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Abstract. We introduce a new variable selection method, called SgLasso, that handles extreme data,
and suitable when the correlation between regressors is known. It is appropriate in genomics since once
the genetic map has been built, the correlation is perfectly known. Besides, we prove that the signal to
noise ratio is largely increased by considering the extremes. Our method relies on the construction of
a specific statistical test, a transformation of the data and by the knowledge of the correlation between
regressors. This new technique is inspired by stochastic processes arising from statistical genetics. Our
approach and existing methods are compared for simulated and real data, and the results point to the
validity of our approach.
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1. Preliminaries

1.1. Motivation

Today, more and more genomic data are available thanks to advances in molecular biology and to
technology. This makes statistical science very exciting for geneticists, statisticians and mathematicians
always eager to propose new methods (e.g. Momen et al. (2018)).

Genomics and mathematics, two fields not expanding at the same speed, are sometimes complemen-
tary. Old-fashioned tools, studied deeply by mathematicians, may be of importance for the genomic
community. In this context, we propose to introduce here a new variable selection method, relying
on an old concept, called selective genotyping, and that meets big data needs. Although genotyping
costs have largely dropped recently, selective genotyping or extreme sampling, is still a relevant con-
cept in the modern genomic era. It was first introduced by Lebowitz et al. (1987) who noticed that
most of the information about Quantitative Trait Loci, so-called QTL (genes influencing a quantitative
trait which is able to be measured) is present in the extreme phenotypes (i.e. extreme traits). Later,
Lander and Bostein (1989) formalized this approach and called it selective genotyping. Today, appli-
cation fields of selective genotyping lie in Genome Wide Association Study (GWAS), and in Genomic
Selection (GS). We can also find applications in biotechnology Zou et al. (2016).

The aim of GWAS is to find associations between locations (i.e. loci) of the genome and a trait of
interest. We denote some recent association studies using selective genotyping in plants (e.g. sugarcane
Gutierrez et al. (2018), soybean Phansak et al. (2016); Yan et al. (2017); Vuong et al. (2016), chickpea
Upadhyaya et al. (2016), tomatoes Ohlson et al. (2018)), in animals (e.g. dairy cattle Kurz et al. (2019),
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drosophila Bastide et al. (2013), sow Cordoba et al. (2015), mouse Fernandes et al. (2016)), and in hu-
mans (e.g. on KashinBeck disease Zhang et al. (2014) and on intelligence Zabaneh et al. (2018)). Selec-
tive genotyping is particularly rewarding for finding QTLs: by considering the extremes, the signal is
significantly increased.

Genomic Selection (GS), motivated by the seminal paper of Hayes et al. (2001), can be considered
as the most promising application field of selected genotyping in years to come. GS is today a very
hot topic in genomics (e.g. strawberry Genzan et al. (2017), banana Nyine et al. (2018)) and it con-
sists in predicting breeding values of selection candidates using a large number of genetic markers (see
Rabier et al. (2019)). The goal is to predict the future phenotype of young candidates as soon as their
DNA has been collected. GS considers many generations and in order to maintain the reliability of
the prediction model over time, the model has to be updated. Then, the model is learned on extreme
individuals, selected at the previous generation because of their favorable genomic predictions (see our
Section 7 for more details).

1.2. On high dimensional data

There are many issues related to high dimensional data. As mentioned in Fan and Lv (2008), one of
the challenges lies in the fact that “important predictors can be highly correlated with some unimportant
ones”. In genomics, correlation between predictors is highly linked to recombination between genetic
markers. Then, once the genetic map is built (see Wu et al. (2007) for instance), the correlation between
predictors is perfectly known and we do not have to estimate these correlations. In this context, we
propose in this study, to exploit this extra information and to introduce our new variable selection
method, called SgLasso.

The number of selected variables by SgLasso, is bounded by the number of predictors, instead of being
bounded by the number of observations as in the classical Lasso (Tibshirani (1996)). It is made possible
by the construction of a specific statistical test, a transformation of the data and by this knowledge of
the correlation between regressors. Moreover, in high dimensional problem, it is well known that the
sparse coefficient should be large enough (see for instance Bühlmann and Van de Geer (2011)) in order
to recover the true model (β-min condition). We prove that the signal to noise ratio is largely increased
thanks to the selective genotyping approach. Last but not least, SgLasso, that handles extreme data,
enjoys all known statistical properties of Lasso since the problem has been replaced in a L1 penalized
regression framework. Typically, it is not the case for Lasso in presence of extreme data.

Our study, inspired by stochastic processes arising from biology, focuses on the backcross design
(see below): the mathematical theory behind this concept has been largely studied for many years (e.g.
Cierco (1998)). Note that we could have focused on an evolutionary process such as the Wright Fisher
model. In what follows, although we consider the backcross framework for the sake of readability, results
are also suitable for phased data with biallelic genetic markers (alleles +1 or -1).

2. Introduction

As in Broman and Speed (2002), we study a backcross population: A× (A×B), where A and B are
purely homozygous lines and we address the problem of detecting Quantitative Trait Loci, so-called QTL
(genes influencing a quantitative trait which is able to be measured) on a given chromosome. The trait
is observed on n individuals (progenies) and we denote by Yj , j = 1, ..., n, the observations, which we
will assume to be independent and identically distributed (i.i.d.). The mechanism of genetics, or more
precisely of meiosis, implies that among the two chromosomes of each individual, one is purely inherited
from A while the other (the “recombined” one), consists of parts originated from A and parts originated
from B, due to crossing-overs. The chromosome will be represented by the segment [0, T ]. The distance
on [0, T ] is called the genetic distance, it is measured in Morgans. The genome X(t) of one individual
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takes the value +1 if, for example, the “recombined chromosome” is originated from A at location t and
takes the value −1 if it is originated from B . The admitted model for the stochastic structure of X(.)
is due to Haldane (1919) which states that:

X(0) ∼ 1

2
(δ+1 + δ−1), X(t) = X(0)(−1)N(t)

where for any b ∈ R, δb denotes the point mass at b and N(.) is a standard Poisson process on [0, T ].
In a more practical point of view, the Haldane (1919) model assumes no crossover interference and the
Poisson process represents the number of crossovers on [0, T ] which happen during meiosis.

The quantitative trait Y is affected by m additive QTLs located on the chromosome. Indeed, it is
well known that there is a finite number of loci underlying the variation in quantitative traits (e.g. in
aquaculture and livestock, see Hayes (2007)). Let qs and t⋆s denote respectively the QTL effect and the
location of the sth QTL. Besides, we consider 0 < t⋆1 < ... < t⋆m < T . We assume an “analysis of variance
model” for the quantitative trait:

Y = µ +
m∑

s=1

X(t⋆s) qs + σε (1)

where ε is a Gaussian white noise.

In fact the “genome information” is available only at marker locations, that is to say at certain fixed
locations t1 = 0 < t2 < ... < tK = T , and the observation is

(Y, X(t1), ..., X(tK)) .

Moreover we consider the selective genotyping approach Lebowitz et al. (1987). At a given power, a
large increase of the number of individuals leads to a decrease of the number of individuals genotyped.
Note that in practice, the cutoffs for genotyping are based on quantiles. However, in most of the theo-
retical studies about selective genotyping (e.g. Darvasi and Soller (1992); Muranty and Goffinet (1997)),
authors consider fixed thresholds. This approximation is reasonable when we deal with a large number
of observations. In this context, let S− and S+ be two real thresholds, with S− ≤ S+ and we genotype
if and only if the phenotype Y is extreme, that is to say Y ≤ S− or Y ≥ S+. If we call X(t) the random
variable such as

X(t) =

{
X(t) if Y /∈ [S− , S+]

0 otherwise ,

then, in our problem, one observation is now

(
Y, X(t1), ..., X(tK)

)
.

Note that when Y /∈ [S− , S+], we have X(t1) = X(t1), ..., X(tK) = X(tK) and when Y ∈ [S− , S+],
we have X(t1) = 0, ..., X(tK) = 0, which means that the genome information is missing at the marker
locations. So, we observe n observations

(
Yj , Xj(t1), ..., Xj(tK)

)
i.i.d.

The main aim of this study is to estimate the number m of QTLs, their locations t⋆1, ..., t
⋆
m and their

effects q1, ..., qm. It will be helpful for building a prediction model in GS. For that, we consider the score
statistic and the LRT statistic of the hypothesis “q1 = 0”at each location t, assuming m = 1. It leads
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to a “score process”, Sn(·), and to a “LRT process”, Λn(·). This technique that consists in scanning the
genome, is called the “Interval Mapping” (Lander and Bostein (1989)) and is very popular in genetics (see
Wu et al. (2007); Siegmund and Yakir (2007)). In the complete data situation where all the individuals
are genotyped (i.e. S− = S+) and assuming m = 1, the distributions of the score and LRT processes have
been studied extensively by Rebäı et al. (1995, 1994); Cierco (1998); Azäıs and Cierco-Ayrolles (2002);
Chen and Chen (2005); Azäıs and Wschebor (2009); Chang et al. (2009); Azäıs et al. (2012). In con-
trast, under selective genotyping, the result is relatively new for m = 1 since the asymptotic distri-
bution was given recently in Rabier (2015, 2014c). These two studies were complementary to the work of
Rabbee et al. (2004) and Manichaikul et al. (2007), relying on simulated data. In the past, the authors
mainly focused on the theory of selective genotyping at only one fixed location t of the genome (e.g.
Lander and Bostein (1989); Darvasi and Soller (1992); Muranty and Goffinet (1997); Rabier (2014a)).

Selective genotyping is challenging since some correlation is present between the errors ε and the
genome of extreme individuals. In order to show the influence of this correlation, let us consider m ≥ 1.
At the marker location tk, the score statistic, Sn(tk), can be decomposed in the following way (cf. formula
(9) in Section 2 of Supplement A):

Sn(tk) =

n∑

j=1

m∑

s=1

qs Xj(t
⋆
s) Xj(tk)√
n A

+

n∑

j=1

σεj Xj(tk)√
n A

where A is a quantity linked to the choice of S− and S+ (see formula (9) in Section 3). By imposing
qs = as/

√
n, we can apply under this local alternative, the Law of Large Numbers and the Central Limit

Theorem for the first and the second term, respectively (see for instance Van der Vaart (1998)). Then,
according to a technical proof (cf. Section 4 of Supplement A), we have the relationship

n∑

j=1

σεj Xj(tk)√
n A

L−→ N [Ω, 1]

where Ω is a function of a1, . . ., am, t⋆1, . . ., t
⋆
m, tk, S− and S+. As a consequence, the correlation between

ε and X(tk) plays a role in the asymptotic theory. In contrast, under the complete data situation
(S− = S+), the random variable X(tk), equal to X(tk), is independent of ε: since ε is centered, Ω is the
constant null function.

2.1. Roadmap

Section 3 introduces our main result, Theorem 1, that gives the asymptotic distribution of the score
process and the LRT process under the alternative hypothesis that there exists m QTLs located at t⋆1,
..., t⋆m with effects q1, ..., qm. Under this general alternative, the LRT process is still asymptotically the
square of a “non linear interpolated process”, as in Theorem 4.1 of Rabier (2015) where the focus was only
on the case m = 1 under selective genotyping. Besides, as in Rabier (2015), the difference between the
complete data situation and the selective genotyping approach is traducted by a difference between the
mean functions of the asymptotic processes: they are proportional of a factor

√
A/σ. However, contrary

to Rabier (2015) and Azäıs et al. (2012), the mean function depends here on the number of QTLs, their
positions and their effects.

These theoretical results allow us to propose a new method, called SgLasso, to estimate the number
of QTLs, their positions and their effects using the Lasso (Tibshirani (1996)). SgLasso differs from
the classical Lasso since it models explicitly the extremes. As its famous ancestor Lasso, SgLasso has
multiple cousins, each one imposing its own penalty on parameters: we can cite for instance SgElasticNet
(a mixture of L1 and L2 penalties) and SgGroupLasso (penalty by group).
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Note that Theorem 1 gives also the asymptotic distribution of the statistic supΛn(.) when m ≥ 1,
since this test can be viewed as a global test or max test (see for instance Arias-Castro et al. (2011)). In
this context, supΛn(.) matches the test statistic corresponding to the statistical test with the smallest
pvalue in a multiple testing framework. It could be used before performing our new gene mapping method
SgLasso, in order to look for “some signal” on the chromosome.

Lemma 1 gives the Asymptotic Relative Efficiency (ARE) with respect to the complete data situation.
Recall that the ARE determines the sample size required to obtain the same local asymptotic power as the
one of the test under the complete data situation where all the genotypes are known. According to Lemma
1, we have exactly the same ARE as the one obtained in Rabier (2015) for m = 1. Theorem 2 shows
that the signal is largely increased by genotyping extreme individuals, provided that the phenotyping is
free. Corollary 1 deals with interactions between QTLs (so-called epistasis phenomenon). Indeed, it is
well known that interactions can be responsible for a non-negligible part of the genetic variability of a
quantitative trait (see for instance Wu et al. (2007)). According to Corollary 1 that gives the asymptotic
properties of the LRT process, interaction effects are unidentifiable since they are not present in the mean
function of the process. Last, Corollary 2 tackles the reverse configuration of selective genotyping, where
only non extreme individuals are genotyped (i.e. the individuals for which Y ∈ [S−, S+]).

In Section 4, we describe our new gene mapping method, SgLasso, and one of its cousin SgElasticNet
(SgEN). In particular, we explain how to combine the theoretical results of Section 3 and the chosen penal-
ized likelihood method. Section 5 investigates theoretical properties of SgLasso, such as the rate of conver-
gence for prediction and the consistency of the variable selection. Next, Section 6 illustrates performances
of our new method and proposes a comparison with existing methods in a GWAS context. As expected,
the signal to noise ratio is largely increased by considering extreme individuals. SgLasso and its cousins
outperformed existing methods (Lasso, Tibshirani (1996), Group Lasso, Yuan and Lin (2006), Elastic
Net, Zhou and Hastie (2005), RaLasso, Fan et al. (2017) and BayesianLasso, Park and Casella (2008)),
specially when a unidirectional selective genotyping was performed (i.e. when only the best individuals
were genotyped). Recall that SgLasso models explicitly the fact that X and ε are not independent. Sec-
tion 6.4 is devoted to a rice data analysis. Our study ends with Section 7 dedicated to GS: the SgLasso
presented the best performances for genomic prediction.

3. Some theoretical results

In what follows, r(t, t′) will denote the probability of recombination between two loci (i.e. positions)
located at t and t′. Calculations on the Poisson distribution show that

r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) = 1

2
(1− e−2|t−t′|),

we set in addition
r̄(t, t′) = 1− r(t, t′), ρ(t, t′) = e−2|t−t′| .

For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, we define tℓ and tr as :

tℓ = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (tℓ, tr).

Let us consider the case m = 1 (i.e. one QTL located at t⋆1), and let θ1 = (q1, µ, σ) be the parameter of
the model at t fixed. Since all the information is contained in the flanking markers of the putative QTL
location t, the focus is only on the triplet

(
Y, X(tℓ), X(tr)

)
. According to Rabier (2015), the likelihood
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of
(
Y, X(tℓ), X(tr)

)
with respect to the measure λ ⊗ N ⊗ N , λ being the Lebesgue measure, N the

counting measure on N, is ∀t ∈ [t1, tK ]\TK :

Lt(θ
1) =

[
p(t) f(µ+q1,σ)(Y )1Y /∈[S−,S+] + {1− p(t)} f(µ−q1,σ)(Y )1Y /∈[S−,S+] (2)

+
1

2
f(µ+q1,σ)(Y )1Y ∈[S−,S+] +

1

2
f(µ−q1,σ)(Y )1Y ∈[S−,S+]

]
g(t)

where f(µ,σ) is the Gaussian density with parameters (µ, σ) and

p(t)1Y /∈[S−,S+] = P
{
X(t) = 1 | X(tℓ), X(tr)

}
1Y /∈[S−,S+]

= Q1,1
t 1X(tℓ)=11X(tr)=1 + Q1,−1

t 1X(tℓ)=11X(tr)=−1

+Q−1,1
t 1X(tℓ)=−11X(tr)=1 + Q−1,−1

t 1X(tℓ)=−11X(tr)=−1

with

Q1,1
t =

r̄(tℓ, t) r̄(t, tr)

r̄(tℓ, tr)
, Q1,−1

t =
r̄(tℓ, t) r(t, tr)

r(tℓ, tr)

Q−1,1
t =

r(tℓ, t) r̄(t, tr)

r(tℓ, tr)
, Q−1,−1

t =
r(tℓ, t) r(t, tr)

r̄(tℓ, tr)
.

We can notice that we have

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

t .

Moreover we have:

g(t) = P
{
X(tℓ), X(tr)

}
1Y /∈[S−,S+] + 1Y ∈[S−,S+] (3)

with

P
{
X(tℓ), X(tr)

}
1Y /∈[S−,S+] =

1

2

{
r(tℓ, tr)1X(tℓ)X(tr)=1 +r(tℓ, tr)1X(tℓ)X(tr)=−1

}
.

As a result, the likelihood is a function of Y , X(tℓ), X(tr), which was not obvious at first reading.
However, the expression given in formula (2) will be very convenient for the generalization to several
QTLs. Note that the true probability distribution is Lt⋆

1
(θ1). The score statistic of the hypothesis

“q1 = 0” at t, for n independent observations, is defined as

Sn(t) =

∂l
n

t

∂q1
|θ1

0√
V

(
∂l

n

t

∂q1
|θ1

0

) , (4)

where l
n

t denotes the log likelihood at t, associated to n observations, and θ10 = (0, µ, σ) refers to the
parameter θ1 under H0.
In the same way, the LRT statistic at t, for n independent observations, is defined as

Λn(t) = 2
{
l
n

t (θ̂
1)− l

n

t (θ̂
1|H0

)
}

, (5)

where θ̂1 is the maximum likelihood estimator (MLE) of the parameters (q1, µ, σ), and θ̂1|H0
the MLE

under H0. As previously said, the processes Sn(·) and Λn(·) respectively defined by (4) and (5) for
t ∈ [0, T ] are respectively called the score process and the LRT process.
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3.1. Main results

Before giving our first main result, let us define the following quantities:

γ := PH0
(Y /∈ [S−, S+]) (6)

γ+ := PH0
(Y > S+) (7)

γ− := PH0
(Y < S−) (8)

A := σ2
{
γ + zγ+

ϕ(zγ+
) − z1−γ−

ϕ(z1−γ−
)
}

(9)

where ϕ(x) and zα denote respectively the density of a standard normal distribution taken at the point
x, and the quantile of order 1− α of a standard normal distribution.
Remark: When there is no selective genotyping (complete data situation): γ = 1, γ+ + γ− = 1 and
A = σ2.

Notations 1. ⇒ is the weak convergence,
F.d.→ is the convergence of finite-dimensional distributions and

L−→ is the convergence in distribution.

Our first main result is given in the following theorem. We obtain the asymptotic distribution of the
score process Sn(·) and the LRT process Λn(·) under the null hypothesis that there is no QTL on [0, T ]
and under the general hypothesis that there exist m QTLs on [0, T ]. The originality is that the test
processes are constructed under the hypothesis that there is a QTL at t and we look for their asymptotic
distributions under the general hypothesis that there exist m QTLs on [0, T ]. This leads to asymptotic
processes with mean function depending on the locations and effects of the m QTLs. Using a variable
selection method we will propose in the next section a new QTL detection procedure.

Theorem 1. Suppose that the parameters (q1, ..., qm, µ, σ2) vary in a compact and that σ2 is bounded
away from zero, and also that m is finite. Let H0 be the null hypothesis of no QTL on [0, T ], and let
define the following local alternatives Ha~t⋆ : “there are m QTLs located respectively at t⋆1, · · · , t⋆m with
effect q1 = a1/

√
n, · · · , qm = am/

√
n where a1 6= 0, · · · , am 6= 0”. Then, as n tends to infinity,

Sn(.) ⇒ V (.) , Λn(.)
F.d.→ V 2(.) , supΛn(.)

L−→ supV 2(.) (10)

under H0 and Ha~t⋆ where V (.) is the Gaussian process with unit variance such as

V (t) =
α(t) V (tℓ) + β(t) V (tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)
,

Cov {V (tk), V (tk′)} = ρ(tk, tk′) = e−2|tk−t
k′ | ∀(k, k′) ∈ TK × TK

with α(t) = Q1,1
t −Q−1,1

t , β(t) = Q1,1
t −Q1,−1

t . The mean function of V (·) is such that:

• under H0, m(t) = 0

• under Ha~t⋆ ,

m~t⋆(t) =
α(t) m~t⋆(t

ℓ) + β(t) m~t⋆(t
r)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)

where

m~t⋆(t
ℓ) =

m∑

s=1

as
√
A ρ(tℓ, t⋆s) / σ2 , m~t⋆(t

r) =

m∑

s=1

as
√
A ρ(tr, t⋆s) / σ2 ,

and A is defined in (9). When there is no selective genotyping (complete data situation), A = σ2.
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The case m > 1 differs from the case m = 1 since the true probability distribution is the one of(
Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

)
. Indeed, all the information is contained in the flanking mark-

ers of all QTLs locations. This probability distribution and the proof of Theorem 1 are given respectively
in Section 1 and Section 2 of Supplement A.

Let us recall that the Asymptotic Relative Efficiency (ARE) determines the relative sample size required
to obtain the same local asymptotic power as the one of the test under the complete data situation where
the genome information at markers is known for all the individuals.

Lemma 1. Let κ denote the Asymptotic Relative Efficiency, then we have

i) κ = γ + zγ+
ϕ(zγ+

) − z1−γ−
ϕ(z1−γ−

)

ii) κ reaches its maximum for γ+ = γ− = γ/2 .

where ϕ(x) and zα denote respectively the density of a standard normal distribution taken at the point x,
and the quantile of order 1− α of a standard normal distribution.

This lemma is a generalization of Theorem 4.2 of Rabier (2015) where the focus was only on the case
m = 1. To prove Lemma 1, just use the same proof as the one of Theorem 4.2 of Rabier (2015).

According to i) of Lemma 1, the ARE with respect to the complete data situation, does not depend on
the number of QTLs m, the constants a1, ..., am linked to the QTL effects, and the QTLs locations t⋆1, ...,
t⋆m. Indeed, since the mean functions (complete data situation and selective genotyping) are proportional
of a factor

√
A/σ, it is obvious that the ARE does not depend on those parameters. On the other hand,

according to ii) of Lemma 1, if we want to genotype only a percentage γ of the population, we should
genotype the γ/2% individuals with the largest phenotypes and γ/2% individuals with the smallest phe-
notypes.

Let us consider now n⋆ individuals for a selective genotyping experiment, and let us assume that we have
the relationship n = n⋆γ. In other words, we focus on the case where, for economical reasons, we are
allowed to genotype only n individuals. By considering n = n⋆γ, we are allowed to genotype n extreme
individuals, provided that the overall population size has been increased to n⋆. In this context, following
the same lines as the proof of Theorem 1, we obtain:

Theorem 2. Suppose that the parameters (q1, ..., qm, µ, σ2) vary in a compact and that σ2 is bounded
away from zero, and also that m is finite. Assume that n⋆ = n/γ. Let H0 be the null hypothesis of no
QTL on [0, T ], and let define the following local alternatives Ha~t⋆ : “there are m QTLs located respectively
at t⋆1, · · · , t⋆m with effect q1 = a1/

√
n, · · · , qm = am/

√
n where a1 6= 0, · · · , am 6= 0.” Then, as n⋆ tends to

infinity,

Sn⋆(.) ⇒ V⋆(.) , Λn⋆(.)
F.d.→ V 2

⋆ (.) , supΛn⋆(.)
L−→ supV 2

⋆ (.) (11)

under H0 and Ha~t⋆ where V⋆(.) is the Gaussian process with unit variance such as

V⋆(t) =
α(t) V⋆(t

ℓ) + β(t) V⋆(t
r)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)
,

Cov {V⋆(tk), V⋆(tk′)} = ρ(tk, tk′) = e−2|tk−t
k′ | ∀(k, k′) ∈ TK × TK

with α(t) = Q1,1
t −Q−1,1

t , β(t) = Q1,1
t −Q1,−1

t . The mean function of V⋆(·) is such that:
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• under H0, m
⋆(t) = 0

• under Ha~t⋆ ,

m⋆
~t⋆
(t) =

α(t) m⋆
~t⋆
(tℓ) + β(t) m⋆

~t⋆
(tr)

√
α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)

where

m⋆
~t⋆
(tℓ) =

m∑

s=1

as

√
A
γ

ρ(tℓ, t⋆s) / σ2 , m⋆
~t⋆
(tr) =

m∑

s=1

as

√
A
γ

ρ(tr, t⋆s) / σ2 ,

and A is defined in (9). When there is no selective genotyping (complete data situation), A = σ2

and γ = 1.

As a result, the ratio between the signal corresponding to selective genotyping and the one matching the

complete data situation is equal to

√
A
γσ2

. This quantity verifies the following relationship

√
A
γσ2

=
√
zγ+

ϕ(zγ+
)/γ − z1−γ−

ϕ(z1−γ−
)/γ + 1

and if we are willing to genotype symmetrically (i.e. γ+ = γ−), it becomes

√
A
γσ2

=
√

2zγ/2ϕ(zγ/2)/γ + 1 .

In other words, provided that the phenotyping is free, the signal can be largely increased, by genotyping
extreme individuals (i.e. selective genotyping) instead of genotyping random individuals (i.e. complete
data situation). According to Figure 1, when the selective genotyping is performed symmetrically, the
signal corresponding respectively to the cases γ = 0.1, γ = 0.2 and γ = 0.3, is respectively 2.09, 1.80 and
1.61 times larger under selective genotyping than under random genotyping. The worst case is obtained
when genotyping only the largest phenotypes (see γ+/γ = 1) or genotyping only the smallest phenotypes
(same curve as the one for γ+/γ = 1). Obviously, when all the individuals are genotyped (γ = 1), all the
efficiencies are equal to one.

3.2. Some corollaries

3.2.1. Model with interactions

It is well known that interactions between QTLs (so-called epistasis phenomenon) can be responsible for
a non-negligible part of the genetic variability of a quantitative trait (see for instance Wu et al. (2007)).
Then, we propose now to include interactions between QTLs into our model. We will assume that only
loci with additive effects on the trait, are involved in interactions. The “analysis of variance model” of
formula (1) for the quantitative trait becomes

Y = µ +
m∑

s=1

X(t⋆s) qs +
m−1∑

s=1

m∑

s̃=s+1

X(t⋆s)X(t⋆s̃) qs,s̃ + σε (12)

where ε is a Gaussian white noise, and qs,s̃ is the interaction effect between loci t⋆s and t⋆s̃.
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Figure 1: Function
√

zγ+
ϕ(zγ+

)/γ − z1−γ−
ϕ(z1−γ−

)/γ + 1 as a function of the percentage γ of individuals genotyped

and as a function of the ratio γ+/γ.

Corollary 1. Suppose that the parameters (q1, ..., qm, q1,2, ..., qm−1,m, µ, σ2) vary in a compact and that
σ2 is bounded away from zero, and also that m is finite. Let define the local alternative

• Ha~t⋆,b~t⋆ :“There are m additive QTLs located respectively at t⋆1, ..., t
⋆
m with effects respectively q1 =

a1/
√
n, ..., qm = am/

√
n where a1 6= 0, ..., am 6= 0 . Besides, all these QTLs interact with each

other : the interaction effects are respectively q1,2 = b1,2/
√
n for loci t⋆1 and t⋆2, ..., qm−1,m =

bm−1,m/
√
n for loci t⋆m−1 and t⋆m where b1,2 6= 0, ..., bm−1,m 6= 0”.

then, with the previous notations, under Ha~t⋆,b~t⋆ , as n or n⋆ tends to infinity, results (10) and (11) of
Theorem 1 and Theorem 2 hold.

The proof is given in Section 3 of Supplement A. The interaction effects are not included in the mean
function. In other words, those effects are unidentifiable when the classical LRT is used. It is due to
independent increments of the Poisson process.

3.2.2. The reverse configuration

Sometimes, for some biological reasons, we are only able to genotype the non extreme individuals (i.e.
the individuals for which Y ∈ [S−, S+]). In this context, we present the following result.

Corollary 2. Under the reverse configuration, that is to say if X(tk) = X(tk) 1Y ∈[S− , S+], then we have
the same results as in Theorem 1, Theorem 2 and Corollary 1 provided that we replace the quantity A by
the quantity B defined in the following way

B = σ2
{
1− γ − zγ+

ϕ(zγ+
) + z1−γ−

ϕ(z1−γ−
)
}

.

The proof is largely inspired of the proof of Theorem 1, Theorem 2, Corollary 1, and also from Rabier (2014b)
where this configuration is studied under the local alternative of one QTL at t⋆ on [0, T ].
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4. A new method for gene mapping

In this section, the goal is to propose a method to estimate the number of QTLs, their effects and
their positions combining results of Theorems 1 and 2 and a penalized likelihood method.

Notations 2. Gγ,σ denotes respectively

√
A
σ

or

√
A√
γσ

when the total number of phenotypic observations

is n or n⋆ = n/γ.

In the sequel ñ denotes the total number of phenotypic observations. It may be n or n⋆. According to
Theorems 1 and 2, as soon as we discretize the score process at markers positions, we have the following
relationship when ñ is large:

~Sñ = ~m~t⋆ + ~ε + oP (1)

where ~Sñ =
(
Sñ(t1) , Sñ(t2) , ... , Sñ(tK)

)′
, ~m~t⋆ = (m~t⋆(t1) , m~t⋆(t2) , ...,m~t⋆(tK))

′
and ~ε ∼ N(0,Σ)

with Σkk′ = ρ(tk, tk′).
Since most of the penalized likelihood methods rely on i.i.d. observations, we will decorrelate the com-
ponents of ~Sñ keeping only points of the process taken at marker positions. Recall that Sñ(.) is an
“interpolated process”. Let us consider the Cholesky decomposition Σ = AA′. We have

A−1~Sñ = A−1B

(
a1Gγ,σ

σ
, ... ,

amGγ,σ

σ

)′
+ A−1~ε + oP (1)

where B is a matrix of size K ×m such as Bks = e−2|tk−t⋆
s
|, k = 1, · · · ,K and s = 1, · · · ,m.

Since the number m of QTLs and their positions t⋆1,...,t
⋆
m are unknown, we propose to focus on a new

discretization of [0, T ] corresponding to all the putative QTL locations: 0 ≤ t′1 < t′2 < ... < t′L ≤ T . Note
that although we focus only on the discretized process at markers locations, we look for QTL not only
on markers. We note ∆l the putative effect at location tl. The model can be rewritten in the following
way:

A−1~Sñ = A−1C (∆1 , ... , ∆L)
′
+ A−1~ε + oP (1) (13)

where C is a matrix of size K × L such as Ckl = e−2|tk−t′
l|, k = 1, · · · ,K and l = 1, · · · , L.

Last, in order to find the non zero ∆l, a natural approach is to use a penalized regression and estimate
∆ by:

∆̂Sg(λ, α) = argmin
∆

(∥∥∥A−1~Sñ −A−1C∆
∥∥∥
2

2
+ λ pen(α)

)
(14)

where:

pen(α) =
1− α

2
‖∆‖22 + α ‖∆‖1 (15)

and ‖ ‖2 is the L2 norm, ‖ ‖1 is the L1 norm, ∆ = (∆1, ...,∆L)
′
and λ and α denote tuning parameters.

We define:
∆̂SgLasso(λ) = ∆̂Sg(λ, 1) and ∆̂SgEN(λ, α) = ∆̂Sg(λ, α). (16)

Another estimator, based on the group Lasso penalty, will be studied. We leave the study of the Ridge
estimator, ∆̂Sg(λ, 0), for future research, since this estimator is only helpful for prediction.

Our estimators will be compared in section 6.3 with the classical estimators such as the Lasso (Tibshirani (1996))
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and its cousins (e.g. Zhou and Hastie (2005); Yuan and Lin (2006)). These classical estimators con-
sider exclusively marker locations. In order to describe a few of them under selective genotyping, let
us define β0 the global mean and βk the putative effect of marker k. We set β = (β0, β1, . . . , βK)

′
.

In addition, let Mext denote the matrix, where each row contains the multivariate random variable
(1, X(t1), . . . , X(tK)) | Y /∈ [S−, S+] associated to an extreme individual. In the same way, Yext refers
to the column vector containing the phenotypes of the extreme individuals. Indeed, since the genome
information is unknown for the non extreme individuals, the classical estimators are built only on ex-
treme individuals. According to these notations, the classical Lasso estimator β̂Lasso(λ), and the classical

Elastic Net estimator β̂EN(λ, α) are the following under selective genotyping:

β̂Lasso(λ) = argmin
β

(
‖Yext −Mextβ‖22 + λ ‖β‖1

)
(17)

β̂EN(λ, α) = argmin
β

(
‖Yext −Mextβ‖22 + λ

{
1− α

2
‖β‖22 + α ‖β‖1

})
. (18)

Note that the Elastic Net penalty is described here in its version implemented in the R package GLMNet
that will be used on simulated data.

5. Asymptotic theory for SgLasso under complete Linkage Disequilibrium

Before studying the theory of SgLasso, we have to give precisions regarding prediction and variable
selection of SgLasso. As its cousin Lasso, SgLasso is able to select variables and these findings are
considered as QTLs. Recall that SgLasso presents the advantage over its cousin to handle extreme data.
On the other hand, in terms of prediction, we have to highlight the fact that SgLasso (in its version
declined in formula (16)) will only predict values of a decorrelated score process. In what follows, we
propose to investigate the rate of convergence for this prediction and we will also give conditions for
consistent variable selection. We refer to Section 7 for the prediction of the phenotypes Y .

Let us assume that we are under complete Linkage Disequilibrium, i.e. the m QTLs are located on
some markers. Furthermore, let us consider exclusively marker locations, i.e. L = K and t′l = tk. We
have the relationships C = Σ, A−1C = A′ and ∆ = (∆1, ...,∆K)

′
. When ∆k is null, the corresponding

marker is not a QTL, whereas a non-null ∆k refers to a QTL.
According to formulas (14) and (16), our L1 penalized regression is:

∆̂SgLasso(λ) = argmin
∆

(∥∥∥A−1~Sñ −A′∆
∥∥∥
2

2
+ λ ‖∆‖1

)
. (19)

Let us normalize all covariables on the same scale. It will replace our problem in the classical setting
where the theory for Lasso is well known (cf. Bühlmann and Van de Geer (2011) page 108). Since

σ̂2
k := 1

K (A′A)kk = Σkk

K = ρ(tk,tk)
K = 1

K , let us set A′
scal :=

√
KA′. Then, let us define

∆̂SgLasso
scal

(λ) := argmin
∆




∥∥∥A−1~Sñ −A′
scal∆/

√
K
∥∥∥
2

2

K
+ λ

∥∥∥∥
∆√
K

∥∥∥∥
1


 .

As soon as we set ∆′ := ∆/
√
K, this problem can be rewritten in the following way:

ˆ̂
∆SgLasso

scal

(λ) := argmin
∆′




∥∥∥A−1~Sñ −A′
scal∆

′
∥∥∥
2

2

K
+ λ ‖∆′‖1


 . (20)
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We can apply Corollary 6.1 of Bühlmann and Van de Geer (2011) with σ̂ = 1 (cf. our linear model
in formula (13)), that establishes the slow rate of convergence

∥∥∥A′
scal(

ˆ̂
∆SgLasso

scal

−∆′)
∥∥∥
2

2

K
= OP

(√
log(K)

K

m∑

s=1

|as| Gγ,σ

σ
√
K

)
(21)

where OP (1) denotes a sequence that is bounded in probability when K → +∞.
On the other hand, assuming that the “compatibility condition” holds, Corollary 6.2 of

Bühlmann and Van de Geer (2011) applies and we obtain the fast rate of convergence:

∥∥∥A′
scal(

ˆ̂
∆SgLasso

scal

−∆′)
∥∥∥
2

2

K
= OP

(
log(K) m

K Φ2
0

)
(22)

where Φ2
0 is a compatibility constant. Recall that the number of QTLs m is the factor linked to the

sparsity.
Last, in order to make things clearer for future users, we propose to state the classical Lasso conditions

in the “SgLasso” context.

The β-min condition:

min
1≤s≤m

|as| Gγ,σ

σ
√
K

>> Φ−2

√
m log(K)

K

where Φ2 is a restricted eigen value of the design matrix A′
scal.

Recall that TK = {t1, ..., tK} and that Σ is the K × K matrix, where Σkk′ = ρ(tk, tk′). Note that
AscalA

′
scal/K = AA′ = Σ.

The bounded pairwise correlation:

√
m max

k∈TK\T⋆
m

√ ∑
s∈T⋆

m
|t⋆

s
6=tk

ρ2(tk, t⋆s)

d2min(Σ
(⋆,⋆))

≤ C < 1 (23)

where T
⋆
m = {t⋆1, ..., t⋆m}, C is a constant, Σ(⋆,⋆) is the submatrix of Σ restricted to QTL loci, and

d2min(Σ
(⋆,⋆)) refers to the smallest eigenvalue of Σ(⋆,⋆).

The irrepresentable condition:

∥∥∥Σ(.,⋆)(Σ(⋆,⋆))−1Sign(a1, . . . , am)
∥∥∥
∞

≤ C < 1

where ‖x‖∞ = maxj |xj |, Sign(a1, . . . , am) = (Sign(a1), . . . , Sign(am))
′
, and Σ(.,⋆) is a matrix of size

(K − m) × m. Σ(.,⋆) is the submatrix of Σ where rows refers to markers not matching QTL locations,
and where columns refers to QTL loci.

Note that according to Bühlmann and Van de Geer (2011), the bounded pairwise correlation implies
the irrepresentable condition, which implies the compatibility condition. This compatibility condition
ensures the fast rate of convergence for prediction (cf. formula (22)). On the other hand, the β-min con-
dition and the irrepresentable condition, ensure consistent variable selection for SgLasso under selective
genotyping.
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6. Illustrations regarding max test and GWAS

In what follows, the variance σ2 is set to 1 in all simulated data.

6.1. About the max test

To begin with, in Supplement B, we briefly illustrate our theoretical results regarding the max test.
Recall that it relies on the test statistic, supΛn(.). The focus is on a sparse map: a chromosome of length
1M (T = 1), with 21 markers (K = 21) equally spaced every 5cM. In this context, we show (see Table 1
of Supplement B) that there is a good agreement between the empirical power and the theoretical power
under different configurations (m is equal to either 1, 2 or 3, and γ is equal to 0.3 or 1). This validates
our theoretical results presented in Theorem 1.

6.2. Selective genotyping improves the detection process

Figure 2, based on one simulated data set, illustrates the performances of our new gene mapping
method (see Section 4) under selective genotyping. The considered genome is of length 10M (T = 10),
with 201 markers (K = 201) equally spaced every 5cM. 16 QTLs (m = 16) lie on the interval [0,4]
whereas no QTLs are present on the rest of the genome (i.e. [6,10]). The QTL effects are equal to either
+0.2 or −0.2, each QTL having its own random sign. The presence of QTL is tracked every 2.5cM. As
a consequence, 401 regressors (L = 401) are present in the linear model (formula (13)). In other words,
we use the discretization t′l = 0.025(l − 1), l = 1, . . ., 401. Recall that this grid is different from the one
corresponding to marker locations: tk = 0.05(k−1), k = 1, . . ., 201. Figure 2A refers to the case n = 200
whereas Figure 2B focuses on n = 100.

Assuming that, for economical reasons, the geneticist is allowed to genotype only n individuals, we
compare here the case where those n individuals are extreme or not. We considered n⋆ individuals under
selective genotyping and n individuals under the complete data situation. In other words, our simulation
set up follows Theorem 2.

For instance, when n was equal to 100 (γ = 1), n⋆ took the values 1000, 500 and 333 to handle the
cases γ = 0.1, 0.2, and 0.3 respectively. According to Figure 2A, the largest estimated effects are the
ones corresponding to the case γ = 0.1: a few QTL effects are estimated at approximately 5 (see around
1M and 4M), and at −6 around 2M. It was expected since under such selective genotyping (i.e with
n⋆ = n/γ), the quantities ∆l, present in formula (13), are increased by a factor

√
A/

√
γ at each gene

location. Then, under the configuration studied, the quantities |a|
√
A/

√
γ are equal respectively to 5.92,

4.56 and 2.50 when γ takes respectively the values 0.1, 0.3, and 1. Note that the number of selected
regressors was between 15 and 17 in all studied cases.

In what follows, the L1 ratio will denote the ratio L1 norm of estimated effects on [0,4] to L1 norm
of estimated effects on [0,10]. This L1 ratio is an indicator of whether or not the detected QTLs belong
to the “signal area”. Recall that on our example, all the simulated QTLs belong to the interval [0,4].
Table 1 reports in a general framework, the mean L1 ratio over 100 samples of size n = 100 or n = 200.
Different QTL effects are taken into consideration : |qs| is either equal to 0.2, 0.1, or 0.05. Since a large
number of markers are now available in genomic studies, we also considered a dense map consisting in
K =10,001 markers equally spaced every 0.1cM. Due to this high marker density, the presence of QTL
was only investigated on markers (K = L). For both maps (sparse an dense), we can notice that whatever
the parameter values, the more extremes the genotyped individuals are, the larger the L1 ratio is. In
other words, by considering extreme individuals, we largely improve the detection process. Besides, we
can notice that the more markers there are, the more powerful the method is.

Last, Table 2 of Supplement B focuses on different ways of performing the selective genotyping:
different ratios γ+/γ are investigated under both maps. As expected, when only the largest (or the
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Figure 2: Estimated coefficients according to our new method as a function of the percentage γ of genotyped individuals (1
sample, m = 16, T = 10, |q1| = . . . = |q16| = 0.2, QTLs randomly located only on [0,4], σ = 1, K = 201, tk = 0.05(k − 1),
L = 401, t′

l
= 0.025(k − 1), γ+/γ = 1/2, on average n individuals genotyped).

smallest) individuals are genotyped (γ+/γ = 1), the L1 ratio is the smallest. It confirms our theoretical
results presented in Section 3 and illustrated in Figure 1.

To conclude, selective genotyping is largely more rewarding for localizing genes.

6.3. Comparison with existing methods

In this section, we propose to compare our new method with existing methods. We will con-
centrate on the Lasso (Tibshirani (1996)), the Group Lasso (Yuan and Lin (2006)), the Elastic Net
(Zhou and Hastie (2005)), the Bayesian Lasso (Park and Casella (2008)), and the RaLasso (Fan et al. (2017)).

Recall that the Group Lasso differs from his cousin Lasso, since it allows to handle a group struc-
ture (see Hastie et al. (2001)). In the context of genomic prediction, the Bayesian Lasso was used in
Boligon et al. (2012) under selective genotyping. Contrary to the Lasso, the Bayesian LASSO guarantees
an unimodal full posterior, since it relies on a conditional Laplace prior. The last method studied here,
is the so-called RaLasso (Fan et al. (2017)). It presents the advantage of handling conditional errors ε
that are asymmetric and that follow heavy-tailed distributions.

In what follows, the Group Lasso is based on groups of 10 consecutive markers. For Elastic Net, the
value of the parameter α was set to 0.5 (cf. formula (18)). The Elastic Net, Group Lasso, Bayesian Lasso
and RaLasso were computed with the help of the R packages, GLMNet, gglasso, SafeBayes and hqreg,
respectively.

Recall the Huber loss considered in the package hqreg : loss(t) = t2

2M 1|t|≤M + (|t| −M/2) 1|t|≥M ,
where M is a tuning parameter. Huber loss is quadratic for absolute values less than M and linear for
those greater than M . As soon as we multiply by 2M and that we replace M by α−1, we obtain formula
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(Sparse, n = 100) (Sparse, n = 200) (Dense, n = 100) (Dense, n = 200)
all |qs| γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.2

0.1 96.83% 14.75 99.61% 15.54 99.81% 17.2 99.88% 16.7
0.2 90.32% 18.17 97.99% 15.3 99.78% 17.35 99.64% 16.96
0.3 88.03% 17.45 95.84% 17.22 98.83% 17.25 99.72% 16.95
1 70.91% 18.47 82.57% 16.94 91.08% 16.69 98.36% 17.39

0.1

0.1 82.26% 14.74 91.29% 16.74 95.73% 17.15 98.39% 16.87
0.2 73.43% 15.64 85.43% 16.74 94.18% 17.61 96.26% 16.93
0.3 70.95% 16.59 83.48% 16.66 88.64% 16.70 96.50% 17.12
1 55.41% 18.57 62.35% 17.62 72.59% 16.23 88.37% 17.01

0.05

0.1 61.00% 15.06 68.66% 15.17 79.15% 16.08 87.25% 16.82
0.2 52.73% 15.07 63.70% 15.86 72.97% 16.47 80.58% 16.62
0.3 52.27% 15.38 68.24% 16.5 66.13% 17.39 79.91% 16.45
1 45.34% 15.64 46.49% 18.07 52.23% 16.8 67.40% 16.83

Table 1: Performances of the new method SgLasso as a function of the percentage γ of genotyped individuals and as a
function of the QTL effects (Mean over 100 samples, γ+/γ = 1/2, on average n individuals genotyped, T = 10, m = 16,
QTLs randomly located only on [0,4], σ = 1). Sparse map: K = 201, tk = 0.05(k − 1), L = 401, t′

l
= 0.025(k − 1). Dense

map: K = L =10,001 , tk = t′
l
= 0.001(k − 1). The L1 ratio corresponds to the quantity

∑

161
i=1

|∆̂i|/
∑

401
i=1

|∆̂i| for the

sparse map, and to the quantity
∑

4001
i=1

|∆̂i|/
∑

10001
i=1

|∆̂i| for the dense map. m̂ denotes the estimated QTL number.

(2.2) of Fan et al. (2017). Last, we have to mention that the RaLasso incorporates the Huberloss and a
L1 penalty.

Recall that in our simulation framework, the number of QTLs m was set to 16. For Lasso, Elastic Net
and Group Lasso, the tuning parameter was selected in two steps. We first chose a few λ values leading
to models with approximately 16 parameters. Then, we performed cross validation in order to select the
best model. Same remark for the Bayesian Lasso except that the learning rate η replaces λ. In order to
compute the RaLasso, we ran a grid search to find the best pair (M , λ).

Table 2 focuses on the same dense map as previously. In order to propose a sharp comparison of the
methods, we placed the QTLs on the interval [0,1], still considering a genome of size 10M. We considered
different ways of performing the selective genotyping, by letting the ratio γ+/γ vary. All the QTL effects
were chosen such as |qs| = 0.1. According to the table, the performances of the different methods were fair
when the ratio γ+/γ took the values 1/2, 3/4 or 7/8. However, when a unidirectional selective genotyping
was performed (γ+/γ = 1), the Lasso, Group Lasso, Elastic Net and RaLasso deteriorated heavily, which
was not the case of our SgLasso method. For instance, when γ was set to 0.1, the power associated
to the Lasso, Group Lasso, Elastic Net, Bayesian Lasso was found to be equal to 20.78%, 16.73% and
21.00%, respectively. The Lasso and its cousins suffer from the fact that the tails of errors are not light,
and that the conditional distribution is asymmetric around 0 (see for instance Fan et al. (2017)). The
RaLasso, that models heavy tails and asymmetry, gave better results (47.01%) than these methods but
was still far from performances of SgLasso (93.97%). Last, the Bayesian Lasso performed badly in all
the configurations studied. Table 3 deals with the case |qs| equal to 0.2: although the signal had been
increased, we observed the same behaviour of the different methods. Table 4 compares performances of
SgLasso and its cousins. SgLasso and SgEN presented similar results, whereas the SgGroupLasso seemed
to select too many genes under this simulation setting.
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6.4. Real data analysis

To illustrate performances of our new method on real data, we analyzed data from the joint papers
Spindel et al. (2015) and Begum et al. (2015) dealing respectively with genomic prediction and associa-
tion mapping in rice. We considered the dataset of 13,101 SNPs, randomly chosen by the authors from
their 73,147 collected SNPs (cf. p20 of Spindel et al. (2015)), and we decided to focus on the flower-
ing date during the dry season 2012. In this context, we propose to compare the performances of the
different methods. Assuming that the 13,101 markers are spread out along the rice genome of length
13.101M (cf. Section “GS using marker subsets” of Spindel et al. (2015)), we can infer that a marker
is located every 0.1cM. Then, we performed 5 fold cross validation for all methods. As previously, a
grid search was used for RaLasso in order to find the best pair (M , λ). In particular, we considered the
values λ = 0.1, 10.1, . . . , 1000.1 and M = 0.1, 0.2, . . . , 1. The percentage γ of genotyped individuals was
set to either 1 or 0.3 and the selective genotyping was performed symmetrically (γ+/γ = 1/2). Since
Begum et al. (2015) considered the complete data situation (γ = 1), we removed data to mimick selective
genotyping experiments. In particular, for γ = 1 we kept the original data from Spindel et al. (2015)
(n = 312 by averaging the replicates), whereas for γ = 0.3, we kept the genome information of only
93 extreme individuals. In what follows, in order to make the reading easier for non specialists, a gene
will refer to a marker selected by a method. The 10 genes found by Begum et al. (2015) (cf. their S1
Table), and obtained after fitting a linear mixed model, are given at the top of Table 7. Note that the
most significant SNPs for the flowering date are located on chromosome 3 (see Begum et al. (2015)).
Indeed, the pvalues associated to 5 SNPs on chromosome 3 and reported by Begum et al. (2015), are the
following: 5.02× 10−27 for the so-called gene S3-1269941, 1.47× 10−24 for S3-1165376, 1.82× 10−23 for
S3-1125848, 2.80× 10−22 for S3-1394477, and 1.49× 10−21 for S3-1221494. The number of false positives
(FP) and the number of false negatives (FN) are also reported in Table 7. FP refers to the number of
falsely selected variables whereas FN is the number of genes that are not selected.
According to Table 7, SgLasso and SgEN selected respectively 26 and 33 genes under the complete data
situation (γ = 1). All the genes found by Begum et al. (2015) and present on chromosome 3, were either
perfectly found by SgLasso and SgEN or were tagged by a marker located nearby (at less than a distance
of 4 markers, i.e. 0.4cM). In contrast, SgGroupLasso’s performances were not as fair since SgGroupLasso
was unable to select the gene S3-1394477, even when a tolerance level of 0.4cM was used. Classical
methods such as Lasso, EN and Group Lasso, found respectively 3, 4 and 3 (or 4 with the tolerance level)
genes matching the findings of Begum et al. (2015) on chromosome 3. In that sense, when γ was set to
1, SgLasso and SgEN performed better than traditional methods. We can also highlight the fact that
RaLasso was unsatisfactory, exhibiting thousands of False Positives.
Let us now move on to selective genotyping. The selective genotyping was performed symmetrically
(γ+/γ = 1/2). For γ = 0.3, SgLasso, SgGroupLasso and SgEN selected 4, 5 and 5 genes, respectively,
corresponding to those suggested by Begum et al. (2015) on chromosome 3. Lasso, Group Lasso and EN
were able to recover 2, 3 and 5 genes, respectively. In other words, we observed the superiority of SgLasso
(resp. SgGroupLasso) over Lasso (resp. GroupLasso). SgEN and EN presented both fair results, with a
slight advantage to EN that exhibited only 2 FP. Moreover, as previously, RaLasso gave poor results on
this dataset.
To conclude, in order to show the strength of our methods, we tackled the case γ+/γ = 1. However,
due to a lack of signal and a small sample size, all methods were unable to recover the findings of
Begum et al. (2015). Recall that the unidirectional selective genotyping is the worst configuration. Con-
trary to our simulation studies, we were unable to increase the sample size to compensate this small
amount of signal. We leave it for future research.
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7. A promising application field of SgLasso in the future : Genomic Selection

Genomic Selection (GS) (Hayes et al. (2001)) can be considered as the most promising application
field of SgLasso in years to come. Recall that it consists in predicting breeding values of selection
candidates using a large number of genetic markers: the goal is to predict the future phenotype of
young candidates as soon as their DNA has been collected. GS was first applied to animal breeding (see
Hayes et al. (2009) for a review), and it is nowadays extensively investigated in plants. We can mention re-
cent genomic prediction studies on apple (Muranty et al. (2015)), eucalyptus (Tan et al. (2017)), japanese
pears (Minamikawa et al. (2018)), strawberry (Genzan et al. (2017)), banana (Nyine et al. (2018)) and
coffea (Ferrao et al. (2008)). GS allows to consider a large number of generations without having to ob-
serve the future adult phenotype. For instance, in citrus, 25 years are required to obtain fruits of interest.
In bananas, the waiting time can reach 8 months, in order to figure out the production capacity.

Many studies (e.g. Wolc et al. (2011); Pszczola and Calus (2016); Rabier et al. (2016); Auinger et al. (2016);
Neyhart et al. (2017)) have shown that it is essential to update the learning model during GS cycles in
order to maintain the reliability of the prediction model over time. When updating the calibration
model, the model is learned on extreme individuals, selected at the previous generation because of their
favorable genomic predictions. In that sense, this area of research in GS is highly linked to selective
genotyping. GS differs slightly from selective genotyping because individuals are selected on the basis
of genomic prediction, instead of being selecting according to their phenotypes. However, in practice,
there is only a very small difference in considering predicted or true phenotypes (cf. experiments 1 and
2 of Brandariz and Bernardo (2018)). Zhao et al. (2012) highlighted the “drastic reduction” in terms of
predictive ability when only the best individuals (i.e. with the largest phenotypes) were used in the
learning model in GS. Interestingly, Brandariz and Bernardo (2018) has shown recently that it is cru-
cial to include a few worst individuals in the training set, to keep GS efficient. As soon as only the
best individuals were included in the training set, the model was not reliable anymore (see Table 1 of
Brandariz and Bernardo (2018)). However, keeping the poorest lines in a breeding program has a non
negligible cost. In this context, we will show below on simulated data that SgLasso and its cousins do not
suffer from this drawback: they give satisfactory results even when only best individuals are considered.
In other words, there is a strong agreement with results from our association study in Section 6.3 (cf.
Tables 2 and 3).

7.1. Mathematical model and comparison with existing methods

As mentioned in introduction, A and B are homozygous lines. In order to generate candidates,
let us cross the extreme backcross individuals to their parent A, that is to say performing the cross
(A × (A × B))ext × A where (A × (A × B))ext refers to the backcrossed individuals that are extremes
(cf. Figure 1 in Supplement B). From a theoretical point of view, let Xext(t) denote the random variable
X(t) | Y /∈ [S−, S+], i.e. the genome at t of an extreme individual, and let R(.) denote a standard
poisson process on [0, T ] representing the number of recombinations. W (.), the random process such as
W (t) = Xext(t)1R(t) even − 1R(t) odd, will refer to the genome of the progeny of an extreme individual
(taken at random among all extreme individuals). The quantitative trait of this progeny, noted U , is
based on the ANOVA model: U = µ+

∑m
s=1 W (t⋆s)qs + σε, where ε is a Gaussian white noise.

In what follows, the notation “new” will refer to the progeny of an extreme individual ; Unew, Wnew(.),
εnew, Rnew(.) are random variables or processes associated to this new individual. In GS, the quality of
the prediction is evaluated according to some accuracy criteria, i.e. the correlation between predicted and
true values. This criterion is a key element in genetics: it plays a role in the rate of genetic gain (see for
instance Lynch and Walsh (1998)). The phenotypic accuracy, ρph, also called predictive ability, is defined

as the correlation between the predictor Ûnew and the trait Unew, i.e. Cor
(
Ûnew, Unew

)
(see for instance

Visscher et al. (2010)). We propose to compare here the accuracy associated to the classical predictor
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and the one relying on our method. These two estimators have respectively the following expressions:

Ûnew = (1,Wnew(t1), . . . ,Wnew(tK)) β̂Lasso and Ûnew = (Wnew(t1), . . . ,Wnew(tK)) ∆̂SgLasso(λ)
σ
√
γ√

nA . We

will also investigate accuracies of the cousins of the different predictors. To clarify, each simulated data
set rely on 100 progenies and each progeny is a descendent of an extreme individual taken at random
among all extremes. The model is learned on all extreme individuals and evaluated on the progenies.
Pearson correlation was computed between predicted values and true values. In this context, Tables 5
and 6 report the average Pearson correlation computed over 100 data sets containing 100 progenies.

According to Table 5, when the model was learned on the best individuals (γ+/γ = 1), we clearly
observed the superiority of the SgLasso over other methods, regarding the predictive ability. As soon as
a few worst individuals were included in the learning model (γ+/γ = 7/8), all the different methods gave
similar results. As mentioned before, these results were expected in view of our previous association study
(Tables 2 and 3). Recall that Brandariz and Bernardo (2018) already observed, using classical methods,
that it was crucial to include a few worst individuals in the model. In contrast, our method presents good
prediction abilities even when only best individuals are considered. Last, Table 6 compares SgLasso and
its cousins : SgLasso, SgEN and SgGroupLasso, presented an accuracy of same order.

Supplementary files

Supplement A : Supplementary proofs
We give the mathematical proofs of Theorem 1 and Corollary 1.

Supplement B : Supplementary illustrations
We illustrate our theoretical results regarding the max test, relying on the test statistic, supΛn(.).
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A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster. PLoS
genetics, 9(6), e1003534.

Begum, H., Spindel, J.E., Lalusin, A., Borromeo, T., Gregorio, G., Hernandez, J., ..., and McCouch, S.R.
(2015). Genome-wide association mapping for yield and other agronomic traits in an elite breeding
population of tropical rice (Oryza sativa). PloS one, 10(3) e0119873.

Boligon, A.A., Long, N., Albuquerque, L.G.D., Weigel, K.A., Gianola, D., and Rosa, G.J.M. (2012). Com-
parison of selective genotyping strategies for prediction of breeding values in a population undergoing
selection. Journal of animal science, 90(13) 4716-4722.

Brandariz, S. P., Bernardo, R. (2018). Maintaining the Accuracy of Genomewide Predictions when
Selection Has Occurred in the Training Population. Crop Science, 58, (3), 1226-1231.

Broman, K. and Speed T. (2002). A model selection approach for the identification of quantitative trait
loci in experimental crosses. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
64(4) 641-656.
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Poincaré (B), 6 897-906.

Gezan, S. A., Osorio, L. F., Verma, S., Whitaker, V. M. (2017). An experimental validation of genomic
selection in octoploid strawberry. Horticulture research. 4, 16070.

20



Gutierrez, A., Hoy, J., Kimbeng, C., Baisakh, N. (2018). Identification of genomic regions controlling
leaf scald resistance in sugarcane using a bi-parental mapping population and selective genotyping by
sequencing. Frontiers in plant science, 9, 877.

Haldane, J.B.S. (1919). The combination of linkage values and the calculation of distance between the
loci of linked factors. Journal of Genetics, 8 299-309.

Hayes, B., Bowman, P., Chamberlain, A. & Goddard, M. (2009). Invited review: Genomic selection in
dairy cattle: Progress and challenges. Journal of dairy science. 92, (2), 433-443.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning theory. Springer,
New York.

Hayes, B (2007). QTL Mapping, MAS, and Genomic Selection. Short course organized by Iowa State
University.

Fan, J., Li, Q., and Wang, Y. (2017). Estimation of high dimensional mean regression in the absence
of symmetry and light tail assumptions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(1) 247-265.

Fernandes, G. R., Massironi, S. M., Pereira, L. V. (2016). Identification of Loci Modulating the Cardio-
vascular and Skeletal Phenotypes of Marfan Syndrome in Mice. Scientific reports, 6, 22426.

Kurz, J. P., Yang, Z., Weiss, R. B., Wilson, D. J., Rood, K. A., Liu, G. E., Wang, Z. (2019). A genome-
wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle
using a selective genotyping approach. Immunogenetics, 71, (1), 35-47.

Lander, E.S. and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using
RFLP linkage maps. Genetics, 138 235-240.

Lebowitz, R.J., Soller, M., and Beckmann, J.S. (1987). Trait-based analyses for the detection of linkage
between marker loci and quantitative trait loci in crosses between inbred lines. Theor. Appl. Genet.,
73 556-562.

Lynch, M., and Walsh, B. (1998). Genetics and analysis of quantitative traits. Sinauer Sunderland, MA.

Manichaikul, A., Palmer, A., Sen, S., and Broman, K. (2007). Significance thresholds for Quantitative
Trait Locus mapping under selective genotyping. Genetics, 177 1963-1966.

Meuwissen, T.H., Hayes, B. & Goddard, M.E. (2001). Prediction of total genetic value using genome-wide
dense marker maps. Genetics. 157, (4), 1819-1829.

Minamikawa, M. F., Takada, N., Terakami, S., Saito, T., Onogi, A., Kajiya-Kanegae, H., ... Iwata, H.
(2018). Genome-wide association study and genomic prediction using parental and breeding populations
of Japanese pear (Pyrus pyrifolia Nakai). Scientific reports. 8(1), 11994.

Momen, M., Mehrgardi, A. A., Sheikhi, A., Kranis, A., Tusell, L., Morota, G., ... Gianola, D. (2018).
Predictive ability of genome-assisted statistical models under various forms of gene action. Scientific
reports. 8.

Muranty, H. and Goffinet, B. (1997). Selective genotyping for location and estimation of the effect of the
effect of a quantitative trait locus. Biometrics, 53 629-643.

21



Muranty, H., Troggio, M., Sadok, I. B., ... Kumar, S. (2015). Accuracy and responses of genomic selection
on key traits in apple breeding. Horticulture research. 2, 15060.

Neyhart, J. L., Tiede, T., Lorenz, A. J., Smith, K. P. (2017). Evaluating methods of updating training
data in long-term genomewide selection. G3: Genes, Genomes, Genetics, 7, (5), 1499-1510.

Nyine, M., Uwimana, B., Blavet, N., ... Dolezel, J. (2018). Genomic prediction in a multiploid crop:
genotype by environment interaction and allele dosage effects on predictive ability in banana. The
Plant Genome. 11(2), 170090.

Ohlson, E. W., Ashrafi, H., Foolad, M. R. (2018). Identification and Mapping of Late Blight Resistance
Quantitative Trait Loci in Tomato Accession PI 163245. The plant genome.

Park, T., Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association, 103,
(482), 681-686.

Phansak, P., Soonsuwon, W., Hyten, D.L., ..., and Specht, J.E. (2016). Multi-population selective
genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs. G3: Genes,
Genomes, Genetics, 6 1635.

Pszczola, M., Calus, M. P. L. (2016). Updating the reference population to achieve constant genomic
prediction reliability across generations. animal, 10, (6), 1018-1024.

Rabbee, N., Speca, D., Armstrong, N., and Speed, T. (2004). Power calculations for selective genotyping
in QTL mapping in backcross mice. Genet. Res. Camb., 84 103-108.

Rabier, C.E., Barre, P., Asp, T., Charmet, G. & Mangin, B. (2016). On the Accuracy of Genomic
Selection. PloS One. 11, (6), e0156086. doi:10.1371/ journal.pone.0156086.

Rabier, C.E., Mangin, B. & Grusea, S. (2019). On the accuracy in high dimensional linear models and
its application to genomic selection. Scandinavian Journal of Statistics. 46, (1), 289-313.

Rabier, C.E. (2014a). On statistical inference for selective genotyping. J. Stat. Plan. Infer., 147 24-52.

Rabier, C.E. (2014b). An asymptotic test for Quantitative Trait Locus detection in presence of missing
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Zhao, Y., Gowda, M., Longin, F. H., Würschum, T., Ranc, N., Reif, J. C. (2012). Impact of selective
genotyping in the training population on accuracy and bias of genomic selection. Theoretical and
Applied Genetics, 125, (4), 707-713.

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Methodology). 67, (2), 301-320.

Zou, C., Wang, P., Xu, Y. (2016). Bulked sample analysis in genetics, genomics and crop improvement.
Plant biotechnology journal. 14, (10), 301-320.

23



Charles-Elie Rabier (ce.rabier@gmail.com)
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SgLasso Lasso Group Lasso EN RaLasso Bayesian Lasso
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio

0.1

1/2 97.24% 17.22 94.21% 16.82 99.01% 19.4 99.06% 17.94 99.91% 15.89 11.66%
3/4 96.62% 17.45 92.22% 16.33 95.88% 19.1 97.64% 17.57 98.25% 16.74 11.53%
7/8 96.89% 17.58 82.32% 16.78 95.19% 22.9 96.09% 16.03 91.05% 16.23 11.33%
1 93.97% 17.13 20.78% 16.66 16.73% 22.3 21.00% 16.94 47.01% 15.83 10.70%

0.2

1/2 94.19% 17.39 91.69% 16.95 97.46% 19.4 97.44% 16.21 98.09% 16.35 11.39%
3/4 91.52% 16.3 84.75% 16.54 95.88% 19.1 96.02% 17.21 95.08% 15.44 11.20%
7/8 92.38% 16.29 75.46% 16.55 94.67% 17.3 95.23% 16.90 89.33% 15.33 11.07%
1 85.03% 17.09 21.14% 16.81 21.86% 26.2 27.37% 17.91 44.93% 15.48 10.64%

0.3

1/2 91.62% 17.55 83.45% 16.51 92.87% 18.6 93.67% 17.5 95.36% 16.67 11.19%
3/4 90.88% 17.59 76.18% 16.56 89.59% 21.6 91.10% 17.67 91.13% 15.84 11.08%
7/8 86.22% 16.82 65.03% 16.73 78.00% 17.3 82.84% 17.40 80.32% 15.11 10.91%
1 78.00% 17.28 20.92% 16.57 20.82% 22.1 24.92% 17.62 48.25% 16.10 10.66%

Table 2: Performances of different methods, under the dense map, as a function of the percentage γ of genotyped individuals and as a function of the ratio γ+/γ.
(Mean over 100 samples, on average n = 100 individuals genotyped, m = 16, |q1| = . . . = |q16| = 0.1, T = 10, QTLs randomly located only on [0,1], σ = 1).

Dense map: K = L =10,001 , tk = t′
l
= 0.001(k − 1). The L1 ratio, regarding our method, corresponds to the quantity

∑

1001
i=1

|∆̂i|/
∑

10001
i=1

|∆̂i|. m̂ denotes the
estimated QTL number.

SgLasso Lasso Group Lasso EN RaLasso Bayesian Lasso
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio

0.1

1/2 99.70% 18.60 99.73% 16.84 100% 19.1 100% 18.73 100% 17.28 14.30%
3/4 99.83% 17.28 99.69% 16.89 100% 20 100% 17.73 100% 16.03 13.88%
7/8 99.55% 16.62 99.24% 16.69 100% 20.9 100% 17.63 100% 17.11 13.37%
1 99.69% 16.64 31.43% 16.83 18.30% 22.61 33.33% 16.34 60.55% 16.60 10.75%

0.2

1/2 99.23% 17.56 98.99% 16.81 100% 18.4 100% 17.77 99.99% 17.96 13.41%
3/4 99.60% 17.41 98.47% 16.82 100% 19.2 100% 18.41 100% 16.51 13.38%
7/8 99.27% 17.48 98.35% 16.90 100% 18.9 100% 17.13 99.73% 16.00 12.59%
1 99.36% 17.79 24.53% 17.15 11.97% 29.1 25.71% 17.26 54.22% 17.32 10.69%

0.3

1/2 99.20% 17.96 97.50% 16.90 100% 19.6 99.99% 16.88 100% 17.39 12.89%
3/4 99.60% 17.31 97.5% 16.81 100% 18.9 100% 16.96 99.59% 17.56 12.69%
7/8 99.66% 17.86 96.50% 16.99 99.82% 22.8 99.90% 18.05 99.95% 17.07 12.22%
1 98.69% 17.50 42.93% 17 38.45% 19.1 48.13% 17.36 72.39% 15.58 10.78%

Table 3: Performances of different methods, under the dense map, as a function of the percentage γ of genotyped individuals and as a function of the ratio γ+/γ.
(Mean over 100 samples, on average n = 100 individuals genotyped, m = 16, |q1| = . . . = |q16| = 0.2, T = 10, QTLs randomly located only on [0,1], σ = 1).

Dense map: K = L =10,001 , tk = t′
l
= 0.001(k − 1). The L1 ratio, regarding our method, corresponds to the quantity

∑

1001
i=1

|∆̂i|/
∑

10001
i=1

|∆̂i|. m̂ denotes the
estimated QTL number.
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all |qs| = 0.1 all |qs| = 0.2
SgLasso SgGroupLasso SgEN SgLasso SgGroupLasso SgEN

γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.1

1/2 97.24% 17.22 99.25% 25 98.19% 17.59 99.70% 18.60 99.90% 27.9 99.88% 18.37
3/4 96.62% 17.15 99.41% 22.5 97.17% 18.12 99.83% 17.28 99.80% 28.1 100% 16.94
7/8 96.89% 17.58 99.15% 24.4 98.37% 18.22 99.55% 16.62 100% 27.6 99.98% 16.93
1 93.97% 17.13 97.29% 24.4 95.31% 17.46 99.69% 16.64 100% 27 99.88% 17.37

0.2

1/2 94.19% 17.39 98.33% 24.9 96.03% 16.90 99.23% 17.56 100% 28.5 99.69% 17.81
3/4 91.52% 16.3 95.38% 24.3 92.59% 17.41 99.60% 17.41 99.94% 29 99.72% 19.27
7/8 92.38% 16.29 96.83% 24.6 93.19% 17.13 99.27% 17.48 100% 26.5 99.67% 18.61
1 85.03% 17.09 90.53% 22.8 84.93% 17.67 99.36% 17.79 100% 27.2 99.69% 18.33

0.3

1/2 91.62% 17.55 92.35% 24.6 86.53% 17.87 99.20% 17.96 99.60% 28.1 99.24% 18.55
3/4 90.88% 17.59 94.84% 30.9 91.84% 15.43 98.60% 17.31 100% 30.5 99.88% 19.02
7/8 86.22% 16.82 89.96% 29.3 86.68% 17.30 98.69% 17.50 99.89% 31.9 99.92% 18.29
1 78.00% 17.28 82.61% 28.6 77.23% 17.89 98.69% 17.50 99.86% 26.5 99.18% 18.44

Table 4: Performances of our method, under the dense map, as a function of the penalization used. (mean over 100 samples, on average n = 100 individuals
genotyped, m = 16, T = 10, QTLs randomly located only on [0,1], σ = 1). Dense map: K = L =10,001 , tk = t′

l
= 0.001(k − 1). The L1 ratio, regarding our

method, corresponds to the quantity
∑

1001
i=1

|∆̂i|/
∑

10001
i=1

|∆̂i|. m̂ denotes the estimated QTL number.
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γ all |qs| γ+/γ SgLasso Lasso Group Lasso EN RaLasso Bayesian Lasso

0.1

0.1
1 30.97% 6.49% 3.17% 4.38% 10.43% 7.12%

7/8 31.25% 30.55% 29.87% 29.74% 28.78% 25.50%

0.2
1 56.85% 27.96% 7.57% 21.17% 33.09% 31.30%

7/8 57.89% 56.96% 54.95% 55.26% 54.66% 57.24%

0.3
1 70.64% 46.54% 5.35% 19.89% 39.38% 49.30%

7/8 72.34% 70.16% 68.07% 68.17% 67.63% 72.59%

0.2

0.1
1 27.88% 7.12% 4.05% 5.41% 11.08% 8.97%

7/8 28.26% 27.98% 27.86% 28.09% 26.28% 22.11%

0.2
1 54.37% 31.70% 13.85% 24.73% 36.39% 29.68%

7/8 54.72% 55.30% 53.08% 53.44% 53.20% 55.71%

0.3
1 67.74% 57.21% 16.33% 39.61% 49.63% 50.41%

7/8 68.49% 68.64% 66.00% 65.93% 66.18% 72.09%

0.3

0.1
1 26.79% 9.02% 6.89% 7.48% 11.96% 9.13%

7/8 28.13% 27.85% 26.59% 28.25% 26.05% 21.09%

0.2
1 52.83% 38.15% 21.23% 33.17% 42.96% 31.38%

7/8 54.07% 54.04% 51.96% 51.46% 51.39% 51.24%

0.3
1 66.73% 57.51% 26.08% 46.30% 55.06% 50.47%

7/8 67.13% 67.43% 64.91% 65.08% 63.99% 69.57%

Table 5: Predictive abilities of the different methods, under the dense map, as a function of the percentage γ of genotyped individuals and as a function of the
ratio γ+/γ. The model is learned on the genotyped individuals, and evaluated on 100 progenies of the training indivduals. (mean over 100 samples, on average
n = 100 individuals genotyped, m = 16, T = 10, QTLs randomly located only on [0,1], σ = 1). Dense map: K = L =10,001 , tk = t′

l
= 0.001(k − 1).
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γ all |qs| γ+/γ SgLasso SgGroupLasso SgEN

0.1

0.1
1 30.97% 30.31% 30.89%

7/8 31.25% 30.60% 31.12%

0.2
1 56.85% 54.13% 55.44%

7/8 57.89% 55.38% 55.81%

0.3
1 70.64% 66.91% 67.56%

7/8 72.34% 68.47% 69.06%

0.2

0.1
1 27.88% 27.84% 27.86%

7/8 28.26% 27.80% 28.03%

0.2
1 54.37% 52.76% 53.62%

7/8 54.72% 52.77% 53.79%

0.3
1 67.74% 65.07% 65.91%

7/8 68.49% 65.86% 66.57%

0.3

0.1
1 26.79% 27.05% 26.85%

7/8 28.13% 27.82% 28.14%

0.2
1 52.83% 52.22% 52.54%

7/8 54.07% 52.47% 53.64%

0.3
1 66.73% 64.59% 65.90%

7/8 67.43% 65.11% 66.25%

Table 6: Predictive ability of our method, under the dense map, as a function of the penalization used, and as a function of the percentage γ of genotyped
individuals. The model is learned on the genotyped individuals, and evaluated on 100 progenies of the training indivduals (mean over 100 samples, on average
n = 100 individuals genotyped, m = 16, T = 10, QTLs randomly located only on [0,1], σ = 1). Dense map: K = L =10,001 , tk = t′

l
= 0.001(k − 1).
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γ Method FP FN Selected genes

1 Begum et al. (2015)
S3-1125848, S3-1165376, S3-1221494, S3-1269941, S3-1394477,
S6-2900101, S6-2961503, S6-3057752, S8-4137990, S8-4138023

1 SgLasso 22 (21) 6 (5)
S3-1094192, S3-1125848, S3-1165376, S3-1269941

S3-1394477, S3×21

1 SgEN 28 (24) 5 (5)
S3-1030333, S3-1094192, S3-1123429, S3-1125848, S3-1165376
S3-1179404, S3-1221494 ,S3-1269941 S3-1394477, S3×24

1 SgGroupLasso 37 (23) 7 (6)
S3×31, S3-1030333, S3-1070111, S3-1094192, S3-1123429

S3-1125848, S3-1165376, S3-1179404, S3-1221494, S3-1225693

0.3 SgLasso 28 (23) 6 (5)
S3-1070111, S3-1094192, S3-1165376, S3-1221494, S3-1225693, S3-1269941

S3-1298550, S3-1354306, S3-1394477, S3×23

0.3 SgEN 26 (23) 5 (5)
S3-1030333, S3-1094192, S3-1123429 , S3-1125848, S3-1165376, S3-1221494

S3-1269941, S3-1394477, S3×23

0.3 SgGroupLasso 65 (51) 5 (5)

S3-1030333, S3-1070111, S3-1094192, S3-1123429, S3-1125848
S3-1165376, S3-1179404, S3-1221494, S3-1225693, S3-1269941

S3-1298550, S3-1320779, S3-1342244, S3-1354306, S3-1394477, S3-1403300
S3-1439520, S3-1462159, S3-1495153, S3×41, S8×10

1 Lasso 17 (17) 7 (6)
S1×2, S2×3, S3-1165376, S3-1221494, S3-1269941

S3×3, S7×2, S8×2, S9×2
S10×1, S11×1, S12×1

1 EN 34 (34) 6 (6)
S1×5, S2×4, S3-1125848, S3-1165376, S3-1221494, S3-1269941

S3×7, S7×4, S8×3, S9×3, S10×2, S11×3 S12×3

1 Group Lasso 134 (128) 7 (6)
S1×30, S2×20, S3-1030333, S3-1070111, S3-1094192

S3-1123429, S3-1125848, S3-1165376, S3-1179404, S3-1221494
S3-1225693, S3×11, S3×7, S7×10, S8×20, S9×10, S11×20

0.3 Lasso 0 (0) 8 (6) S3-1221494, S3-1269941

0.3 EN 2 (0) 5 (5)
S3-1094192, S3-1123429, S3-1125848, S3-1165376

S3-1221494, S3-1269941, S3-1394477

0.3 Group Lasso 7 (2) 7 (6)
S3×2, S3-1070111, S3-1094192, S3-1123429, S3-1125848

S3-1165376, S3-1179404, S3-1221494, S3-1225693

1 RaLasso 2600 (2568) 5 (0)

S1×704, S2×220, S3-1123429, S3-1125848, S3-1165376, S3-1179404
S3-1221494, S3-1225693, S3-1269941, S3-1298550
S3-1320779, S3-1342244, S3-1354306, S3-1394477

S3-1403300, S3-1439520, S3-1462159, S3-1495153, S3×203, S4×192, S5×174
S6-2848386, S6-2866608, S6-2899016, S6-2913729, S6-2941202

S6-2913729, S6-2941202, S6-2958750, S6-2980225, S6-3001176, S6-3041790
S6-3041790, S6-3056545, S6-3076966, S6-3112878, S6×160, S7×168

S8-4063097, S8-4082527, S8-4101244, S8-4147562, S8-4150777, S8-4188989, S8×162
S9×133, S10×140, S11×165, S12×147

0.3 RaLasso 782 (775) 10 (4)

S1×219, S2×74, S3×64
S3-1354306, S3-1403300, S4×59, S5×49

S6×52, S6-2913729, S6-2958750, S6-2980225, S6-3056545
S7×41, S8×52, S8-4101244, S9×36, S10×39, S11×48, S12×42

Table 7: Comparison, on rice data (Begum et al. (2015); Spindel et al. (2015)), of the selected genes as a function of the
methods and as function of the percentage γ of genotyped individuals. The considered trait is the flowering date during
the dry season 2012. The selective genotyping is performed symmetrically (γ+/γ = 1/2) and K =13,101 markers lie on
the rice genome (T = 13.101). Markers in bold match exactly one of the genes selected by Begum et al. (2015). A marker
in italic refers to a marker which is located at a maximum distance of 0.4cM from a gene inferred by Begum et al. (2015).
SA-B refers to a marker on chromosome A with id B. SA×N refers to N markers on chromosome A, and these markers are
located further than 0.4cM from a gene found by Begum et al. (2015). FP and FN refer to the number of false positives
and the number of false negatives, respectively. In brackets, are also given FP and FN, assuming a tolerance level of 0.4cM.
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1. True probability distribution when m QTLs lie on [0, T ] (with m >
1)

Recall that K genetic markers are located at 0 = t1 < t2 < . . . < tK = T .
Besides, m QTLs lie on [0, T ] at locations t?1, t

?
2, ..., t

?
m, that are distinct of

marker locations. By de�nition t?1 < t?2 < ... < t?m.
All the information is contained in the �anking markers of the QTLs loca-

tions, because of the Poisson process. As a consequence, let us compute the
probability distribution of

(
Y,X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

)
.

We have

P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] , X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

=
∑

(u1,...,um)∈{−1,1}m
P(Y ∈ [y , y + dy] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

Besides,

P(Y ∈ [y , y + dy] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
f(µ+u1q1+u2q2+...+umqm,σ)(y) 1y/∈[S−,S+]

P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)
.
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On the other hand,

P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

= P(Y /∈ [S−, S+], X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

= P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

As a result,

P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] , X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

=
∑

(u1,...,um)∈{−1,1}m
f(µ+u1q1+u2q2+umqm,σ)(y) 1y/∈[S−,S+]

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

In the same way, when the genome information is missing at marker locations
(i.e. the phenotype is not extreme), we �nd

P(Y ∈ [y , y + dy] , X(t?`1 ) = 0, X(t?r1 ) = 0, . . . , X(t?`m) = 0, X(t?rm ) = 0)

=
∑

(u1,...,um)∈{−1,1}m
P(Y ∈ [y , y + dy] , Y ∈ [S−, S+], X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
∑

(u1,...,um)∈{−1,1}m
f(µ+u1q1+...+umqm,σ)(y) 1y∈[S−,S+] P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um) .

Let θm = (q1, ..., qm, µ, σ) denote the new parameter. Then, the probabil-
ity distribution of

(
Y,X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

)
, with respect to the

measure λ⊗N ⊗ . . .⊗N , is

L
m
~t?(θm) =

∑
(u1,...,um)∈{−1,1}m

[
w~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S−,S+]

+ v~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S−,S+]

]
gm(t?1, . . . , t

?
m)

(1)

with

w~t?(u1, ..., um) = P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um | X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) ,

v~t?(u1, ..., um) = P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

and

gm(t?1, . . . , t
?
m) = P(X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) 1Y /∈[S−,S+] + 1Y ∈[S−,S+] .

Note that as soon as we set m = 1 in formula (1), we obtain Lt?1 (θ1) given

2



in formula (2) of the main manuscript.

2. Proof of Theorem 1

The proof is divided into �ve parts (the �rst four parts rely on the case
K = 2 markers):

• Preliminaries (i.e. computation of the Fisher Information Matrix)

• Weak convergence of the score process under H0

• Study of the score process under the local alternative Ha~t?

• Study of the supremum of the LRT process

• Generalization to K > 2

Note that under H0, the proof has already been given in Rabier (2015).
However, the weak convergence of the score process has not been proved in
details. Indeed, the author only mentioned the continuous mapping theorem,
after having proved the convergence of �nite-dimensional. As a consequence, we
propose to give here a more rigorous proof by showing the tightness of the score
process. Recall that the tightness and the convergence of �nite-dimensional
imply the weak convergence of the score process (see for instance Theorem 4.9
of Azaïs and Wschebor (2009)).

Let us consider the case K = 2, that is to say two markers are located
at t1 = 0 and t2 = T . In what follows, we will consider values t, t?1, ..., t

?
m

of the parameters that are distinct of the markers positions (i.e. t1 and t2),
and the result will be extended by continuity at the markers positions. As a
consequence, in what follows, t` = t1 and tr = t2. The notations t

` and tr will
be convenient for the generalization to the case K > 2.

2.1. Preliminaries

The proof starts with the computation of the Fisher Information Matrix.
As a result, calculations are exactly the same as in Rabier (2015), see Section
�Study of the score process under the null hypothesis" of the proof of Theorem
2.5. We propose to recall here the key elements of the proof.

First, the author computes the score function at a point θ10 = (0, µ, σ) that
belongs to H0. We have the relationship

∂lt
∂q1
|θ10 =

Y − µ
σ2

{2p(t)− 1} 1Y /∈[S−,S+]

=
α(t)

σ
ε X(t`) +

β(t)

σ
ε X(tr)

because of the key Lemma (Lemma 2.6 of Rabier (2015)), which states that

{2p(t)− 1} 1Y /∈[S−,S+] = α(t)X(t`) + β(t)X(tr) (2)

3



with α(t) = Q1,1
t −Q

−1,1
t and β(t) = Q1,1

t −Q
1,−1
t .

To conclude, after some easy calculations, he �nds that the Fisher informa-
tion is diagonal :

Iθ0 = Diag

[
A
{
α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)

}
/σ4 ,

1

σ2
,

2

σ2

]
. (3)

2.2. Weak convergence of the score process under H0

Convergence of �nite-dimensional

At a marker location tk with k ∈ {1, 2}, we have:

Sn(tk) =

∂l
n
tk

∂q1
|θ10√

V
(
∂l
n
tk

∂q1
|θ10

) =

n∑
j=1

σεj Xj(tk)√
n A

.

Since
∂l
n
tk

∂q1
|θ10 is centered under H0, a direct application of the central limit

theorem implies that

Sn(tk)
L−→ N (0, 1) .

Then, since we have the relationship (cf. formula (2))

Sn(t) =
α(t)Sn(t`) + β(t)Sn(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
,

the continous mapping theorem implies that

Sn(t)
L−→ V (t) .

It proves the convergence of �nite-dimensional.
Note also that we have the relationship

CovH0

{
Sn(t`), Sn(tr)

}
= ρ(t`, tr) .

Tightness

Since we have already proved the convergence of �nite-dimensional, let us
focus on the tightness of the score process. Since α(t), β(t) and α2(t) + β2(t) +
2α(t)β(t)ρ(t`, tr) are continuous functions, each path of the process Sn(.) is a
continuous function on [t`, tr]. Recall the modulus of continuity of a continuous
function h(t) on [t`, tr]:

$h(δ) = sup
|t′−t|<δ

|h(t′)− h(t)| where t` < δ 6 tr.
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According to Theorem 8.2 of Billingsley (1999), the score process is tight if and
only if the two following conditions hold:

1. the sequence Sn(t`) is tight.

2. For each positive ε and η, there exists a δ, with t` < δ < tr, and an integer
n0 such that P

(
$Sn

(δ) > η
)
6 ε ∀n > n0.

According to Prohorov's theorem, the sequence Sn(t`) is tight. Then, Condition
1 is veri�ed. Let us de�ne the functions α′(t) and β′(t) in the following way:

α′(t) = α(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr),

β′(t) = β(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr).

First, we can notice that ∀δ such as t` < δ 6 tr,

$Sn
(δ) = sup

|t′−t|<δ

∣∣Sn(t′)− Sn(t)
∣∣

= sup
|t′−t|<δ

∣∣(α′ (t′)− α′ (t))Sn (t`) + (β′(t′)− β′(t))Sn (tr)
∣∣

6 max
(∣∣Sn (t`)∣∣ , ∣∣Sn (tr)

∣∣) ($α′ (δ) +$β′ (δ)) . (4)

Furthermore, the sequence max
(∣∣Sn (t`)∣∣ , ∣∣Sn (tr)

∣∣) is uniformly tight. This
way,

∀ε > 0 ∃M > 0 ∀n > 1 P
(
max

(∣∣Sn(t`)
∣∣ , ∣∣Sn(tr)

∣∣) >M
)
6 ε. (5)

According to Heine's theorem, since α′(t) and β′(t) are continuous on the com-
pact [t`, tr], these functions are uniformly continuous. So,

∀υ > 0 ∃δ such as t` < δ < tr, $α′(δ) +$β′(δ) < υ. (6)

Let η be a positive quantity. Using formulae (5) and (6) and imposing υ = η/M ,
we have

P
(
max

(∣∣Sn(t`)
∣∣ , ∣∣Sn(tr)

∣∣) ($α′(δ) +$β′(δ)) > η
)
6 ε.

As a consequence, according to formula (4), we have

∀n > 1 P
(
$Sn

(δ) > η
)
6 ε.

It proves Condition 2 of Theorem 8.2 of Billingsley (1999). As a result, the
tightness of the score process is proved. To conclude, the tightness and the con-
vergence of �nite-dimensional imply the weak convergence of the score process
on [t`, tr], i.e. on [t1, t2].
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2.2.1. Study of the score process under the local alternative Ha~t?
There are m QTLs located on [0, T ] and the model for the quantitative trait

is the following:

Y = µ +

m∑
s=1

X(t?s) qs + σε (7)

where ε is a Gaussian white noise.
Since the score test statistic at t can be obtained using the following non

linear interpolation

Sn(t) =
α(t) Sn(t`) + β(t) Sn(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
,

the mean function will be also a non linear interpolation

m~t?(t) =
α(t) m~t?(t`) + β(t) m~t?(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
.

Let us compute the quantities m~t?(t`) and m~t?(tr).
Without loss of generality, let's consider location tk which refers to the lo-

cation of marker k.

Sn(tk) =

n∑
j=1

(Yj − µ) Xj(tk)√
n A

(8)

=

n∑
j=1

m∑
s=1

qs Xj(t
?
s) Xj(tk)√
n A

+

n∑
j=1

σεj Xj(tk)√
n A

. (9)

We will see, that we can apply the Law of Large Numbers for the �rst term
and the Central Limit Theorem for the second term. To begin, let's focus on
the �rst term. We have

E
{
X(t?s) X(tk)

}
=

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
− E

[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
.

According to calculations present in Section 4,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) ,

where Φ is the cumulative distribution of a standard normal distribution. In
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the same way,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) .

Since we have the relationships

1− Φ
(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
= γ and r(tk, t

?
s)− r(tk, t?s) = ρ(tk, t

?
s),

then we have

E
{
X(t?s) X(tk)

}
= ρ(tk, t

?
s) γ + o(1) .

As a consequence, according to the Law of Large Numbers,

n∑
j=1

m∑
s=1

qs Xj(t
?
s) Xj(tk)√
n A

→
m∑
s=1

as ρ(tk, t
?
s) γ√

A
. (10)

Let us now focus on the second term of formula (9). According to a technical
proof present in Section 4, we have

E
{
σε X(tk)

}
=
{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

} m∑
s=1

ρ(t?s, tk) qs + o( max
16s6m

|qs|) .

Besides, according to iii) of Lemma 5 of Rabier (2014a),

E
[{
σε X(tk)

}2]
= E

(
σ2 ε2 1Y /∈[S−,S+]

)
=

∑
(u1,...,um)∈{−1,1}m

E
{
σ2 ε2 1Y /∈[S−,S+] | X(t?1) = u1, . . . , X(t?m) = um

}
× P {X(t?1) = u1, . . . , X(t?m) = um}

→
∑

(u1,...,um)∈{−1,1}m
A P {X(t?1) = u1, . . . , X(t?m) = um} → A .

As a result,

E
[{
σε X(tk)

}2]→ A and V


n∑
j=1

σεj Xj(tk)√
n A

→ 1 .
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Then, according to the Central Limit Theorem,

n∑
j=1

σεj Xj(tk)√
n A

L−→ N
[∑m

s=1 ρ(t?s, tk) as√
A

{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

}
, 1

]
.

(11)

Finally, according to formulae (10) and (11),

Sn(tk)
L−→ N

[
m∑
s=1

ρ(tk, t
?
s) as

√
A/σ2, 1

]
. (12)

2.2.2. Study of the supremum of the LRT process

At �xed t, the model is regular and it is well known that we have the following
relationship under H0 (i.e. no QTL on the whole interval studied)

Λn(t) = S
2

n (t) + oP (1)

where oP (1) is short for a sequence of random vectors that converges to zeros
in probability. The problem is that, when t is not �xed, the Fisher Information
relative to t at H0 is zero so that the model is not regular.

Let us consider now t as an extra parameter. Rabier (2015) studied this
irregular model and proved that

sup Λn(t) = supS
2

n(t) + oP (1) . (13)

Note that the proof is based on results of Azaïs et al. (2009), Azaïs et al. (2006)
and Gassiat (2002) on empirical process theory. This result has been obtained
under H0 and under the local alternative of only one QTL (i.e. m = 1), located
at t?1 on [0, T ]. This way, our goal is now to show that the remainder converges
also to zero under Ha~t? .

Recall that the parameters θm and θm0 are de�ned in the following way :
θm = (q1, ..., qm, µ, σ) and θm0 = (0, ..., 0, µ, σ).

The likelihood L
m,n
~t? (θm) for n observations is obtained by the product of n

terms as in formula (1) of this supplementary material, with K = 2. Let Qn
and Pn be two sequences of probability measures de�ned on the same space
(Ωn, An). Qn (respectively Pn) is the probability distribution with density
L
m,n
~t? (θm) (respectively L

m,n
~t? (θm0 )).

In what follows, log dQn
dPn

will denote the log likelihood ratio. By de�nition,
we have the relationship,

log
dQn
dPn

= log

{
L
m,n
~t? (θm)

L
m,n
~t? (θm0 )

}
. (14)

Since the model is di�erentiable in quadratic mean at θm and according to the
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central limit theorem :

log

(
dQn
dPn

)
H0→ N (−1

2
ϑ2, ϑ2) with ϑ2 ∈ R+? .

As a result, according to iii) of Le Cam's �rst lemma, we have Qn /Pn, that
is to say the sequence Qn is contiguous with respect to the sequence Pn. Then,
formula (13) is also true under the alternative Ha~t? .

It concludes the proof of Theorem 1 for K = 2.

2.3. Generalization to K > 2

K genetic markers are now located at 0 = t1 < t2 < . . . < tK = T . We
consider a location t that is distinct of the markers positions.

Under H0, for a position t, we can limit our attention to the interval (t`, tr),
due to Haldane model with Poisson increments. Recall the notation TK =
{t1, . . . , tK}. Besides, according to Rabier (2015), we have

CovH0

{
Sn(tk), Sn(tk′)

}
= ρ(tk, tk′) .

Under the local aternative Ha~t? , we just have to use the fact that the mean
function m~t?(t) is an interpolated function between m~t?(t`) and m~t?(tr). Then,
in order to characterize the mean function, we only have to compute the distri-
bution of Sn(tk) at a marker located at tk. We still have the relationship (as in
formula (12))

Sn(tk)
L−→ N

[
m∑
s=1

ρ(tk, t
?
s) as

√
A/σ2, 1

]
∀k ∈ TK

since the formulae (9), (10) and (11) are still valid for K > 2. Indeed, those
formulae rely on calculations present in Section 4 suitable for K > 2.

The tightness of the score process Sn(.) is obvious because of the interpola-
tions. Besides, formula (13) above is still true for K > 2 according to Rabier
(2015). In order to proove that the remainder converges also to zero under Ha~t? ,
just use the same kind of proof as above (based on Le Cam's �rst lemma). Note
that the likelihood L

m,n
~t? (θm) for n observations is now obtained by the product

of n terms as in formula (1) with K > 2. Same remark for L
m,n
~t? (θm0 ).

3. Proof of Corollary 1

To begin with, let us recall the epistatic model, given in formula (12) of the
manuscript:

Y = µ +

m∑
s=1

X(t?s) qs +

m−1∑
s=1

m∑
s̃=s+1

X(t?s)X(t?s̃) qs,s̃ + σε (15)

9



where ε is a Gaussian white noise, and qs,s̃ is the interaction e�ect between loci
t?s and t

?
s̃.

Since the process Sn(.) is an interpolated process, we can focus, without loss
of generality, only on location tk (i.e. the location of marker k). According to
formulae (15) and (8), we have

Sn(tk) =

n∑
j=1

m∑
s=1

as Xj(t
?
s) Xj(tk)

n
√
A

+

n∑
j=1

σεj Xj(tk)√
n A

(16)

+
1

n
√
A

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Xj(t
?
s)Xj(t

?
s̃) bs,s̃

}
Xj(tk) .

According to calculations present in Section 4, when 1 6 s 6 m− 1 and s+ 1 6
s̃ 6 m,

E
{
X(t?s)X(t?s̃)X(tk)

}
= o(1) .

Then, according to the Law of Large Numbers,

Sn(tk) =

n∑
j=1

m∑
s=1

as Xj(t
?
s) Xj(tk)

n
√
A

+

n∑
j=1

σεj Xj(tk)√
n A

+ oP (1) .

As a result, using formulae (10) and (11),

Sn(tk)
L−→ N

[
m∑
s=1

ρ(tk, t
?
s) as

√
A/σ2, 1

]
.
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4. Study of quantities present in the proofs

In this section, all calculations are valid for a number of markers K > 2.

4.1. Preliminaries

To begin with, let us recall Lemma 5 of Rabier (2014a). It will be very
useful for our theoretical calculations since it is related to truncated normal
distributions.

Lemma 5 (Rabier (2014a)). Let W ∼ N (µ, σ2), then

i) E
(
W 21W /∈[S−, S+]

)
= (µ2 + σ2) P(W /∈ [S−, S+]) + σ (S+ + µ) ϕ

(
S+−µ
σ

)
− σ (S− + µ) ϕ

(
S−−µ
σ

)
ii) E

(
W1W /∈[S−, S+]

)
= µ P(W /∈ [S−, S+]) + σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
iii) E

{
(W − µ)21W /∈[S−, S+]

}
= σ2 P(W /∈ [S−, S+]) + σ (S+ − µ) ϕ

(
S+−µ
σ

)
− σ (S− − µ) ϕ

(
S−−µ
σ

)
iv) E

{
(W − µ)1W /∈[S−, S+]

}
= σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
v) E

{
(W − µ)21W∈[S−, S+]

}
= σ2 − σ2P(W /∈ [S−, S+])− σ(S+ − µ) ϕ

(
S+−µ
σ

)
+ σ (S− − µ) ϕ

(
S−−µ
σ

)
.

Recall that ϕ(.) and Φ(.) denote respectively the density and the cumulative
distribution of a standard normal distribution.

Since we consider q1, ..., qm small, using a Taylor expansion at �rst order,
we obtain for instance :

ϕ

(
S− − µ+

∑m
s=1 usqs

σ

)
=

1√
2π

e
− 1

2

(
S−− µ

σ

)2
{

1−
(S− − µ)

∑m
s=1 usqs

σ2
+ o(

m∑
s=1

usqs)

}
.

Since

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?m) = um}

= Φ

(
S− − µ−

∑m
s=1 usqs

σ

)
+ 1 − Φ

(
S+ − µ−

∑m
s=1 usqs

σ

)
,
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using the Taylor expansions and after some work on integrals, we obtain

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?m) = um}

= Φ

(
S− − µ
σ

)
−
∑m
s=1 usqs
σ

ϕ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+

∑m
s=1 usqs
σ

ϕ

(
S+ − µ
σ

)
+ o(

m∑
s=1

usqs) .

4.2. Formulas for E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
and

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
First, let us recall that by de�nition we have t?1 < t?2 < ... < t?m. Besides, let us
consider a genetic marker located at tk. We have

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1

}]
=

∑
(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

E
[
1Y /∈[S−,S+]1X(t?1)=u1

. . . 1X(t?s−1)=us−1
1X(t?s)=11X(t?s+1)=us+1

. . . 1X(t?m)=um1X(tk)=1

]
=

∑
(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um}
P {X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um, X(tk) = 1}

=
∑

(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
+ o(1)

}
P {X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um, X(tk) = 1}

=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
+ o(1)

}
P {X(t?s) = 1, X(tk) = 1}

=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) .

Using the same kind of proof, we have

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=−1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=−1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) .
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As a result, we have the relationships

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) .

4.3. Formula for E
{
σε X(tk)

}
We have

E
{
σε X(tk)

}
= E

{
σε1X(tk)=11Y /∈[S−,S+]

}
− E

{
σε1X(tk)=−11Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

E
{
σε1X(tk)=11X(t?1)=u1

. . . 1X(t?m)=um1Y /∈[S−,S+]

}
−

∑
(u1,...,um)∈{−1,1}m

E
{
σε1X(tk)=−11X(t?1)=u1

. . . 1X(t?m)=um1Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

E
{
σε1Y /∈[S−,S+] | X(t?1) = u1, . . . , X(t?m) = um

}
[2P {X(tk) = 1 | X(t?1) = u1 . . . X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}

=
∑

(u1,...,um)∈{−1,1}m

{
σϕ(zγ+) + zγ+ ϕ(zγ+)

m∑
s=1

usqs − σϕ(z1−γ−) − z1−γ− ϕ(z1−γ−)

m∑
s=1

usqs

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}
+ o( max

16s6m
|qs|) .

(17)

Note that in order to obtain the last expression, we used iv) of Lemma 5 of Rabier
(2014a) (cf. Section 4.1). Recall that zα denotes the quantile of order 1 − α of a
standard normal distribution. Let us focus on the quantity∑
(u1,...,um)∈{−1,1}m

{
σϕ(zγ+) − σϕ(z1−γ−)

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1]

× P {X(t?1) = u1, . . . , X(t?m) = um}

=
{
σϕ(zγ+) − σϕ(z1−γ−)

} ∑
(u1,...,um)∈{−1,1}m

2 P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

−
{
σϕ(zγ+) − σϕ(z1−γ−)

} ∑
(u1,...,um)∈{−1,1}m

P {X(t?1) = u1, . . . , X(t?m) = um}

=
{
σϕ(zγ+) − σϕ(z1−γ−) 2 P {X(tk) = 1} −

{
σϕ(zγ+) − σϕ(z1−γ−)

}
= 0 .

(18)
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Let us focus on the quantity

∑
(u1,...,um)∈{−1,1}m

{
zγ+ ϕ(zγ+)

m∑
s=1

usqs − z1−γ− ϕ(z1−γ−)

m∑
s=1

usqs

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um} .

Let ξ denote a given QTL. We have∑
(u1,...,um)∈{−1,1}m

uξ qξ
{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}

=
∑

(u1,...,uξ−1,uξ+1,...um)∈{−1,1}m−1

qξ
{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
2P
{
X(tk) = 1 | X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− 1

]
× P

{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
2P
{
X(tk) = 1 | X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− 1

]
× P

{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

} ∑
(u1,...,uξ−1,uξ+1,...um)∈{−1,1}m−1[

2P
{
X(tk) = 1, X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−P
{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−2P

{
X(tk) = 1, X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−P
{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}]
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
−P
{
X(t?ξ) = 1

}
+ P

{
X(t?ξ) = −1

}
+ 2P

{
X(tk) = 1, X(t?ξ) = 1

}
− 2P

{
X(tk) = 1, X(t?ξ) = −1

}]
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}{
r(tk, t

?
ξ)− r(tk, t?ξ)

}
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
ρ(tk, t

?
ξ) .

(19)

As a result, according to formulae (17), (18) and (19), we have

E
{
σε X(tk)

}
=
{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

} m∑
s=1

ρ(t?s , tk) qs + o( max
16s6m

|qs|) .

14



4.4. Formula for the quantity E
{
X(t?s)X(t?s̃)X(tk)

}
We have

E
{
X(t?s)X(t?s̃)X(tk)

}
= E

{
1X(t?s)X(t?s̃)X(tk)=11Y /∈[S−,S+]

}
− E

{
1X(t?s)X(t?s̃)X(tk)=−11Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = −1 | X(t?1) = u1, . . . , X(t?m) = um}

+
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = −1 | X(t?1) = u1, . . . , X(t?m) = um}

= −2
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

+ 2
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

+
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
× P {X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
× P {X(t?1) = u1, . . . , X(t?m) = um} + o(1) .

(20)

Besides,∑
(u1,...,um)∈{−1,1}m

us̃=−us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um} = P {X(tk) = 1, X(t?s)X(t?s̃) = −1}

= P {X(t?s)X(t?s̃) = −1 | X(tk) = 1} /2

15



and ∑
(u1,...,um)∈{−1,1}m

us̃=us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

= P {X(tk) = 1, X(t?s)X(t?s̃) = 1} = P {X(t?s)X(t?s̃) = 1 | X(tk) = 1} /2 .

As a result,

2
∑

(u1,...,um)∈{−1,1}m
us̃=us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

− 2
∑

(u1,...,um)∈{−1,1}m
us̃=−us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

= 2P {X(t?s)X(t?s̃) = 1 | X(tk) = 1} − 1 = 2P {X(t?s)X(t?s̃) = 1} − 1 = ρ(t?s , t
?
s̃) .

In the same way, ∑
(u1,...,um)∈{−1,1}m

us̃=−us

P {X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

P {X(t?1) = u1, . . . , X(t?m) = um}

= P {X(t?s)X(t?s̃) = −1} − P {X(t?s)X(t?s̃) = 1} = −ρ(t?s , t
?
s̃) .

Then, according to formula (20), we have

E
{
X(t?s)X(t?s̃)X(tk)

}
= o(1) .

It concludes the proof.
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Supplementary B: �The SgLasso and its cousins for

selective genotyping and extreme sampling: application

to association studies and genomic selection" I

C.E. Rabiera,b,c,∗, C. Delmasc

aISE-M, UMR 5554, CNRS, IRD, Université de Montpellier, France.
bLIRMM, UMR 5506, CNRS, Université de Montpellier, France.

cINRA, UR875 Mathématiques et Informatique Appliquées Toulouse, F-313326

Castanet-Tolosan, France.

We propose to illustrate here our theoretical results regarding the max test.
Recall that it relies on the test statistic, sup Λn(.). The focus is on a sparse
map: a chromosome of length 1M (T = 1), with 21 markers (K = 21) equally
spaced every 5cM. In this context, Table 1 compares the theoretical power and
the empirical power, under di�erent con�gurations: either 1 QTL (m = 1) at
3cM, either 2 QTLs (m = 2) at 3cM and 28cM, or 3 QTLs (m = 3) at 3cM,
28cM and 72cM. For all cases, the absolute value of the constant linked to the
QTL e�ect was equal to 2.8284 (i.e. |as| = 2.8284), allowing to deal with a
small QTL e�ect of 0.2 when n = 200. The theoretical power was obtained
by generating 10,000 paths of the asymptotic process, whereas 1,000 samples of
size n equal to 1,000 , 200 or 100 were considered for the empirical power. The
threshold (i.e. critical value) at the 5% level was set to 7.84 using the Monte-
Carlo Quasi Monte-Carlo method, proposed by Azaïs et al. (2012) and based on
Genz (1992). In order to compute the maximum of the process, simulated data
were analyzed using Lemma 1 of Azaïs et al. (2012), that is to say performing
LRT on markers and performing only one test in each marker interval if the
ratio of the score statistics on markers ful�lls the given condition.

According to Table 1, we can notice a good agreement between the empirical
power and the theoretical power for n = 200. However, the asymptotic seems
to be really reached for n =1,000. We also investigated the behavior of the test
under a selective genotyping performed symmetrically (i.e. γ+ = γ/2). Recall
that the threshold remains the same under selective genotyping (cf. Theorem
1 of the main text). We can observe that when γ = 0.3, the empirical power
still matches the theoretical power for n =1,000. This validates our theoretical
results presented in Theorem 1 of the main text.

Last, the power of the test is reported as a function of the QTL e�ect signs.

∗Corresponding author. Tel.:+33 4 67 14 36 97
Email addresses: ce.rabier@gmail.com (C.E. Rabier), celine.delmas@inra.fr (C.

Delmas)
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γ
HHH

HHHn
m 1 (+) 2 (++) 2 (+-) 3 (+-+)

1

+∞ 60.20% 99.35% 15.27% 49.74%
1,000 59.7% 98.90% 15.70% 49.00%
200 60.00% 98.80% 15.50% 47.30%
100 53.90% 98.50% 13.70% 45.80%

0.3

+∞ 48.21% 97.47% 12.71% 39.36%
1,000 47.90% 97.10% 12.20% 39.50%
200 47.70% 96.80% 10.50% 37.50%
100 46.10% 96.50% 9.40% 32.80%

Table 1: Theoretical power and empirical power associated to the test statistic sup Λn(.),
and as a function of the number m of QTLs and the percentage γ of genotyped individuals
( T = 1, K = 21, tk = 0.05(k − 1), (m = 1, t?1 = 0.03), (m = 2, t?1 = 0.03, t?2 = 0.80),
(m = 3, t?1 = 0.03, t?2 = 0.28, t?3 = 0.72), all |as| = 2.828, + for positive e�ect, − for negative
e�ect, 10,000 paths for the theoretical power, 1,000 samples of size n for the empirical power,
γ+/γ = 1/2).

We can see that when the two QTLs at 3cM and 28cM have the same signs,
the power is almost equal to 1 whereas it largely decreases (≈ 15% for γ = 1)
when the signs are opposite. In this case, the max test is clearly not the most
appropriate test to perform. We refer to the recent study of Arias-Castro et
al. (2011) where the authors compared performances of the max test and the
ANOVA in another context.
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(Sparse, n = 100) (Sparse, n = 200) (Dense, n = 100) (Dense, n = 200)
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.1

1/2 82.86% 14.74 91.29% 16.74 95.73% 17.15 98.39% 16.87
3/4 79.17% 15.35 90.91% 16.87 94.59% 16.52 98.26% 16.39
7/8 74.61% 15.89 89.85% 16.85 93.63% 17.11 98.69% 16.77
1 68.87% 16.26 86.71% 16.69 92.77% 16.99 98.08% 16.63

0.2

1/2 73.43% 15.64 85.43% 16.74 94.18% 17.61 96.26% 16.93
3/4 71.27% 16.36 85.19% 16.80 94.01% 17.65 95.79% 16.53
7/8 68.19% 17.15 83.69% 16.77 93.43% 18.16 93.80% 17.25
1 63.80% 16.95 81.04% 16.72 90.09% 17.15 92.18% 16.91

0.3

1/2 70.95% 16.59 83.48% 16.66 88.64% 16.70 96.50% 17.12
3/4 68.84% 15.39 81.77% 16.67 85.72% 17.71 95.24% 16.09
7/8 65.36% 15.75 79.48% 16.83 84.67% 16.93 94.17% 16.98
1 61.76% 16.63 74.09% 16.74 79.96% 16.85 91.63% 16.56

Table 2: Performances of the new method SgLasso as a function of the ratio γ+/γ (Mean over 100 samples, on average n = 100 individuals
genotyped, m = 16, |q1| = . . . = |q16| = 0.1, T = 10, QTLs randomly located only on [0M,4M]). Sparse map: K = 201, tk = 0.05(k − 1), L = 401,

t′l = 0.025(k − 1). Dense map: K = L =10,001 , tk = t′l = 0.001(k − 1). The L1 ratio corresponds to the quantity
∑161

i=1 |∆̂i|/
∑401

i=1 |∆̂i| for the
sparse map, and to the quantity

∑4001
i=1 |∆̂i|/

∑10001
i=1 |∆̂i| for the dense map. m̂ denotes the estimated QTL number.
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A A B B

AB A A

A A

A x (A x B)

(A x (A x B)) x A

Backcross

Figure 1: Backcross population A × (A × B) and the progenies (A × (A × B)) × A. Recall
that A and B are purely homozygous lines. In the main manuscript, alleles from A (in red)
are coded −1 and alleles from B (in black) are coded −1.
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