(t) V?(t
r)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
,

Cov {V?(tk), V?(tk′)} = ρ(tk, tk′) = e−2|tk−tk′ | ∀(tk, tk′) ∈ TK × TK

with α(t) = Q1,1
t − Q

−1,1
t , β(t) = Q1,1

t − Q
1,−1
t . The mean function of V?(·) is

such that:

• under H0, m?(t) = 0
• under Ha~t?,

m?
~t?

(t) =
α(t) m?

~t?
(t`) + β(t) m?

~t?
(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)

where

m?
~t?

(t`) =

m∑
s=1

as

√
A
γ
ρ(t`, t?s) / σ

2 , m?
~t?

(tr) =

m∑
s=1

as

√
A
γ
ρ(tr, t?s) / σ

2 ,

and A is defined in (9).

As a result, the ratio between the signal corresponding to selective genotyping

and the one matching the complete data situation is equal to

√
A
γσ2

. This quantity

verifies the following relationship√
A
γσ2

=
√
zγ+ ϕ(zγ+)/γ − z1−γ− ϕ(z1−γ−)/γ + 1

and if we are willing to genotype symmetrically (i.e. γ+ = γ−), it becomes√
A
γσ2

=
√

2zγ/2ϕ(zγ/2)/γ + 1 .
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In other words, provided that the phenotyping is free, the signal can be largely
increased, by genotyping extreme individuals (i.e. selective genotyping) instead of
genotyping random individuals (i.e. complete data situation). According to Figure
1, when the selective genotyping is performed symmetrically, the signal correspond-
ing respectively to the cases γ = 0.1, γ = 0.2 and γ = 0.3, is respectively 2.09,
1.80 and 1.61 times larger under selective genotyping than under random geno-
typing. The worst case is obtained when genotyping only the largest phenotypes
(see γ+/γ = 1) or genotyping only the smallest phenotypes (same curve as the one
for γ+/γ = 1). Obviously, when all the individuals are genotyped (γ = 1), all the
efficiencies are equal to one.

Figure 1 around here

2.2. Some corollaries

2.2.1. Model with interactions

It is well known that interactions between QTLs (so-called epistasis phenomenon)
can be responsible for a non-negligible part of the genetic variability of a quan-
titative trait (see for instance [3]). Then, we propose now to include interactions
between QTLs into our model. We will assume that only loci with additive ef-
fects on the trait, are involved in interactions. The “analysis of variance model” of
formula (1) for the quantitative trait becomes

Y = µ +

m∑
s=1

X(t?s) qs +

m−1∑
s=1

m∑
s̃=s+1

X(t?s)X(t?s̃) qs,s̃ + σε (12)

where ε is a Gaussian white noise, and qs,s̃ is the interaction effect between loci t?s
and t?s̃.

Corollary 2.5: Suppose that the parameters (q1, ..., qm, q1,2, ..., qm−1,m, µ, σ
2)

vary in a compact and that σ2 is bounded away from zero, and also that m is
finite. Let define the local alternative

• Ha~t?,b~t?:“There are m additive QTLs located respectively at t?1, ..., t?m with effects

respectively q1 = a1/
√
n, ..., qm = am/

√
n where a1 6= 0, ..., am 6= 0 . Besides,

all these QTLs interact with each other : the interaction effects are respectively
q1,2 = b1,2/

√
n for loci t?1 and t?2, ..., qm−1,m = bm−1,m/

√
n for loci t?m−1 and t?m

where b1,2 6= 0, ..., bm−1,m 6= 0”.

then, with the previous notations, under Ha~t?,b~t? , as n or n? tends to infinity,

results (10) and (11) of Theorem 2.2 and Theorem 2.4 hold.

The proof is given in Section 3 of Supplement A. The interaction effects are
not included in the mean function. In other words, those effects are unidentifiable
when the classical LRT is used. It is due to independent increments of the Poisson
process.

2.2.2. The reverse configuration

Sometimes, for some biological reasons, we are only able to genotype the non
extreme individuals (i.e. the individuals for which Y ∈ [S−, S+]). In this context,
we present the following result.

Corollary 2.6: Under the reverse configuration, that is to say if X(tk) =
X(tk) 1Y ∈[S− , S+], then we have the same results as in Theorem 2.2, Theorem 2.4
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and Corollary 2.5 provided that we replace the quantity A by the quantity B defined
in the following way

B = σ2
{

1− γ − zγ+ ϕ(zγ+) + z1−γ− ϕ(z1−γ−)
}

.

The proof is largely inspired of the proof of Theorem 2.2, Theorem 2.4, Corollary
2.5, and also from [34] where this configuration is studied under the local alternative
of one QTL at t? on [0, T ].

3. A new method for gene mapping

In this section, the goal is to propose a method to estimate the number of QTLs,
their effects and their positions combining results of Theorems 2.2 and 2.4 and a
penalized likelihood method.

Notation 3.1: Gγ,σ denotes respectively

√
A
σ

or

√
A

√
γσ

when the total number of

phenotypic observations is n or n? = n/γ.

In the sequel ñ denotes the total number of phenotypic observations. It may be
n or n?. According to Theorems 2.2 and 2.4, as soon as we discretize the score
process at markers positions, we have the following relationship when ñ is large:

~Sñ = ~m~t? + ~ε + oP (1)

where ~Sñ =
(
Sñ(t1) , Sñ(t2) , ... , Sñ(tK)

)>
, ~ε ∼ N(0,Σ) with Σkk′ = ρ(tk, tk′)

and ~m~t? =
(
m~t?(t1) , m~t?(t2) , ...,m~t?(tK)

)>
.

Since most of the penalized likelihood methods rely on i.i.d. observations, we
will decorrelate the components of ~Sñ keeping only points of the process taken at
marker positions. Recall that Sñ(.) is an “interpolated process”.

Remark 1 : In genomics, once the genetic map is built (see [3] for instance),
the correlation between (the genome information at) markers is perfectly known.
As a consequence, since the correlation between X(tk) and X(tk′) is ρ(tk, tk′), the
matrix Σ is known.

Let us consider the Cholesky decomposition Σ = AA>. We have

A−1~Sñ = A−1B

(
a1Gγ,σ
σ

, ... ,
amGγ,σ
σ

)>
+ A−1~ε + oP (1)

where B is a matrix of size K × m such as Bks = e−2|tk−t?s |, k = 1, · · · ,K and
s = 1, · · · ,m.

Since the number m of QTLs and their positions t?1,...,t?m are unknown, we pro-
pose to focus on a new discretization of [0, T ] corresponding to all the putative
QTL locations: 0 6 t′1 < t′2 < ... < t′L 6 T . Note that although we focus only on
the discretized process at markers locations, we look for QTL not only on markers.
We note ∆l the putative effect at location tl. The model can be rewritten in the
following way:

A−1~Sñ = A−1C (∆1 , ... , ∆L)> + A−1~ε + oP (1) (13)
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where C is a matrix of size K × L such as Ckl = e−2|tk−t′l|, k = 1, · · · ,K and
l = 1, · · · , L.
Last, in order to find the non zero ∆l, a natural approach is to use a penalized
regression and estimate ∆ by:

∆̂Sg(λ, α) = arg min
∆

(∥∥∥A−1~Sñ −A−1C∆
∥∥∥2

2
+ λ pen(α)

)
(14)

where:

pen(α) =
1− α

2
‖∆‖22 + α ‖∆‖1 (15)

and ‖ ‖2 is the L2 norm, ‖ ‖1 is the L1 norm, ∆ = (∆1, ...,∆L)> and λ and α
denote tuning parameters. We define:

∆̂SgenoLasso(λ) = ∆̂Sg(λ, 1) and ∆̂SgEN(λ, α) = ∆̂Sg(λ, α). (16)

Another estimator, based on the group Lasso penalty, will be studied and is
described in Appendix. We leave the study of the Ridge estimator, ∆̂Sg(λ, 0), for

future research, since this estimator is only helpful for prediction.
Our estimators will be compared in section 5.4 with the classical estimators such

as the Lasso ([25]) and its cousins (e.g. [26, 27]). These classical estimators consider
exclusively marker locations. In order to describe a few of them under selective
genotyping, let us define β0 the global mean and βk the putative effect of marker
k. We set β = (β0, β1, . . . , βK)>. In addition, let Mext denote the matrix, where
each row contains the multivariate random variable (1, X(t1), . . . , X(tK)) | Y /∈
[S−, S+] associated to an extreme individual. In the same way, Yext refers to the
column vector containing the phenotypes of the extreme individuals. Indeed, since
the genome information is unknown for the non extreme individuals, the classical
estimators are built only on extreme individuals. According to these notations,
the classical Lasso estimator β̂Lasso(λ), and the classical Elastic Net estimator

β̂EN(λ, α) are the following under selective genotyping:

β̂Lasso(λ) = arg min
β

(
‖Yext −Mextβ‖22 + λ ‖β‖1

)
(17)

β̂EN(λ, α) = arg min
β

(
‖Yext −Mextβ‖22 + λ

{
1− α

2
‖β‖22 + α ‖β‖1

})
. (18)

Note that the Elastic Net penalty is described here in its version implemented in
the R package GLMNet that will be used on simulated data.

4. Asymptotic theory for SgenoLasso under complete Linkage
Disequilibrium

Before studying the theory of SgenoLasso, we have to give precisions regarding
prediction and variable selection of SgenoLasso. As its cousin Lasso, SgenoLasso
is able to select variables and these findings are considered as QTLs. Recall that
SgenoLasso presents the advantage over its cousin to handle extreme data. On the
other hand, in terms of prediction, we have to highlight the fact that SgenoLasso
(in its version declined in formula (16)) will only predict values of a decorrelated
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score process. In what follows, we propose to investigate the rate of convergence
for this prediction and we will also give conditions for consistent variable selection.
We refer to Section 6 for the prediction of the phenotypes Y .

Let us assume that we are under complete Linkage Disequilibrium, i.e. the m
QTLs are located on some markers. Furthermore, let us consider exclusively marker
locations, i.e. L = K and t′l = tk. We have the relationships C = Σ, A−1C = A>

and ∆ = (∆1, ...,∆K)>. When ∆k is null, the corresponding marker is not a QTL,
whereas a non-null ∆k refers to a QTL.

According to formulas (14) and (16), our L1 penalized regression is:

∆̂SgenoLasso(λ) = arg min
∆

(∥∥∥A−1~Sñ −A>∆
∥∥∥2

2
+ λ ‖∆‖1

)
. (19)

Let us normalize all covariables on the same scale. It will replace our problem in
the classical setting where the theory for Lasso is well known (cf. [35] page 108).

Since σ̂2
k := 1

K (AA>)kk = Σkk

K = ρ(tk,tk)
K = 1

K , let us set Ascal :=
√
KA>. Then, let

us define

∆̂SgenoLasso
scal

(λ) := arg min
∆


∥∥∥A−1~Sñ −Ascal∆/

√
K
∥∥∥2

2

K
+ λ

∥∥∥∥ ∆√
K

∥∥∥∥
1

 .

As soon as we set ∆̃ := ∆/
√
K, this problem can be rewritten in the following

way:

ˆ̂
∆SgenoLasso

scal

(λ) := arg min
∆̃


∥∥∥A−1~Sñ −Ascal∆̃

∥∥∥2

2

K
+ λ

∥∥∥∆̃
∥∥∥

1

 . (20)

We can apply Corollary 6.1 of [35] with σ̂ = 1 (cf. our linear model in formula
(13)), that establishes the slow rate of convergence

∥∥∥Ascal(
ˆ̂
∆SgenoLasso

scal

− ∆̃)
∥∥∥2

2

K
= OP

(√
log(K)

K

m∑
s=1

|as| Gγ,σ
σ
√
K

)
(21)

where OP (1) denotes a sequence that is bounded in probability when K → +∞.
On the other hand, assuming that the “compatibility condition” holds, Corollary

6.2 of [35] applies and we obtain the fast rate of convergence:

∥∥∥Ascal(
ˆ̂
∆SgenoLasso

scal

− ∆̃)
∥∥∥2

2

K
= OP

(
log(K) m

K Φ2
0

)
(22)

where Φ2
0 is a compatibility constant. Recall that the number of QTLs m is the

factor linked to the sparsity.
Last, in order to make things clearer for future users, we propose to state the

classical Lasso conditions in the “SgenoLasso” context.
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The β-min condition:

min
16s6m

|as| Gγ,σ
σ
√
K

>> Φ−2

√
m log(K)

K

where Φ2 is a restricted eigen value of the design matrix Ascal.

Recall that TK = {t1, ..., tK} and that Σ is the K × K matrix, where Σkk′ =
ρ(tk, tk′). Note that A>scalAscal/K = AA> = Σ.

The bounded pairwise correlation:

√
m max

k∈TK\T?
m

√ ∑
s∈T?

m|t?s 6=tk
ρ2(tk, t?s)

d2
min(Σ(?,?))

6 C < 1 (23)

where T?
m = {t?1, ..., t?m}, C is a constant, Σ(?,?) is the submatrix of Σ restricted to

QTL loci, and d2
min(Σ(?,?)) refers to the smallest eigenvalue of Σ(?,?).

The irrepresentable condition:∥∥∥Σ(.,?)(Σ(?,?))−1Sign(a1, . . . , am)
∥∥∥
∞

6 C < 1

where ‖x‖∞ = maxj |xj |, Sign(a1, . . . , am) = (Sign(a1), . . . ,Sign(am))>, and Σ(.,?)

is a matrix of size (K −m)×m. Σ(.,?) is the submatrix of Σ where rows refers to
markers not matching QTL locations, and where columns refers to QTL loci.

Note that according to [35], the bounded pairwise correlation implies the irrep-
resentable condition, which implies the compatibility condition. This compatibility
condition ensures the fast rate of convergence for prediction (cf. formula (22)).
On the other hand, the β-min condition and the irrepresentable condition, ensure
consistent variable selection for SgenoLasso under selective genotyping.

5. Illustrations regarding max test and GWAS

5.1. Simulation framework

Data were simulated thanks to the Matlab software. The genome of one individual
was simulated according to Haldane [52]. In particular, the random variable X(0)
representing the genome information at location 0, was drawn from a Bernoulli
distribution (taking values +1 or -1 in our case) with parameter 1/2, and the
recombinations events were obtained by sampling along the genome, independent
random variables from the exponential distribution with parameter 1. This way,
the process N(.) representing the number of recombination events, corresponds to
the standard Poisson process on [0,T]. At each location matching a recombination
event, the sign of the genome information was switched. The phenotype Y was
generated according to formula (1). The variance σ2 was set to 1 in all simulated
data. Next, the score test was obtained at each marker located at tk by computing
the following test statistic:

Tn(tk) =

∑n
j=1(Yj − Y )1Xj(tk)=1 − (Yj − Y )1Xj(tk)=−1√∑n

j=1(Yj − Y )21Xj(tk)6=0
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where Y is the global mean. Note that this test statistic was introduced in Rabier
[9] in a more general framework, and was later used in Rabier [10].

In order to compute the maximum of the process (cf. Section 5.2 below), simu-
lated data were analyzed using Lemma 1 of Azäıs et al. [23], that is to say perform-
ing LRT on markers (by computing the square of score statistics on markers) and
performing only one test in each marker interval if the ratio of the score statistics
on markers fulfills the given condition (cf. Rabier [10]).

In order to compute the SgenoLasso and its cousins, score statistics on markers
were considered and decorrelated thanks to the “chol” function of Matlab that
implements the Cholesky decomposition. Last, data were analyzed using the R
software, because of the large number of available packages dedicated to penalized
regressions (cf. Section 5.4).

5.2. About the max test

We propose to illustrate here our theoretical results regarding the max test. Recall
that it relies on the test statistic, sup Λn(.). The focus is on a sparse map: a chromo-
some of length 1M (T = 1), with 21 markers (K = 21) equally spaced every 5cM. In
this context, Table 1 compares the theoretical power and the empirical power, un-
der different configurations: either 1 QTL (m = 1) at 3cM, either 2 QTLs (m = 2)
at 3cM and 28cM, or 3 QTLs (m = 3) at 3cM, 28cM and 72cM. For all cases,
the absolute value of the constant linked to the QTL effect was equal to 2.8284
(i.e. |as| = 2.8284), allowing to deal with a small QTL effect of 0.2 when n = 200.
The theoretical power was obtained by generating 10,000 paths of the asymptotic
process, whereas 1,000 samples of size n equal to 1,000 , 200 or 100 were considered
for the empirical power. The threshold (i.e. critical value) at the 5% level was set
to 7.84 using the Monte-Carlo Quasi Monte-Carlo method, proposed by Azäıs et
al. [23] and based on Genz [36]. Recall that the threshold remains the same under
selective genotyping as under the complete data situation (cf. Theorem 2.2).

According to Table 1, we can notice a good agreement between the empirical
power and the theoretical power for n = 200. However, the asymptotic seems to be
really reached for n =1,000. We also investigated the behavior of the test under a
selective genotyping performed symmetrically (i.e. γ+ = γ/2). We can observe that
when γ = 0.3, the empirical power still matches the theoretical power for n =1,000.
This validates our theoretical results presented in Theorem 2.2.

Last, the power of the test is reported as a function of the QTL effect signs.
We can see that when the two QTLs at 3cM and 28cM have the same signs, the
power is almost equal to 1 whereas it largely decreases (≈ 15% for γ = 1) when the
signs are opposite. In this case, the max test is clearly not the most appropriate
test to perform. We refer to the recent study of [33] where the authors compared
performances of the max test and the ANOVA in another context.

5.3. Selective genotyping improves the detection process

Figure 2, based on one simulated data set, illustrates the performances of our new
gene mapping method (see Section 3) under selective genotyping. The considered
genome is of length 10M (T = 10), with 201 markers (K = 201) equally spaced
every 5cM. 16 QTLs (m = 16) lie on the interval [0,4] whereas no QTLs are present
on the rest of the genome (i.e. [6,10]). The QTL effects are equal to either +0.2 or
−0.2, each QTL having its own random sign. The presence of QTL is tracked every
2.5cM. As a consequence, 401 regressors (L = 401) are present in the linear model
(formula (13)). In other words, we use the discretization t′l = 0.025(l − 1), l = 1,
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. . ., 401. Recall that this grid is different from the one corresponding to marker
locations: tk = 0.05(k − 1), k = 1, . . ., 201. Figure 2A refers to the case n = 200
whereas Figure 2B focuses on n = 100.

Assuming that, for economical reasons, the geneticist is allowed to genotype only
n individuals, we compare here the case where those n individuals are extreme or
not. We considered n? individuals under selective genotyping and n individuals
under the complete data situation. In other words, our simulation set up follows
Theorem 2.4.

For instance, when n was equal to 100 (γ = 1), n? took the values 1000, 500
and 333 to handle the cases γ = 0.1, 0.2, and 0.3 respectively. According to Figure
2A, the largest estimated effects are the ones corresponding to the case γ = 0.1:
a few QTL effects are estimated at approximately 5 (see around 1M and 4M),
and at −6 around 2M. It was expected since under such selective genotyping (i.e
with n? = n/γ), the quantities ∆l, present in formula (13), are increased by a
factor

√
A/√γ at each gene location. Then, under the configuration studied, the

quantities |a|
√
A/√γ are equal respectively to 5.92, 4.56 and 2.50 when γ takes

respectively the values 0.1, 0.3, and 1. Note that the number of selected regressors
was between 15 and 17 in all studied cases.

Figure 2 around here

In what follows, the L1 ratio will denote the ratio L1 norm of estimated effects
on [0,4] to L1 norm of estimated effects on [0,10]. This L1 ratio is an indicator
of whether or not the detected QTLs belong to the “signal area”. Recall that on
our example, all the simulated QTLs belong to the interval [0,4]. Table 2 reports
in a general framework, the mean L1 ratio over 100 samples of size n = 100 or
n = 200. Different QTL effects are taken into consideration : |qs| is either equal
to 0.2, 0.1, or 0.05. Since a large number of markers are now available in genomic
studies, we also considered a dense map consisting in K =10,001 markers equally
spaced every 0.1cM. Due to this high marker density, the presence of QTL was only
investigated on markers (K = L). For both maps (sparse an dense), we can notice
that whatever the parameter values, the more extremes the genotyped individuals
are, the larger the L1 ratio is. In other words, by considering extreme individuals,
we largely improve the detection process. Besides, we can notice that the more
markers there are, the more powerful the method is.

Last, Table 1 of Supplement B focuses on different ways of performing the
selective genotyping: different ratios γ+/γ are investigated under both maps.
As expected, when only the largest (or the smallest) individuals are genotyped
(γ+/γ = 1), the L1 ratio is the smallest. It confirms our theoretical results pre-
sented in Section 2 and illustrated in Figure 1.

To conclude, selective genotyping is largely more rewarding for localizing genes.

Table 2 around here

5.4. Comparison with existing methods

In this section, we propose to compare our new method with existing methods. We
will concentrate on the Lasso ([25]), the Group Lasso ([26]), the Elastic Net ([27]),
the Bayesian Lasso ([29]), and the RaLasso ([28]).

Recall that the Group Lasso differs from his cousin Lasso, since it allows to handle
a group structure (see [37]). In the context of genomic prediction, the Bayesian
Lasso was used in [38] under selective genotyping. Contrary to the Lasso, the
Bayesian Lasso guarantees an unimodal full posterior, since it relies on a conditional
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Laplace prior. The last method studied here, is the so-called RaLasso ([28]). The
RaLasso can be viewed as a method that models the dependency between regressors
and errors: the loss function can be either quadratic or linear, depending on the
regressor values.

In what follows, the Group Lasso is based on groups of 10 consecutive markers.
For Elastic Net, the value of the parameter α was set to 0.5 (cf. formula (18)). The
Elastic Net, Group Lasso, Bayesian Lasso and RaLasso were computed with the
help of the R packages, GLMNet, gglasso, SafeBayes and hqreg, respectively.

Recall the Huber loss considered in the package hqreg :
loss(t) = t2

2M 1|t|6M + (|t| −M/2) 1|t|>M , where M is a tuning parameter. Huber
loss is quadratic for absolute values less than M and linear for those greater than
M . As soon as we multiply by 2M and that we replace M by α−1, we obtain
formula (2.2) of [28]. Last, we have to mention that the RaLasso incorporates the
Huber loss and a L1 penalty.

Recall that in our simulation framework, the number of QTLs m was set to
16. For Lasso, Elastic Net and Group Lasso, we chose the model for which the
number of parameters was the closest to 16, thanks to the GLMNet package. For
the Bayesian Lasso, we considered a grid search for the learning rate η and chose
the η that maximized the L1 ratio (optimal setting). Last, in order to compute the
RaLasso, we ran a grid search to find the best pair (M , λ). For each value of M ,
we chose the λ matching the model with a number of parameters close to 16. Next,
the best pair (M , λ) was the one maximizing the L1 ratio.

Table 3 focuses on the same dense map as previously. In order to propose a
sharp comparison of the methods, we placed the QTLs on the interval [0,1], still
considering a genome of size 10M. We considered different ways of performing
the selective genotyping, by letting the ratio γ+/γ vary. All the QTL effects were
chosen such as |qs| = 0.1. According to the table, the performances of the different
methods were fair when the ratio γ+/γ took the values 1/2, 3/4 or 7/8. However,
when a unidirectional selective genotyping was performed (γ+/γ = 1), the Lasso,
Group Lasso, Elastic Net and RaLasso deteriorated heavily, which was not the
case of our SgenoLasso method. For instance, when γ was set to 0.1, the power
associated to the Lasso, Group Lasso, Elastic Net, Bayesian Lasso was found to
be equal to 20.78%, 16.73% and 21.00%, respectively. The Lasso and its cousins
suffer from the fact that the tails of errors are not light, and that the conditional
distribution is asymmetric around 0 (see for instance [28]). The RaLasso, that
models heavy tails and asymmetry, gave better results (47.01%) than these methods
but was still far from performances of SgenoLasso (93.97%). Last, the Bayesian
Lasso performed badly in all the configurations studied. Table 4 deals with the
case |qs| equal to 0.2: although the signal had been increased, we observed the same
behaviour of the different methods. Table 5 compares performances of SgenoLasso
and its cousins. SgenoLasso and SgenoEN presented similar results, whereas the
SgenoGroupLasso seemed to select too many genes under this simulation setting.
This can be explained by the fact that we chose groups of 10 consecutive markers,
and we should have probably considered groups of 5 markers in order to increase the
accuracy. However, for the same framework of 10 markers, in view of Tables 4 and
5, SgenoGroupLasso outperformed the GroupLasso when the selective genotyping
was unidirectional.

Tables 3, 4, 5, 6 and 7 around here
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5.5. Real data analysis

To illustrate performances of our new method on real data, we analyzed data from
the joint papers [39] and [40] dealing respectively with genomic prediction and
association mapping in rice. We considered the dataset of 13,101 SNPs, randomly
chosen by the authors from their 73,147 collected SNPs (cf. p20 of [39]), and we de-
cided to focus on the flowering date during the dry season 2012. In this context, we
propose to compare the performances of the different methods. Assuming that the
13,101 markers are spread out along the rice genome of length 13.101M (cf. Section
“GS using marker subsets” of [39]), we can infer that a marker is located every
0.1cM. Then, we performed 5 fold cross validation for all methods. As previously, a
grid search was used for RaLasso in order to find the best pair (M , λ). In particu-
lar, we considered the values λ = 0.1, 10.1, . . . , 1000.1 and M = 0.1, 0.2, . . . , 1. The
percentage γ of genotyped individuals was set to either 1 or 0.3 and the selective
genotyping was performed symmetrically (γ+/γ = 1/2). Since [40] considered the
complete data situation (γ = 1), we removed data to mimick selective genotyping
experiments. In particular, for γ = 1 we kept the original data from [39] (n = 312
by averaging the replicates), whereas for γ = 0.3, we kept the genome information
of only 93 extreme individuals. In what follows, in order to make the reading easier
for non specialists, a gene will refer to a marker selected by a method. The 10 genes
found by [40] (cf. their S1 Table), and obtained after fitting a linear mixed model,
are given at the top of Table 8. Note that the most significant SNPs for the flow-
ering date are located on chromosome 3 (see [40]). Indeed, the p-values associated
to 5 SNPs on chromosome 3 and reported by [40], are the following: 5.02× 10−27

for the so-called gene S3-1269941, 1.47 × 10−24 for S3-1165376, 1.82 × 10−23 for
S3-1125848, 2.80 × 10−22 for S3-1394477, and 1.49 × 10−21 for S3-1221494. The
number of false positives (FP) and the number of false negatives (FN) are also
reported in Table 8. FP refers to the number of falsely selected variables whereas
FN is the number of genes that are not selected.

According to Table 8, SgenoLasso and SgenoEN selected respectively 26 and
33 genes under the complete data situation (γ = 1). All the genes found by [40]
and present on chromosome 3, were either perfectly found by SgenoLasso and
SgenoEN or were tagged by a marker located nearby (at less than a distance of
4 markers, i.e. 0.4cM). In contrast, SgGroupLasso’s performances were not as fair
since SgenoGroupLasso was unable to select the gene S3-1394477, even when a
tolerance level of 0.4cM was used. Classical methods such as Lasso, EN and Group
Lasso, found respectively 3, 4 and 3 (or 4 with the tolerance level) genes matching
the findings of [40] on chromosome 3. In that sense, when γ was set to 1, SgenoLasso
and SgenoEN performed better than traditional methods. We can also highlight
the fact that RaLasso was unsatisfactory, exhibiting thousands of False Positives.

Let us now move on to selective genotyping. The selective genotyping was per-
formed symmetrically (γ+/γ = 1/2). For γ = 0.3, SgenoLasso, SgenoGroupLasso
and SgenoEN selected 4, 5 and 5 genes, respectively, corresponding to those sug-
gested by [40] on chromosome 3. Lasso, Group Lasso and EN were able to re-
cover 2, 3 and 5 genes, respectively. In other words, we observed the superiority
of SgenoLasso (resp. SgGroupLasso) over Lasso (resp. GroupLasso). SgenoEN and
EN presented both fair results, with a slight advantage to EN that exhibited only
2 FP. Moreover, as previously, RaLasso gave poor results on this dataset.

To conclude, in order to show the strength of our methods, we tackled the case
γ+/γ = 1. However, due to a lack of signal and a small sample size, all methods
were unable to recover the findings of [40]. Recall that the unidirectional selective
genotyping is the worst configuration. Contrary to our simulation studies, we were
unable to increase the sample size to compensate this small amount of signal. We
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leave it for future research.

Table 8 around here

6. A promising application field of SgenoLasso in the future : Genomic
Selection

Genomic Selection (GS) ([41]) can be considered as the most promising application
field of SgenoLasso in years to come. Recall that it consists in predicting breeding
values of selection candidates using a large number of genetic markers: the goal
is to predict the future phenotype (e.g. [42, 43]) of young candidates as soon as
their DNA has been collected. GS was first applied to animal breeding (see [44] for
a review), and it is nowadays extensively investigated in plants. We can mention
recent genomic prediction studies on apple ([45]), eucalyptus ([46]), japanese pears
([47]), strawberry ([14]), banana ([15]) and coffea ([48]). GS allows to consider a
large number of generations without having to observe the future adult phenotype.
For instance, in citrus, 25 years are required to obtain fruits of interest. In bananas,
the waiting time can reach 8 months, in order to figure out the production capacity.

Many studies (e.g. [49–53]) have shown that it is essential to update the learning
model during GS cycles in order to maintain the reliability of the prediction model
over time. When updating the calibration model, the model is learned on extreme
individuals, selected at the previous generation because of their favorable genomic
predictions. In that sense, this area of research in GS is highly linked to selective
genotyping. GS differs slightly from selective genotyping because individuals are
selected on the basis of genomic prediction, instead of being selecting according
to their phenotypes. However, in practice, there is only a very small difference in
considering predicted or true phenotypes (cf. experiments 1 and 2 of [54]). [55]
highlighted the “drastic reduction” in terms of predictive ability when only the
best individuals (i.e. with the largest phenotypes) were used in the learning model
in GS. Interestingly, [54] has shown recently that it is crucial to include a few
worst individuals in the training set, to keep GS efficient. As soon as only the best
individuals were included in the training set, the model was not reliable anymore
(see Table 1 of [54]). However, keeping the poorest lines in a breeding program has
a non negligible cost. In this context, we will show below on simulated data that
SgenoLasso and its cousins do not suffer from this drawback: they give satisfactory
results even when only best individuals are considered. In other words, there is a
strong agreement with results from our association study in Section 5.4 (cf. Tables
3 and 4).

6.1. Mathematical model and comparison with existing methods

As mentioned in introduction, A and B are homozygous lines. In order to generate
candidates, let us cross the extreme backcross individuals to their parent A, that
is to say performing the cross (A× (A×B))ext ×A where (A× (A×B))ext refers
to the backcrossed individuals that are extremes (cf. Figure 1 in Supplement B).
From a theoretical point of view, let Xext(t) denote the random variable X(t) |
Y /∈ [S−, S+], i.e. the genome at t of an extreme individual, and let R(.) denote
a standard poisson process on [0, T ] representing the number of recombinations.
W (.), the random process such as W (t) = Xext(t)1R(t) even − 1R(t) odd, will refer
to the genome of the progeny of an extreme individual (taken at random among
all extreme individuals). The quantitative trait of this progeny, noted U , is based
on the ANOVA model: U = µ +

∑m
s=1W (t?s)qs + σε, where ε is a Gaussian white
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noise.
In what follows, the notation “new” will refer to the progeny of an extreme indi-

vidual ; Unew, Wnew(.), εnew, Rnew(.) are random variables or processes associated
to this new individual. In GS, the quality of the prediction is evaluated according
to some accuracy criteria, i.e. the correlation between predicted and true values.
This criterion is a key element in genetics: it plays a role in the rate of genetic gain
(see for instance [56]). The phenotypic accuracy, ρph, also called predictive ability,

is defined as the correlation between the predictor Ûnew and the trait Unew, i.e.

Cor
(
Ûnew, Unew

)
(see for instance [57]). We propose to compare here the accu-

racy associated to the classical predictor and the one relying on our method. These
two estimators have respectively the following expressions:

Ûnew = (1,Wnew(t1), . . . ,Wnew(tK)) β̂Lasso ,

Ûnew = (Wnew(t1), . . . ,Wnew(tK)) ∆̂SgenoLasso(λ)
σ
√
γ

√
nA

.

We will also investigate accuracies of the cousins of the different predictors. To
clarify, each simulated data set rely on 100 progenies and each progeny is a descen-
dent of an extreme individual taken at random among all extremes. The model is
learned on all extreme individuals and evaluated on the progenies. Pearson cor-
relation was computed between predicted values and true values. In this context,
Tables 6 and 7 report the average Pearson correlation computed over 100 data sets
containing 100 progenies.

According to Table 6, when the model was learned on the best individuals
(γ+/γ = 1), we clearly observed the superiority of the SgenoLasso over other
methods, regarding the predictive ability. As soon as a few worst individuals were
included in the learning model (γ+/γ = 7/8), all the different methods gave similar
results. As mentioned before, these results were expected in view of our previous
association study (Tables 3 and 4). Recall that [54] already observed, using clas-
sical methods, that it was crucial to include a few worst individuals in the model.
In contrast, our method presents good prediction abilities even when only best
individuals are considered. Last, Table 7 compares SgenoLasso and its cousins :
SgenoLasso, SgenoEN and SgGroupLasso, presented an accuracy of same order.
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Supplement A: We give the mathematical proofs of Theorem 2.2 and Corollary
2.5.
Supplement B: It contains supplementary illustrations. Figure 1 describes the
simulation framework, regarding genomic selection (cf. Section 6.1 of the main
text). Table 1 illustrates the performances of SgenoLasso as a function of the ratios
γ+/γ (cf. Section 5.3 of the main text).
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[18] A. Rebäı, B. Goffinet, B. Mangin, Approximate thresholds of interval mapping tests for QTL detec-
tion, Genetics, 138 (1994), pp. 235–240.

[19] C. Cierco, Asymptotic distribution of the maximum likelihood ratio test for gene detection, Statistics
31 (1998), pp. 261–285.
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Henri Poincaré (B) 38(6) (2002), pp. 1087–1092.

[21] Z. Chen, H. Chen, On some statistical aspects of the interval mapping for QTL detection, Statistica
Sinica 15 (2005), pp. 909–925.

[22] M.N. Chang, R. Wu, S.S. Wu, G. Casella (2009), Score statistics for mapping quantitative trait loci,
Stat. Appl. Genet. Mol. Biol. 8(1) (2009), pp. 1–35.
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Appendix

Intuition on asymptotic theory

Selective genotyping is challenging since some correlation is present between the
errors ε and the genome of extreme individuals. Indeed, by definition, X(.) depends
on Y , that contains the noise ε. In order to show the influence of this correlation,
let us consider m > 1. At the marker location tk, the score statistic, Sn(tk), can be
decomposed in the following way (cf. formula (2.8) in Section 2 of Supplement A):

Sn(tk) =

n∑
j=1

m∑
s=1

qs Xj(t
?
s) Xj(tk)√
n A

+

n∑
j=1

σεj Xj(tk)√
n A
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where A is a quantity linked to the choice of S− and S+ (see formula (9) in Section
2). By imposing qs = as/

√
n, we can apply under this local alternative, the Law of

Large Numbers and the Central Limit Theorem for the first and the second term,
respectively (see for instance [32]). Then, according to a technical proof , we have
the relationship

n∑
j=1

σεj Xj(tk)√
n A

L−→ N [Ω, 1]

where Ω is a function of a1, . . ., am, t?1, . . ., t?m, tk, S− and S+. The proof is given
in Section 2.2.1 of Supplement A (cf. lines below formula (2.9) until formula (2.10),
and see also Sections 2.3 and 4). As a consequence, the correlation between ε and
X(tk) plays a role in the asymptotic theory. In contrast, under the complete data
situation (S− = S+), the random variable X(tk), equal to X(tk), is independent of
ε by definition: since ε is centered, Ω is the constant null function.

Details about SgGroupLasso

We give here some details about SgenoGroupLasso which is based on the Group
Lasso penalty. Recall that the column vector ∆ is equal to (∆1, ...,∆L)>, where ∆l

is the putative effect at location tl. Then, the SgenoGroupLasso estimator is the
following:

∆̂SgGroupLasso(λ) = arg min
∆

(∥∥∥A−1~Sñ −A−1C∆
∥∥∥2

2
+ λ

nbGroup∑
i=1

√
Li

∥∥∥~∆i

∥∥∥
2

)

where Li is the number of locations considered in the i-th group, and ~∆i is the
column vector containing the components of ∆ referring to the i-th group.
Note that in our illustrations, a group is a set of consecutive locations. Under
the dense map, since only marker locations are considered, a group is a set of
consecutive markers.
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Figure 1. Function
√
zγ+ ϕ(zγ+ )/γ − z1−γ− ϕ(z1−γ− )/γ + 1 as a function of the percentage γ of

individuals genotyped, for different values of the ratio γ+/γ.
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Figure 2. Estimated coefficients according to our new method as a function of the percentage γ of
genotyped individuals (1 sample, m = 16, T = 10, |q1| = . . . = |q16| = 0.2, QTLs randomly located only

on [0,4], σ = 1, K = 201, tk = 0.05(k − 1), L = 401, t′l = 0.025(k − 1), γ+/γ = 1/2, on average n
individuals genotyped).
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Table 1. Theoretical power and empirical power associated to the test statistic sup Λn(.), and as a function of

the number m of QTLs and the percentage γ of genotyped individuals ( T = 1, K = 21, tk = 0.05(k − 1),

(m = 1, t?1 = 0.03), (m = 2, t?1 = 0.03, t?2 = 0.80), (m = 3, t?1 = 0.03, t?2 = 0.28, t?3 = 0.72), all |as| = 2.828, +

for positive effect, − for negative effect, 10,000 paths for the theoretical power, 1,000 samples of size n for the

empirical power, γ+/γ = 1/2).

γ
HH

HHH
HHn
m 1 (+) 2 (++) 2 (+-) 3 (+-+)

1

+∞ 60.20% 99.35% 15.27% 49.74%
1,000 59.7% 98.90% 15.70% 49.00%
200 60.00% 98.80% 15.50% 47.30%
100 53.90% 98.50% 13.70% 45.80%

0.3

+∞ 48.21% 97.47% 12.71% 39.36%
1,000 47.90% 97.10% 12.20% 39.50%
200 47.70% 96.80% 10.50% 37.50%
100 46.10% 96.50% 9.40% 32.80%

Table 2. Performances of the new method SgenoLasso as a function of the percentage γ of genotyped individuals

and as a function of the QTL effects (Mean over 100 samples, γ+/γ = 1/2, on average n individuals genotyped,

T = 10, m = 16, QTLs randomly located only on [0,4], σ = 1). Sparse map: K = 201, tk = 0.05(k− 1), L = 401,

t′l = 0.025(k− 1). Dense map: K = L =10,001 , tk = t′l = 0.001(k− 1). The L1 ratio corresponds to the quantity∑161
i=1 |∆̂i|/

∑401
i=1 |∆̂i| for the sparse map, and to the quantity

∑4001
i=1 |∆̂i|/

∑10001
i=1 |∆̂i| for the dense map. m̂

denotes the estimated QTL number.

(Sparse, n = 100) (Sparse, n = 200) (Dense, n = 100) (Dense, n = 200)
all |qs| γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.2

0.1 96.83% 14.75 99.61% 15.54 99.81% 17.2 99.88% 16.7
0.2 90.32% 18.17 97.99% 15.3 99.78% 17.35 99.64% 16.96
0.3 88.03% 17.45 95.84% 17.22 98.83% 17.25 99.72% 16.95
1 70.91% 18.47 82.57% 16.94 91.08% 16.69 98.36% 17.39

0.1

0.1 82.26% 14.74 91.29% 16.74 95.73% 17.15 98.39% 16.87
0.2 73.43% 15.64 85.43% 16.74 94.18% 17.61 96.26% 16.93
0.3 70.95% 16.59 83.48% 16.66 88.64% 16.70 96.50% 17.12
1 55.41% 18.57 62.35% 17.62 72.59% 16.23 88.37% 17.01

0.05

0.1 61.00% 15.06 68.66% 15.17 79.15% 16.08 87.25% 16.82
0.2 52.73% 15.07 63.70% 15.86 72.97% 16.47 80.58% 16.62
0.3 52.27% 15.38 68.24% 16.5 66.13% 17.39 79.91% 16.45
1 45.34% 15.64 46.49% 18.07 52.23% 16.8 67.40% 16.83
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Table 3. Performances of different methods, under the dense map, as a function of the percentage γ of genotyped individuals and as a function of the ratio γ+/γ.

(Mean over 100 samples, on average n = 100 individuals genotyped, m = 16, |q1| = . . . = |q16| = 0.1, T = 10, QTLs randomly located only on [0,1], σ = 1).

Dense map: K = L =10,001 , tk = t′l = 0.001(k − 1). The L1 ratio, regarding our method, corresponds to the quantity
∑1001

i=1 |∆̂i|/
∑10001

i=1 |∆̂i|. m̂ denotes the es-

timated QTL number.

SgenoLasso Lasso Group Lasso EN RaLasso Bayesian Lasso
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio

0.1

1/2 97.24% 17.22 94.21% 16.82 99.01% 19.4 99.06% 17.94 99.91% 15.89 11.66%
3/4 96.62% 17.45 92.22% 16.33 95.88% 19.1 97.64% 17.57 98.25% 16.74 11.53%
7/8 96.89% 17.58 82.32% 16.78 95.19% 22.9 96.09% 16.03 91.05% 16.23 11.33%
1 93.97% 17.13 20.78% 16.66 16.73% 22.3 21.00% 16.94 47.01% 15.83 10.70%

0.2

1/2 94.19% 17.39 91.69% 16.95 97.46% 19.4 97.44% 16.21 98.09% 16.35 11.39%
3/4 91.52% 16.3 84.75% 16.54 95.88% 19.1 96.02% 17.21 95.08% 15.44 11.20%
7/8 92.38% 16.29 75.46% 16.55 94.67% 17.3 95.23% 16.90 89.33% 15.33 11.07%
1 85.03% 17.09 21.14% 16.81 21.86% 26.2 27.37% 17.91 44.93% 15.48 10.64%

0.3

1/2 91.62% 17.55 83.45% 16.51 92.87% 18.6 93.67% 17.5 95.36% 16.67 11.19%
3/4 90.88% 17.59 76.18% 16.56 89.59% 21.6 91.10% 17.67 91.13% 15.84 11.08%
7/8 86.22% 16.82 65.03% 16.73 78.00% 17.3 82.84% 17.40 80.32% 15.11 10.91%
1 78.00% 17.28 20.92% 16.57 20.82% 22.1 24.92% 17.62 48.25% 16.10 10.66%
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Table 4. Performances of different methods, under the dense map, as a function of the percentage γ of genotyped individuals and as a function of the ratio γ+/γ.

(Mean over 100 samples, on average n = 100 individuals genotyped, m = 16, |q1| = . . . = |q16| = 0.2, T = 10, QTLs randomly located only on [0,1], σ = 1).

Dense map: K = L =10,001 , tk = t′l = 0.001(k − 1). The L1 ratio, regarding our method, corresponds to the quantity
∑1001

i=1 |∆̂i|/
∑10001

i=1 |∆̂i|. m̂ denotes the es-

timated QTL number.

SgenoLasso Lasso Group Lasso EN RaLasso Bayesian Lasso
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio

0.1

1/2 99.70% 18.60 99.73% 16.84 100% 19.1 100% 18.73 100% 17.28 14.30%
3/4 99.83% 17.28 99.69% 16.89 100% 20 100% 17.73 100% 16.03 13.88%
7/8 99.55% 16.62 99.24% 16.69 100% 20.9 100% 17.63 100% 17.11 13.37%
1 99.69% 16.64 31.43% 16.83 18.30% 22.61 33.33% 16.34 60.55% 16.60 10.75%

0.2

1/2 99.23% 17.56 98.99% 16.81 100% 18.4 100% 17.77 99.99% 17.96 13.41%
3/4 99.60% 17.41 98.47% 16.82 100% 19.2 100% 18.41 100% 16.51 13.38%
7/8 99.27% 17.48 98.35% 16.90 100% 18.9 100% 17.13 99.73% 16.00 12.59%
1 99.36% 17.79 24.53% 17.15 11.97% 29.1 25.71% 17.26 54.22% 17.32 10.69%

0.3

1/2 99.20% 17.96 97.50% 16.90 100% 19.6 99.99% 16.88 100% 17.39 12.89%
3/4 99.60% 17.31 97.5% 16.81 100% 18.9 100% 16.96 99.59% 17.56 12.69%
7/8 99.66% 17.86 96.50% 16.99 99.82% 22.8 99.90% 18.05 99.95% 17.07 12.22%
1 98.69% 17.50 42.93% 17 38.45% 19.1 48.13% 17.36 72.39% 15.58 10.78%
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Table 5. Performances of our method, under the dense map, as a function of the penalization used. (mean over 100 samples, on average n = 100 individuals genoty-

ped, m = 16, T = 10, QTLs randomly located only on [0,1], σ = 1). Dense map: K = L =10,001 , tk = t′l = 0.001(k − 1). The L1 ratio, regarding our method, corres-

ponds to the quantity
∑1001

i=1 |∆̂i|/
∑10001

i=1 |∆̂i|. m̂ denotes the estimated QTL number.

all |qs| = 0.1 all |qs| = 0.2
SgenoLasso SgGroupLasso SgEN SgenoLasso SgGroupLasso SgEN

γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.1

1/2 97.24% 17.22 99.25% 25 98.19% 17.59 99.70% 18.60 99.90% 27.9 99.88% 18.37
3/4 96.62% 17.15 99.41% 22.5 97.17% 18.12 99.83% 17.28 99.80% 28.1 100% 16.94
7/8 96.89% 17.58 99.15% 24.4 98.37% 18.22 99.55% 16.62 100% 27.6 99.98% 16.93
1 93.97% 17.13 97.29% 24.4 95.31% 17.46 99.69% 16.64 100% 27 99.88% 17.37

0.2

1/2 94.19% 17.39 98.33% 24.9 96.03% 16.90 99.23% 17.56 100% 28.5 99.69% 17.81
3/4 91.52% 16.3 95.38% 24.3 92.59% 17.41 99.60% 17.41 99.94% 29 99.72% 19.27
7/8 92.38% 16.29 96.83% 24.6 93.19% 17.13 99.27% 17.48 100% 26.5 99.67% 18.61
1 85.03% 17.09 90.53% 22.8 84.93% 17.67 99.36% 17.79 100% 27.2 99.69% 18.33

0.3

1/2 91.62% 17.55 92.35% 24.6 86.53% 17.87 99.20% 17.96 99.60% 28.1 99.24% 18.55
3/4 90.88% 17.59 94.84% 30.9 91.84% 15.43 98.60% 17.31 100% 30.5 99.88% 19.02
7/8 86.22% 16.82 89.96% 29.3 86.68% 17.30 98.69% 17.50 99.89% 31.9 99.92% 18.29
1 78.00% 17.28 82.61% 28.6 77.23% 17.89 98.69% 17.50 99.86% 26.5 99.18% 18.44
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Table 6. Predictive abilities of the different methods, under the dense map, as a function of the percentage γ of genotyped individuals

and as a function of the ratio γ+/γ. The model is learned on the genotyped individuals, and evaluated on 100 progenies of the training

individuals. (mean over 100 samples, on average n = 100 individuals genotyped, m = 16, T = 10, QTLs randomly located only on [0,1],

σ = 1). Dense map: K = L =10,001 , tk = t′l = 0.001(k − 1).

γ all |qs| γ+/γ SgenoLasso Lasso Group Lasso EN RaLasso Bayesian Lasso

0.1

0.1
1 30.97% 6.49% 3.17% 4.38% 10.43% 7.12%

7/8 31.25% 30.55% 29.87% 29.74% 28.78% 25.50%

0.2
1 56.85% 27.96% 7.57% 21.17% 33.09% 31.30%

7/8 57.89% 56.96% 54.95% 55.26% 54.66% 57.24%

0.3
1 70.64% 46.54% 5.35% 19.89% 39.38% 49.30%

7/8 72.34% 70.16% 68.07% 68.17% 67.63% 72.59%

0.2

0.1
1 27.88% 7.12% 4.05% 5.41% 11.08% 8.97%

7/8 28.26% 27.98% 27.86% 28.09% 26.28% 22.11%

0.2
1 54.37% 31.70% 13.85% 24.73% 36.39% 29.68%

7/8 54.72% 55.30% 53.08% 53.44% 53.20% 55.71%

0.3
1 67.74% 57.21% 16.33% 39.61% 49.63% 50.41%

7/8 68.49% 68.64% 66.00% 65.93% 66.18% 72.09%

0.3

0.1
1 26.79% 9.02% 6.89% 7.48% 11.96% 9.13%

7/8 28.13% 27.85% 26.59% 28.25% 26.05% 21.09%

0.2
1 52.83% 38.15% 21.23% 33.17% 42.96% 31.38%

7/8 54.07% 54.04% 51.96% 51.46% 51.39% 51.24%

0.3
1 66.73% 57.51% 26.08% 46.30% 55.06% 50.47%

7/8 67.13% 67.43% 64.91% 65.08% 63.99% 69.57%
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Table 7. Predictive ability of our method, under the dense map, as a function

of the penalization used, and as a function of the percentage γ of genotyped in-

dividuals. The model is learned on the genotyped individuals, and evaluated on

100 progenies of the training indivduals (mean over 100 samples, on average

n = 100 individuals genotyped, m = 16, T = 10, QTLs randomly located only

on [0,1], σ = 1). Dense map: K = L =10,001 , tk = t′l = 0.001(k − 1).

γ all |qs| γ+/γ SgenoLasso SgenoGroupLasso SgenoEN

0.1

0.1
1 30.97% 30.31% 30.89%

7/8 31.25% 30.60% 31.12%

0.2
1 56.85% 54.13% 55.44%

7/8 57.89% 55.38% 55.81%

0.3
1 70.64% 66.91% 67.56%

7/8 72.34% 68.47% 69.06%

0.2

0.1
1 27.88% 27.84% 27.86%

7/8 28.26% 27.80% 28.03%

0.2
1 54.37% 52.76% 53.62%

7/8 54.72% 52.77% 53.79%

0.3
1 67.74% 65.07% 65.91%

7/8 68.49% 65.86% 66.57%

0.3

0.1
1 26.79% 27.05% 26.85%

7/8 28.13% 27.82% 28.14%

0.2
1 52.83% 52.22% 52.54%

7/8 54.07% 52.47% 53.64%

0.3
1 66.73% 64.59% 65.90%

7/8 67.43% 65.11% 66.25%
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Table 8. Comparison, on rice data ([39, 40]), of the selected genes as a function of the methods and as function

of the percentage γ of genotyped individuals. The considered trait is the flowering date during the dry season

2012. The selective genotyping is performed symmetrically (γ+/γ = 1/2) and K =13,101 markers lie on the rice

genome (T = 13.101). Markers in bold match exactly one of the genes selected by [40]. A marker in italic refers

to a marker which is located at a maximum distance of 0.4cM from a gene inferred by [40]. SA-B refers to a

marker on chromosome A with id B. SA×N refers to N markers on chromosome A, and these markers are located

further than 0.4cM from a gene found by [40]. FP and FN refer to the number of false positives and the number

of false negatives, respectively. In brackets, are also given FP and FN, assuming a tolerance level of 0.4cM.

γ Method FP FN Selected genes

1 [40]
S3-1125848, S3-1165376, S3-1221494, S3-1269941, S3-1394477,
S6-2900101, S6-2961503, S6-3057752, S8-4137990, S8-4138023

1 SgenoLasso 22 (21) 6 (5)
S3-1094192, S3-1125848, S3-1165376, S3-1269941

S3-1394477, S3×21

1 SgEN 28 (24) 5 (5)
S3-1030333, S3-1094192, S3-1123429, S3-1125848, S3-1165376

S3-1179404, S3-1221494 ,S3-1269941 S3-1394477, S3×24

1 SgGroupLasso 37 (23) 7 (6)
S3×31, S3-1030333, S3-1070111, S3-1094192, S3-1123429

S3-1125848, S3-1165376, S3-1179404, S3-1221494, S3-1225693

0.3 SgenoLasso 28 (23) 6 (5)
S3-1070111, S3-1094192, S3-1165376, S3-1221494, S3-1225693, S3-1269941

S3-1298550, S3-1354306, S3-1394477, S3×23

0.3 SgEN 26 (23) 5 (5)
S3-1030333, S3-1094192, S3-1123429 , S3-1125848, S3-1165376, S3-1221494

S3-1269941, S3-1394477, S3×23

0.3 SgGroupLasso 65 (51) 5 (5)

S3-1030333, S3-1070111, S3-1094192, S3-1123429, S3-1125848
S3-1165376, S3-1179404, S3-1221494, S3-1225693, S3-1269941

S3-1298550, S3-1320779, S3-1342244, S3-1354306, S3-1394477, S3-1403300
S3-1439520, S3-1462159, S3-1495153, S3×41, S8×10

1 Lasso 17 (17) 7 (6)
S1×2, S2×3, S3-1165376, S3-1221494, S3-1269941

S3×3, S7×2, S8×2, S9×2
S10×1, S11×1, S12×1

1 EN 34 (34) 6 (6)
S1×5, S2×4, S3-1125848, S3-1165376, S3-1221494, S3-1269941

S3×7, S7×4, S8×3, S9×3, S10×2, S11×3 S12×3

1 Group Lasso 134 (128) 7 (6)
S1×30, S2×20, S3-1030333, S3-1070111, S3-1094192

S3-1123429, S3-1125848, S3-1165376, S3-1179404, S3-1221494
S3-1225693, S3×11, S3×7, S7×10, S8×20, S9×10, S11×20

0.3 Lasso 0 (0) 8 (6) S3-1221494, S3-1269941

0.3 EN 2 (0) 5 (5)
S3-1094192, S3-1123429, S3-1125848, S3-1165376

S3-1221494, S3-1269941, S3-1394477

0.3 Group Lasso 7 (2) 7 (6)
S3×2, S3-1070111, S3-1094192, S3-1123429, S3-1125848

S3-1165376, S3-1179404, S3-1221494, S3-1225693

1 RaLasso 2600 (2568) 5 (0)

S1×704, S2×220, S3-1123429, S3-1125848, S3-1165376, S3-1179404
S3-1221494, S3-1225693, S3-1269941, S3-1298550
S3-1320779, S3-1342244, S3-1354306, S3-1394477

S3-1403300, S3-1439520, S3-1462159, S3-1495153, S3×203, S4×192, S5×174
S6-2848386, S6-2866608, S6-2899016, S6-2913729, S6-2941202

S6-2913729, S6-2941202, S6-2958750, S6-2980225, S6-3001176, S6-3041790
S6-3041790, S6-3056545, S6-3076966, S6-3112878, S6×160, S7×168

S8-4063097, S8-4082527, S8-4101244, S8-4147562, S8-4150777, S8-4188989, S8×162
S9×133, S10×140, S11×165, S12×147

0.3 RaLasso 782 (775) 10 (4)

S1×219, S2×74, S3×64
S3-1354306, S3-1403300, S4×59, S5×49

S6×52, S6-2913729, S6-2958750, S6-2980225, S6-3056545
S7×41, S8×52, S8-4101244, S9×36, S10×39, S11×48, S12×42
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Céline Delmas

INRA, UR875 MIAT, F-313326 Castanet-Tolosan, France
e-mail: celine.delmas@inra.fr

1. True probability distribution when m QTLs lie on [0, T ] (with
m > 1)

Recall that K genetic markers are located at 0 = t1 < t2 < . . . < tK = T .
Besides, m QTLs lie on [0, T ] at locations t?1, t?2, ..., t?m, that are distinct of
marker locations. By definition t?1 < t?2 < ... < t?m.

All the information is contained in the flanking markers of the QTLs loca-
tions, because of the Poisson process. As a consequence, let us compute the
probability distribution of

(
Y,X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

)
.

We have

P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] , X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

=
∑

(u1,...,um)∈{−1,1}m
P(Y ∈ [y , y + dy] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

Besides,

P(Y ∈ [y , y + dy] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
f(µ+u1q1+u2q2+...+umqm,σ)(y) 1y/∈[S−,S+]

P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)
.

1
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On the other hand,

P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

= P(Y /∈ [S−, S+], X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

= P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

As a result,

P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] , X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

=
∑

(u1,...,um)∈{−1,1}m
f(µ+u1q1+u2q2+umqm,σ)(y) 1y/∈[S−,S+]

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

In the same way, when the genome information is missing at marker locations
(i.e. the phenotype is not extreme), we find

P(Y ∈ [y , y + dy] , X(t?`1 ) = 0, X(t?r1 ) = 0, . . . , X(t?`m) = 0, X(t?rm ) = 0)

=
∑

(u1,...,um)∈{−1,1}m
P(Y ∈ [y , y + dy] , Y ∈ [S−, S+], X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
∑

(u1,...,um)∈{−1,1}m
f(µ+u1q1+...+umqm,σ)(y) 1y∈[S−,S+] P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um) .

Let θm = (q1, ..., qm, µ, σ) denote the new parameter. Then, the probabil-
ity distribution of

(
Y,X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

)
, with respect to the

measure λ⊗N ⊗ . . .⊗N , is

L
m
~t?(θm) =

∑
(u1,...,um)∈{−1,1}m

[
w~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S−,S+]

+ v~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S−,S+]

]
gm(t?1, . . . , t

?
m)

(1.1)

with

w~t?(u1, ..., um) = P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um | X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) ,

v~t?(u1, ..., um) = P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

and

gm(t?1, . . . , t
?
m) = P(X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) 1Y /∈[S−,S+] + 1Y ∈[S−,S+] .

Note that as soon as we set m = 1 in formula (1.1), we obtain Lt?1 (θ1) given
in formula (2) of the main manuscript.
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2. Proof of Theorem 2.2

The proof is divided into five parts (the first four parts rely on the case K = 2
markers):

• Preliminaries (i.e. computation of the Fisher Information Matrix)
• Weak convergence of the score process under H0

• Study of the score process under the local alternative Ha~t?
• Study of the supremum of the LRT process
• Generalization to K > 2

Note that under H0, the proof has already been given in Rabier (2015).
However, the weak convergence of the score process has not been proved in
details. Indeed, the author only mentioned the continuous mapping theorem,
after having proved the convergence of finite-dimensional. As a consequence,
we propose to give here a more rigorous proof by showing the tightness of the
score process. Recall that the tightness and the convergence of finite-dimensional
imply the weak convergence of the score process (see for instance Theorem 4.9
of Azäıs and Wschebor (2009)).

Let us consider the case K = 2, that is to say two markers are located at
t1 = 0 and t2 = T . In what follows, we will consider values t, t?1, ..., t?m of the
parameters that are distinct of the markers positions (i.e. t1 and t2), and the
result will be extended by continuity at the markers positions. As a consequence,
in what follows, t` = t1 and tr = t2. The notations t` and tr will be convenient
for the generalization to the case K > 2.

2.1. Preliminaries

The proof starts with the computation of the Fisher Information Matrix. As a
result, calculations are exactly the same as in Rabier (2015), see Section “Study
of the score process under the null hypothesis” of the proof of Theorem 2.5. We
propose to recall here the key elements of the proof.

First, the author computes the score function at a point θ10 = (0, µ, σ) that
belongs to H0. We have the relationship

∂lt
∂q1
|θ10 =

Y − µ
σ2

{2p(t)− 1} 1Y /∈[S−,S+]

=
α(t)

σ
ε X(t`) +

β(t)

σ
ε X(tr)

because of the key Lemma (Lemma 2.6 of Rabier (2015)), which states that

{2p(t)− 1} 1Y /∈[S−,S+] = α(t)X(t`) + β(t)X(tr) (2.1)

with α(t) = Q1,1
t −Q

−1,1
t and β(t) = Q1,1

t −Q
1,−1
t .

To conclude, after some easy calculations, he finds that the Fisher information



C-E. Rabier and C. Delmas/Supplement A 4

is diagonal :

Iθ0 = Diag

[
A
{
α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)

}
/σ4 ,

1

σ2
,

2

σ2

]
. (2.2)

2.2. Weak convergence of the score process under H0

Convergence of finite-dimensional

At a marker location tk with k ∈ {1, 2}, we have:

Sn(tk) =

∂l
n
tk

∂q1
|θ10√

V
(
∂l
n
tk

∂q1
|θ10

) =

n∑
j=1

σεj Xj(tk)√
n A

.

Since
∂l
n
tk

∂q1
|θ10 is centered under H0, a direct application of the central limit

theorem implies that

Sn(tk)
L−→ N (0, 1) .

Then, since we have the relationship (cf. formula (2.1))

Sn(t) =
α(t)Sn(t`) + β(t)Sn(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
,

the continous mapping theorem implies that

Sn(t)
L−→ V (t) .

It proves the convergence of finite-dimensional.
Note also that we have the relationship

CovH0

{
Sn(t`), Sn(tr)

}
= ρ(t`, tr) .

Tightness

Since we have already proved the convergence of finite-dimensional, let us fo-
cus on the tightness of the score process. Since α(t), β(t) and α2(t) + β2(t) +
2α(t)β(t)ρ(t`, tr) are continuous functions, each path of the process Sn(.) is a
continuous function on [t`, tr]. Recall the modulus of continuity of a continuous
function h(t) on [t`, tr]:

$h(δ) = sup
|t′−t|<δ

|h(t′)− h(t)| where t` < δ ≤ tr.

According to Theorem 8.2 of Billingsley (1999), the score process is tight if and
only if the two following conditions hold:
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1. the sequence Sn(t`) is tight.
2. For each positive ε and η, there exists a δ, with t` < δ < tr, and an integer
n0 such that P

(
$Sn

(δ) ≥ η
)
≤ ε ∀n ≥ n0.

According to Prohorov’s theorem, the sequence Sn(t`) is tight. Then, Condition
1 is verified. Let us define the functions α′(t) and β′(t) in the following way:

α′(t) = α(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr),

β′(t) = β(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr).

First, we can notice that ∀δ such as t` < δ ≤ tr,

$Sn
(δ) = sup

|t′−t|<δ

∣∣Sn(t′)− Sn(t)
∣∣

= sup
|t′−t|<δ

∣∣(α′ (t′)− α′ (t))Sn (t`) + (β′(t′)− β′(t))Sn (tr)
∣∣

≤ max
(∣∣Sn (t`)∣∣ , ∣∣Sn (tr)

∣∣) ($α′ (δ) +$β′ (δ)) . (2.3)

Furthermore, the sequence max
(∣∣Sn (t`)∣∣ , ∣∣Sn (tr)

∣∣) is uniformly tight. This
way,

∀ε > 0 ∃M > 0 ∀n ≥ 1 P
(
max

(∣∣Sn(t`)
∣∣ , ∣∣Sn(tr)

∣∣) ≥M) ≤ ε. (2.4)

According to Heine’s theorem, since α′(t) and β′(t) are continuous on the com-
pact [t`, tr], these functions are uniformly continuous. So,

∀υ > 0 ∃δ such as t` < δ < tr, $α′(δ) +$β′(δ) < υ. (2.5)

Let η be a positive quantity. Using formulae (2.4) and (2.5) and imposing υ =
η/M , we have

P
(
max

(∣∣Sn(t`)
∣∣ , ∣∣Sn(tr)

∣∣) ($α′(δ) +$β′(δ)) ≥ η
)
≤ ε.

As a consequence, according to formula (2.3), we have

∀n ≥ 1 P
(
$Sn

(δ) ≥ η
)
≤ ε.

It proves Condition 2 of Theorem 8.2 of Billingsley (1999). As a result, the
tightness of the score process is proved. To conclude, the tightness and the con-
vergence of finite-dimensional imply the weak convergence of the score process
on [t`, tr], i.e. on [t1, t2].

2.2.1. Study of the score process under the local alternative Ha~t?

There are m QTLs located on [0, T ] and the model for the quantitative trait is
the following:

Y = µ +

m∑
s=1

X(t?s) qs + σε (2.6)



C-E. Rabier and C. Delmas/Supplement A 6

where ε is a Gaussian white noise.
Since the score test statistic at t can be obtained using the following non

linear interpolation

Sn(t) =
α(t) Sn(t`) + β(t) Sn(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
,

the mean function will be also a non linear interpolation

m~t?(t) =
α(t) m~t?(t`) + β(t) m~t?(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
.

Let us compute the quantities m~t?(t`) and m~t?(tr).
Without loss of generality, let’s consider location tk which refers to the loca-

tion of marker k.

Sn(tk) =

n∑
j=1

(Yj − µ) Xj(tk)√
n A

(2.7)

=

n∑
j=1

m∑
s=1

qs Xj(t
?
s) Xj(tk)√
n A

+

n∑
j=1

σεj Xj(tk)√
n A

. (2.8)

We will see, that we can apply the Law of Large Numbers for the first term
and the Central Limit Theorem for the second term. To begin, let’s focus on
the first term. We have

E
{
X(t?s) X(tk)

}
=

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
− E

[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
.

According to calculations present in Section 4,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) ,

where Φ is the cumulative distribution of a standard normal distribution. In the
same way,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) .

Since we have the relationships

1− Φ
(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
= γ and r(tk, t

?
s)− r(tk, t?s) = ρ(tk, t

?
s),
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then we have

E
{
X(t?s) X(tk)

}
= ρ(tk, t

?
s) γ + o(1) .

As a consequence, according to the Law of Large Numbers,

n∑
j=1

m∑
s=1

qs Xj(t
?
s) Xj(tk)√
n A

→
m∑
s=1

as ρ(tk, t
?
s) γ√

A
. (2.9)

Let us now focus on the second term of formula (2.8). According to a technical
proof present in Section 4, we have

E
{
σε X(tk)

}
=
{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

} m∑
s=1

ρ(t?s, tk) qs + o( max
1≤s≤m

|qs|) .

Besides, according to iii) of Lemma 5 of Rabier (2014a),

E
[{
σε X(tk)

}2]
= E

(
σ2 ε2 1Y /∈[S−,S+]

)
=

∑
(u1,...,um)∈{−1,1}m

E
{
σ2 ε2 1Y /∈[S−,S+] | X(t?1) = u1, . . . , X(t?m) = um

}
× P {X(t?1) = u1, . . . , X(t?m) = um}

→
∑

(u1,...,um)∈{−1,1}m
A P {X(t?1) = u1, . . . , X(t?m) = um} → A .

As a result,

E
[{
σε X(tk)

}2]→ A and V


n∑
j=1

σεj Xj(tk)√
n A

→ 1 .

Then, according to the Central Limit Theorem,

n∑
j=1

σεj Xj(tk)√
n A

L−→ N
[∑m

s=1 ρ(t?s, tk) as√
A

{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

}
, 1

]
.

(2.10)

Finally, according to formulae (2.9) and (2.10),

Sn(tk)
L−→ N

[
m∑
s=1

ρ(tk, t
?
s) as

√
A/σ2, 1

]
. (2.11)

2.2.2. Study of the supremum of the LRT process

At fixed t, the model is regular and it is well known that we have the following
relationship under H0 (i.e. no QTL on the whole interval studied)

Λn(t) = S
2

n (t) + oP (1)
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where oP (1) is short for a sequence of random vectors that converges to zeros
in probability. The problem is that, when t is not fixed, the Fisher Information
relative to t at H0 is zero so that the model is not regular.

Let us consider now t as an extra parameter. Rabier (2015) studied this
irregular model and proved that

sup Λn(t) = supS
2

n(t) + oP (1) . (2.12)

Note that the proof is based on results of Azäıs et al. (2009), Azäıs et al. (2006)
and Gassiat (2002) on empirical process theory. This result has been obtained
under H0 and under the local alternative of only one QTL (i.e. m = 1), located
at t?1 on [0, T ]. This way, our goal is now to show that the remainder converges
also to zero under Ha~t? .

Recall that the parameters θm and θm0 are defined in the following way :
θm = (q1, ..., qm, µ, σ) and θm0 = (0, ..., 0, µ, σ).

The likelihood L
m,n
~t? (θm) for n observations is obtained by the product of n

terms as in formula (1.1) of this supplementary material, with K = 2. Let Qn
and Pn be two sequences of probability measures defined on the same space
(Ωn, An). Qn (respectively Pn) is the probability distribution with density
L
m,n
~t? (θm) (respectively L

m,n
~t? (θm0 )).

In what follows, log dQn
dPn

will denote the log likelihood ratio. By definition,
we have the relationship,

log
dQn
dPn

= log

{
L
m,n
~t? (θm)

L
m,n
~t? (θm0 )

}
. (2.13)

Since the model is differentiable in quadratic mean at θm and according to the
central limit theorem :

log

(
dQn
dPn

)
H0→ N (−1

2
ϑ2, ϑ2) with ϑ2 ∈ R+? .

As a result, according to iii) of Le Cam’s first lemma, we have Qn / Pn, that
is to say the sequence Qn is contiguous with respect to the sequence Pn. Then,
formula (2.12) is also true under the alternative Ha~t? .

It concludes the proof of Theorem 2.2 for K = 2.

2.3. Generalization to K > 2

K genetic markers are now located at 0 = t1 < t2 < . . . < tK = T . We consider
a location t that is distinct of the markers positions.

Under H0, for a position t, we can limit our attention to the interval (t`, tr),
due to Haldane model with Poisson increments. Recall the notation TK =
{t1, . . . , tK}. Besides, according to Rabier (2015), we have

CovH0

{
Sn(tk), Sn(tk′)

}
= ρ(tk, tk′) .
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Under the local aternative Ha~t? , we just have to use the fact that the mean
function m~t?(t) is an interpolated function between m~t?(t`) and m~t?(tr). Then,
in order to characterize the mean function, we only have to compute the distri-
bution of Sn(tk) at a marker located at tk. We still have the relationship (as in
formula (2.11))

Sn(tk)
L−→ N

[
m∑
s=1

ρ(tk, t
?
s) as

√
A/σ2, 1

]
∀tk ∈ TK

since the formulae (2.8), (2.9) and (2.10) are still valid for K > 2. Indeed, those
formulae rely on calculations present in Section 4 suitable for K ≥ 2.

The tightness of the score process Sn(.) is obvious because of the interpola-
tions. Besides, formula (2.12) above is still true for K > 2 according to Rabier
(2015). In order to proove that the remainder converges also to zero under Ha~t? ,
just use the same kind of proof as above (based on Le Cam’s first lemma). Note
that the likelihood L

m,n
~t? (θm) for n observations is now obtained by the product

of n terms as in formula (1.1) with K > 2. Same remark for L
m,n
~t? (θm0 ).

3. Proof of Corollary 2.5

To begin with, let us recall the epistatic model, given in formula (12) of the
manuscript:

Y = µ +

m∑
s=1

X(t?s) qs +

m−1∑
s=1

m∑
s̃=s+1

X(t?s)X(t?s̃) qs,s̃ + σε (3.1)

where ε is a Gaussian white noise, and qs,s̃ is the interaction effect between loci
t?s and t?s̃.

Since the process Sn(.) is an interpolated process, we can focus, without loss
of generality, only on location tk (i.e. the location of marker k). According to
formulae (3.1) and (2.7), we have

Sn(tk) =

n∑
j=1

m∑
s=1

as Xj(t
?
s) Xj(tk)

n
√
A

+

n∑
j=1

σεj Xj(tk)√
n A

(3.2)

+
1

n
√
A

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Xj(t
?
s)Xj(t

?
s̃) bs,s̃

}
Xj(tk) .

According to calculations present in Section 4, when 1 ≤ s ≤ m− 1 and s+ 1 ≤
s̃ ≤ m,

E
{
X(t?s)X(t?s̃)X(tk)

}
= o(1) .

Then, according to the Law of Large Numbers,

Sn(tk) =

n∑
j=1

m∑
s=1

as Xj(t
?
s) Xj(tk)

n
√
A

+

n∑
j=1

σεj Xj(tk)√
n A

+ oP (1) .
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As a result, using formulae (2.9) and (2.10),

Sn(tk)
L−→ N

[
m∑
s=1

ρ(tk, t
?
s) as

√
A/σ2, 1

]
.
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4. Study of quantities present in the proofs

In this section, all calculations are valid for a number of markers K ≥ 2.

4.1. Preliminaries

To begin with, let us recall Lemma 5 of Rabier (2014a). It will be very useful for
our theoretical calculations since it is related to truncated normal distributions.

Lemma 5 (Rabier (2014a)). Let W ∼ N (µ, σ2), then

i) E
(
W 21W /∈[S−, S+]

)
= (µ2 + σ2) P(W /∈ [S−, S+]) + σ (S+ + µ) ϕ

(
S+−µ
σ

)
− σ (S− + µ) ϕ

(
S−−µ
σ

)
ii) E

(
W1W /∈[S−, S+]

)
= µ P(W /∈ [S−, S+]) + σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
iii) E

{
(W − µ)21W /∈[S−, S+]

}
= σ2 P(W /∈ [S−, S+]) + σ (S+ − µ) ϕ

(
S+−µ
σ

)
− σ (S− − µ) ϕ

(
S−−µ
σ

)
iv) E

{
(W − µ)1W /∈[S−, S+]

}
= σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
v) E

{
(W − µ)21W∈[S−, S+]

}
= σ2 − σ2P(W /∈ [S−, S+])− σ(S+ − µ) ϕ

(
S+−µ
σ

)
+ σ (S− − µ) ϕ

(
S−−µ
σ

)
.

Recall that ϕ(.) and Φ(.) denote respectively the density and the cumulative
distribution of a standard normal distribution.

Since we consider q1, ..., qm small, using a Taylor expansion at first order, we
obtain for instance :

ϕ

(
S− − µ+

∑m
s=1 usqs

σ

)
=

1√
2π

e
− 1

2

(
S−− µ

σ

)2
{

1−
(S− − µ)

∑m
s=1 usqs

σ2
+ o(

m∑
s=1

usqs)

}
.

Since

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?m) = um}

= Φ

(
S− − µ−

∑m
s=1 usqs

σ

)
+ 1 − Φ

(
S+ − µ−

∑m
s=1 usqs

σ

)
,

using the Taylor expansions and after some work on integrals, we obtain

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?m) = um}

= Φ

(
S− − µ
σ

)
−
∑m
s=1 usqs
σ

ϕ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+

∑m
s=1 usqs
σ

ϕ

(
S+ − µ
σ

)
+ o(

m∑
s=1

usqs) .
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4.2. Formulas for
E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
and

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
First, let us recall that by definition we have t?1 < t?2 < ... < t?m. Besides, let us
consider a genetic marker located at tk. We have

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1

}]
=

∑
(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

E
[
1Y /∈[S−,S+]1X(t?1)=u1

. . . 1X(t?s−1)=us−1
1X(t?s)=11X(t?s+1)=us+1

. . . 1X(t?m)=um1X(tk)=1

]
=

∑
(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um}
P {X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um, X(tk) = 1}

=
∑

(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
+ o(1)

}
P {X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um, X(tk) = 1}

=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
+ o(1)

}
P {X(t?s) = 1, X(tk) = 1}

=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) .

Using the same kind of proof, we have

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=−1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=−1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) .

As a result, we have the relationships

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) .
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4.3. Formula for E
{
σε X(tk)

}
We have

E
{
σε X(tk)

}
= E

{
σε1X(tk)=11Y /∈[S−,S+]

}
− E

{
σε1X(tk)=−11Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

E
{
σε1X(tk)=11X(t?1)=u1

. . . 1X(t?m)=um1Y /∈[S−,S+]

}
−

∑
(u1,...,um)∈{−1,1}m

E
{
σε1X(tk)=−11X(t?1)=u1

. . . 1X(t?m)=um1Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

E
{
σε1Y /∈[S−,S+] | X(t?1) = u1, . . . , X(t?m) = um

}
[2P {X(tk) = 1 | X(t?1) = u1 . . . X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}

=
∑

(u1,...,um)∈{−1,1}m

{
σϕ(zγ+) + zγ+ ϕ(zγ+)

m∑
s=1

usqs − σϕ(z1−γ−) − z1−γ− ϕ(z1−γ−)

m∑
s=1

usqs

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}
+ o( max

1≤s≤m
|qs|) .

(4.1)

Note that in order to obtain the last expression, we used iv) of Lemma 5 of Rabier
(2014a) (cf. Section 4.1). Recall that zα denotes the quantile of order 1−α of a standard
normal distribution. Let us focus on the quantity∑
(u1,...,um)∈{−1,1}m

{
σϕ(zγ+) − σϕ(z1−γ−)

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1]

× P {X(t?1) = u1, . . . , X(t?m) = um}

=
{
σϕ(zγ+) − σϕ(z1−γ−)

} ∑
(u1,...,um)∈{−1,1}m

2 P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

−
{
σϕ(zγ+) − σϕ(z1−γ−)

} ∑
(u1,...,um)∈{−1,1}m

P {X(t?1) = u1, . . . , X(t?m) = um}

=
{
σϕ(zγ+) − σϕ(z1−γ−) 2 P {X(tk) = 1} −

{
σϕ(zγ+) − σϕ(z1−γ−)

}
= 0 .

(4.2)

Let us focus on the quantity

∑
(u1,...,um)∈{−1,1}m

{
zγ+ ϕ(zγ+)

m∑
s=1

usqs − z1−γ− ϕ(z1−γ−)

m∑
s=1

usqs

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um} .
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Let ξ denote a given QTL. We have∑
(u1,...,um)∈{−1,1}m

uξ qξ
{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}

=
∑

(u1,...,uξ−1,uξ+1,...um)∈{−1,1}m−1

qξ
{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
2P
{
X(tk) = 1 | X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− 1

]
× P

{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
2P
{
X(tk) = 1 | X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− 1

]
× P

{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

} ∑
(u1,...,uξ−1,uξ+1,...um)∈{−1,1}m−1[

2P
{
X(tk) = 1, X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−P
{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−2P

{
X(tk) = 1, X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−P
{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}]
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
−P
{
X(t?ξ) = 1

}
+ P

{
X(t?ξ) = −1

}
+ 2P

{
X(tk) = 1, X(t?ξ) = 1

}
− 2P

{
X(tk) = 1, X(t?ξ) = −1

}]
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}{
r(tk, t

?
ξ)− r(tk, t?ξ)

}
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
ρ(tk, t

?
ξ) .

(4.3)

As a result, according to formulae (4.1), (4.2) and (4.3), we have

E
{
σε X(tk)

}
=
{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

} m∑
s=1

ρ(t?s , tk) qs + o( max
1≤s≤m

|qs|) .
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4.4. Formula for the quantity E
{
X(t?s)X(t?s̃)X(tk)

}
We have

E
{
X(t?s)X(t?s̃)X(tk)

}
= E

{
1X(t?s)X(t?s̃)X(tk)=11Y /∈[S−,S+]

}
− E

{
1X(t?s)X(t?s̃)X(tk)=−11Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = −1 | X(t?1) = u1, . . . , X(t?m) = um}

+
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = −1 | X(t?1) = u1, . . . , X(t?m) = um}

= −2
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

+ 2
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

+
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
× P {X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
× P {X(t?1) = u1, . . . , X(t?m) = um} + o(1) .

(4.4)

Besides,∑
(u1,...,um)∈{−1,1}m

us̃=−us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um} = P {X(tk) = 1, X(t?s)X(t?s̃) = −1}

= P {X(t?s)X(t?s̃) = −1 | X(tk) = 1} /2
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and ∑
(u1,...,um)∈{−1,1}m

us̃=us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

= P {X(tk) = 1, X(t?s)X(t?s̃) = 1} = P {X(t?s)X(t?s̃) = 1 | X(tk) = 1} /2 .

As a result,

2
∑

(u1,...,um)∈{−1,1}m
us̃=us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

− 2
∑

(u1,...,um)∈{−1,1}m
us̃=−us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

= 2P {X(t?s)X(t?s̃) = 1 | X(tk) = 1} − 1 = 2P {X(t?s)X(t?s̃) = 1} − 1 = ρ(t?s , t
?
s̃) .

In the same way, ∑
(u1,...,um)∈{−1,1}m

us̃=−us

P {X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

P {X(t?1) = u1, . . . , X(t?m) = um}

= P {X(t?s)X(t?s̃) = −1} − P {X(t?s)X(t?s̃) = 1} = −ρ(t?s , t
?
s̃) .

Then, according to formula (4.4), we have

E
{
X(t?s)X(t?s̃)X(tk)

}
= o(1) .

It concludes the proof.
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Table 1
Performances of the new method SgenoLasso as a function of the ratio γ+/γ (Mean over 100 samples, on average n = 100 individuals genotyped,

m = 16, |q1| = . . . = |q16| = 0.1, T = 10, QTLs randomly located only on [0M,4M]). Sparse map: K = 201, tk = 0.05(k − 1), L = 401,

t′l = 0.025(k − 1). Dense map: K = L =10,001 , tk = t′l = 0.001(k − 1). The L1 ratio corresponds to the quantity
∑161

i=1 |∆̂i|/
∑401

i=1 |∆̂i| for the

sparse map, and to the quantity
∑4001

i=1 |∆̂i|/
∑10001

i=1 |∆̂i| for the dense map. m̂ denotes the estimated QTL number.

(Sparse, n = 100) (Sparse, n = 200) (Dense, n = 100) (Dense, n = 200)
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.1

1/2 82.86% 14.74 91.29% 16.74 95.73% 17.15 98.39% 16.87
3/4 79.17% 15.35 90.91% 16.87 94.59% 16.52 98.26% 16.39
7/8 74.61% 15.89 89.85% 16.85 93.63% 17.11 98.69% 16.77
1 68.87% 16.26 86.71% 16.69 92.77% 16.99 98.08% 16.63

0.2

1/2 73.43% 15.64 85.43% 16.74 94.18% 17.61 96.26% 16.93
3/4 71.27% 16.36 85.19% 16.80 94.01% 17.65 95.79% 16.53
7/8 68.19% 17.15 83.69% 16.77 93.43% 18.16 93.80% 17.25
1 63.80% 16.95 81.04% 16.72 90.09% 17.15 92.18% 16.91

0.3

1/2 70.95% 16.59 83.48% 16.66 88.64% 16.70 96.50% 17.12
3/4 68.84% 15.39 81.77% 16.67 85.72% 17.71 95.24% 16.09
7/8 65.36% 15.75 79.48% 16.83 84.67% 16.93 94.17% 16.98
1 61.76% 16.63 74.09% 16.74 79.96% 16.85 91.63% 16.56
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Fig 1. Backcross population A × (A × B) and the progenies (A × (A × B)) × A. Recall that
A and B are purely homozygous lines. In the main manuscript, alleles from A (in red) are
coded −1 and alleles from B (in black) are coded +1.

A A B B

AB A A

A A

A x (A x B)

(A x (A x B)) x A

Backcross
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