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Introduction

The aim of the paper is to develop a transport approach to some discrete versions of the Prékopa-Leindler Inequality [START_REF] Prékopa | Logarithmic concave measures with application to stochastic programming[END_REF][START_REF]On logarithmic concave measures and functions[END_REF][START_REF] Leindler | On a certain converse of Hölder's inequality. II[END_REF], namely the Four Functions Theorem due to Ahlswede and Daykin [START_REF] Ahlswede | An inequality for the weights of two families of sets, their unions and intersections[END_REF] and a recent result of Klartag and Lehec [START_REF] Klartag | Poisson processes and a log-concave Bernstein theorem[END_REF] on Z. Both inequalities will be a consequence of the stronger displacement convexity of entropy on the set of integers. Before presenting these discrete functional inequalities, let us recall the original continuous statement inspiring them.

The classical Prékopa-Leindler Inequality is the following.

Theorem 1 (Prékopa-Leindler). Suppose that f, g, h : R n Ñ R `are measurable functions such that, for some t P p0, 1q,

(1) f pxq 1´t gpyq t ď hpp1 ´tqx `tyq, @x, y P R n .

Then ˆżR n f pxq dx ˙1´t ˆżR n gpyq dy ˙t ď ż R n hpzq dz.

The Prékopa-Leindler Inequality is a functional version of the celebrated Brunn-Minkowski Inequality stating that for all Borel sets A, B Ă R n and all t P p0, 1q it holds Volpp1 ´tqA `tBq ě VolpAq 1´t VolpBq t , where Volp ¨q denotes the Lebesgue measure on R n . It is more generally intimately related to the study of log-concave measures which is of considerable importance in convex geometry, probability theory and statistics. In particular, many geometric and functional inequalities for uniformly log-concave probability measures can be derived from Theorem 1 (see in particular the paper [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF] by Bobkov and Ledoux). We refer to [START_REF] Gardner | The Brunn-Minkowski inequality[END_REF] for a thorough presentation of the subject as well as for historical comments on Theorem 1.

The question of extending the Prékopa-Leindler inequality outside the flat space framework has been tackled by many authors in recent years and turned out to be extremely fruitful in Geometry, Analysis and Probability. A first step has been accomplished by Cordero-Erausquin, McCann and Schmuckenschläger in [START_REF] Cordero-Erausquin | A Riemannian interpolation inequality à la Borell, Brascamp and Lieb[END_REF][START_REF]Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport[END_REF], who obtained extensions of the Prékopa-Leindler inequality on Riemannian manifolds with a lower bounded Ricci curvature. Their extension is closely related to displacement convexity properties of entropic functionals, first introduced by McCann in [START_REF] Mccann | A convexity principle for interacting gases[END_REF] in the flat space framework, and then extended to Riemannian manifolds by Otto and Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] and von Renesse and Sturm [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy, and Ricci curvature[END_REF]. This displacement convexity formulation is actually equivalent to lower bounds on the Ricci curvature and led to the Lott-Sturm-Villani [START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF][START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF]On the geometry of metric measure spaces. II[END_REF] definition of metric measure spaces with lower bounded Ricci curvature which makes sense even in a non-smooth framework.

In a similar vein, it would also be satisfactory to extend the Prékopa-Leindler inequality to discrete frameworks such as graphs (which are not covered by the Lott-Sturm-Villani theory). Several general definitions of discrete spaces with lower bounded curvature were recently proposed, in particular by Bonciocat and Sturm [START_REF] Bonciocat | Mass transportation and rough curvature bounds for discrete spaces[END_REF], Ollivier [START_REF] Ollivier | Ricci curvature of Markov chains on metric spaces[END_REF], Ollivier and Villani [START_REF] Ollivier | A curved Brunn-Minkowski inequality on the discrete hypercube[END_REF], Erbar and Maas [START_REF] Erbar | Ricci curvature of finite Markov chains via convexity of the entropy[END_REF], Hillion [START_REF] Hillion | Contraction of measures on graphs[END_REF] or the authors [START_REF] Gozlan | Displacement convexity of entropy and related inequalities on graphs[END_REF]. While these different definitions are all efficient at the level of functional inequalities and are satisfied by a large collection of classical graphs, none of them really succeeds in leading to a satisfactory Prékopa-Leindler or Brunn-Minkowski inequality on those spaces.

However, for at least two specific discrete spaces, convincing Prékopa-Leindler type inequalities already exist.

The first one, is the celebrated Four Functions Theorem on the discrete hypercube t0, 1u n by Ahlswede and Daykin [START_REF] Ahlswede | An inequality for the weights of two families of sets, their unions and intersections[END_REF]. To recall its statement, we will need the following notation. The discrete hypercube will be denoted by Ω n :" t0, 1u n and for all x " px 1 , . . . , x n q, y " py 1 , . . . , y n q P Ω n , one defines x ^y :" pminpx 1 , y 1 q, . . . , minpx n , y n qq and x _ y :" pmaxpx 1 , y 1 q, . . . , maxpx n , y n qq .

Theorem 2 (Ahlswede-Daykin). Suppose that f, g, h, k : Ω n Ñ R `are such that

f pxqgpyq ď hpx ^yqkpx _ yq, @x, y P Ω n , then ÿ xPΩn f pxq ÿ xPΩn gpxq ď ÿ xPΩn hpxq ÿ xPΩn kpxq.
Note that this result mimics the statement of Theorem 1 for t " 1{2 on Ω n . Theorem 2 has important implications in terms of correlation inequalities, as it gives back in particular the classical FKG inequality which has a lot of applications in percolation and statistical mechanics [START_REF] Fortuin | Correlation inequalities on some partially ordered sets[END_REF].

The second discrete form of the Prékopa-Leindler Inequality we will consider is a recent one due to Klartag and Lehec [START_REF] Klartag | Poisson processes and a log-concave Bernstein theorem[END_REF], and holds on the space Z of integers. Denote by r¨s and t¨u the ceiling and floor functions respectively. As we will see in Section 2, Theorem 3 implies Theorem 2 for n " 1 (which then gives the full conclusion by induction, see the proof of Theorem 2 in Section 1). Moreover Theorem 3 implies back Theorem 1 for t " 1{2 (and thus for all other values of t). The proof given by Klartag and Lehec in [START_REF] Klartag | Poisson processes and a log-concave Bernstein theorem[END_REF] relies on rather sophisticated tools of stochastic analysis on the Poisson space and in particular on a stochastic representation formula for the relative entropy functional with respect to the Poisson distribution on the (non-negative) integers.

Theorem 3. Suppose that f, g, h, k : Z Ñ R `are such that (2) f pxqgpyq ď h ˆZ x `y 2 ^˙k ˆR x `y 2 V˙, @x, y P Z.
As already stated above, the main objective of the present paper is to recover Theorems 2 and 3 by means of optimal transport tools. In the continuous setting, optimal transport is indeed a very efficient way to establish functional inequalities (see [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF]Grundlehren der Mathematischen Wissenschaften[END_REF] and the references therein) and it is a challenging question to see how these powerful techniques can be adapted to the discrete world. To make this introduction more self-contained and to illustrate the difficulties in dealing with discrete structures, let us briefly recall a classical transport proof of Theorem 1 in dimension 1.

Proof of Theorem 1 for d " 1. Without loss of generality, one can assume that ş R f pxq dx " ş R gpyq dy " 1, with f and g two positive and continuous functions. Defining µpdxq " f pxq dx, νpdyq " gpyq dy, a natural transport map between the probability measures µ and ν is given by T pxq " F ´1 ν ˝Fµ pxq, where F µ pxq " ş x ´8 f puq du, x P R, and F ν pyq " ş y ´8 gpvq dv, y P R, are the cumulative distribution functions of µ and ν. The change of variable formula immediately gives the following relation between f and g:

(3)
f pxq " gpT pxqqT 1 pxq, @x P R.

Plugging y " T pxq into (1) one gets by change of variables (z " p1 ´tqx `tT pxq, note that T is increasing by construction) ż

R hpzq dz " ż R hpp1 ´tqx `tT pxqqrp1 ´tq `tT 1 pxqs dx ě ż R f pxq 1´t gpT pxqq t T 1 pxq t dx " ż R f pxq 1´t f pxq t dx " 1,
where the inequality comes from (1) and the arithmetic-geometric inequality p1 ´tqa `tb ě a 1´t b t , a, b ě 0, t P r0, 1s (appplied to a " 1 and b " T 1 pxq), while the last equality comes from (3).

The proof for n ě 2 is done by induction (see e.g the proof of [18, Theorem 2.13]). It is also possible to prove this result directly in dimension n, by using the Brenier or the Knothe transport maps and the Monge-Ampère equation. See [START_REF] Villani | Topics in optimal transportation[END_REF]Chapter 6] for details. Note that the use of coupling arguments for establishing Brunn-Minkowski type inequalities goes back at least to Knothe [START_REF] Knothe | Contributions to the theory of convex bodies[END_REF].

Analyzing the proof above immediately reveals two obvious obstacles that prevent to export it easily to the discrete setting:

(1) Transport maps between probability measures µ and ν usually do not exist when the space is discrete and one often needs to cut the mass of atoms of the source measure µ to reconstruct the target measure ν; (2) Even if there is a transport map T sending µ on ν, there is no Jacobian equation such as [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF].

In the case of Theorem 2 and 3, it turns out that these difficulties can be circumvented. It would be useless at this point to state general rules, however it seems at least that in both situations choosing t " 1{2 helps a lot by introducing symmetry and compensations to overcome the lack of Jacobian equation.

In fact, we will go beyond Theorem 2 and 3 by proving, by transport arguments, a stronger statement: namely an entropic version of the Prékopa-Leindler Inequality (that we may also call displacement convexity of entropy), see Theorem 8 for a precise statement. In that sense, since such an entropic statement implies the Klartag-Lehec version of the Prékopa-Leindler Inequality on Z, which in turn, at the price of an obvious induction step, implies the Four Functions theorem, all results appear to be the consequence of one single (transport) proof. Moreover, our displacement convexity result on the integers, as the mesh size goes to 0, converges to the classical displacement convexity of entropy on the line (for t " 1{2), obtained by McCann in [START_REF] Mccann | A convexity principle for interacting gases[END_REF] which shows the compatibility of our results to the well-known equivalent statement in the continuous.

The paper is organized as follows.

In Section 1, we give a simple proof of Theorem 2, based on the construction of an explicit coupling in dimension n " 1 and on the dual formulation of the relative entropy functional. As already explained, Theorem 2 can also be seen as a consequence of Theorem 3. However, the proof is very simple and it seemed to us that it nicely illustrates the power of the transport techniques in discrete and therefore it is worth a separate presentation. Then we show how to recover a significant part of the classical Prékopa-Leindler inequality from Theorem 2, passing from the discrete to the continuous by means of the Central Limit Theorem.

In Section 2, we prove a stronger entropic version of Theorem 3, namely Theorem 8, based on the one-dimensional monotone rearrangement coupling. We also show how to fully recover the Prékopa-Leindler inequality starting from Theorem 3, again passing from discrete to continuous, but here using instead that the mesh size of the grid shrinks to 0.

Finally, Section 3 is devoted to curved versions of Theorem 3 applying to probability measures with a log-concave probability mass function.

1. The Four Functions theorem 1.1. A transport proof of the Four Functions Theorem. In the following, we prove the Four Functions Theorem using transport ingredients and a duality formula.

We will use the following notations. The set of all probability measures on Ω n " t0, 1u n will be denoted by PpΩ n q and the set of functions on Ω n by FpΩ n q. For all a P Ω 1 and h P FpΩ n q, the function h a : Ω n´1 Ñ R is defined by h a pxq " hpx, aq, @x P Ω n´1 .

For convenience, we restate the Ahlswede-Daykin Theorem with an additive hypothesis (which corresponds to Theorem 2 with f " e h 1 , g " e h 2 , h " e h 3 and k " e h 4 ).

Theorem 4. Let n ě 1. Suppose that h 1 , h 2 , h 3 , h 4 : Ω n Ñ R are such that h 1 pxq `h2 pyq ď h 3 px ^yq `h4 px _ yq, @x, y P Ω n .
Then ÿ Recall the following duality formula involving the relative entropy functional. Let m n be the uniform measure on Ω n and define for all probability measures ν on Ω n

Hpν|m n q " ż log ˆdν dm n ˙dν.
Then, for any function f :

Ω n Ñ R, it holds (4) log ż e f dm n " sup νPPpΩnq "ż f dν ´Hpν|m n q * .
In the proof of Theorem 4 we will also use the following coupling lemma whose proof is elementary. We recall that if ν 1 , ν 2 are two probability measures on a measurable space pE, Aq, a coupling of ν 1 and ν 2 (in that order) is a probability measure π on the product space E ˆE having ν 1 as first marginal and ν 2 as second marginal, that is to say such that πpA ˆEq " ν 1 pAq and πpE ˆBq " ν 2 pBq for all A, B P A. Recall also that that if µ is a probability measure on pE, Aq and S : E Ñ F a measurable map taking values in another measurable space pF, Bq, then the image of µ under the map S (or push forward of µ under the map S) is the probability measure denoted by S # µ defined as S # µpBq " µpS ´1pBqq, B P B.

Lemma 5. Let ν 1 , ν 2 P PpΩ 1 q and set S : Ω 2 1 Q px, yq Þ Ñ px ^y, x _ yq. piq if ν 2 p0q ď ν 1 p0q then there exists a (unique) coupling π of ν 1 and ν 2 such that r π :" S7π is also a coupling of ν 1 and ν 2 . Moreover in this case π " r π and πp0, 0q " ν 2 p0q, πp1, 0q " 0, πp0, 1q " ν 1 p0q ´ν2 p0q and πp1, 1q " ν 1 p1q. piiq if ν 2 p0q ě ν 1 p0q then there exists a (unique) coupling π of ν 1 and ν 2 such that r π " S7π is a coupling of ν 2 , ν 1 . Moreover πp0, 0q " r πp0, 0q " ν 1 p0q, πp1, 1q " r πp1, 1q " ν 2 p1q, πp0, 1q " r πp1, 0q " 0 and πp1, 0q " r πp0, 1q " ν 2 p0q ´ν1 p0q.

Remark 6. The coupling π in piq (resp. piiq) is nothing but the non-decreasing (nonincreasing) rearrangement coupling. The above lemma is very much one-dimensional. In fact, it is easy to construct examples of measures ν 1 , ν 2 P PpΩ n q, for n ě 2, such that there does not exist any coupling π of ν 1 and ν 2 such that r π :" S7π (with S that acts coordinate by coordinate) is a coupling of ν 1 and ν 2 or a coupling of ν 2 and ν 1 .

Proof. We will first prove Item piq. In the following diagram we represent the couplings π on the left, and r π on the right, with their marginals.

x y 0 1 0 πp0, 0q πp0, 1q ν 1 p0q 1 πp1, 0q πp1, 1q ν 1 p1q ν 2 p0q ν 2 p1q S ÝÑ x ^y x _ y 0 1 0 πp0, 0q πp0, 1q `πp1, 0q ν 1 p0q 1 0 πp1, 1q ν 1 p1q ν 2 p0q ν 2 p1q
Once one observes that necessarily r πp1, 0q " 0 (since there do not exist x, y P Ω 1 with x ^y " 1 and x _ 1 " 0), and r πp0, 0q " πp0, 0q and r πp1, 1q " πp1, 1q, then all the values of r πpi, jq and πpi, jq can be deduced from the marginals (details are left to the reader). A similar reasoning leads to the conclusion of Item piiq. The uniqueness part is obvious from the construction.

Proof of Theorem 4. The proof goes by induction on n ě 1. We will prove the base case towards the end of the proof. Assume first that the result holds on Ω n´1 . Then choose four functions h 1 , h 2 , h 3 , h 4 : t0, 1u n Ñ R satisfying [START_REF] Bonciocat | Mass transportation and rough curvature bounds for discrete spaces[END_REF] h 1 pxq `h2 pyq ď h 3 px ^yq `h4 px _ yq, @x, y P Ω n .

Fix a, b P t0, 1u ; applying Condition (5) to x " px 1 1 , . . . , x 1 n´1 , aq and y " py 1 1 , . . . , y 1 n´1 , bq we get that h a 1 px 1 q `hb 2 py 1 q ď h a^b 3 px 1 ^y1 q `ha_b 4 px 1 _ y 1 q, @x 1 , y 

¸.

This leads to the desired conclusion since, by construction, for all i P t1, 2, 3, 4u it holds log `řxPΩ 1 e H i pxq ˘" log `řxPΩn e h i pxq ˘.

Hence, in order to conclude the proof we need to prove the theorem on Ω 1 . To that purpose, fix four functions h 1 , h 2 , h 3 , h 4 : Ω 1 Ñ R satisfying Condition (5) (with n " 1) and let ν 1 , ν 2 P PpΩ 1 q. Let us show that (6)

ˆż h 1 dν 1 ´Hpν 1 |m 1 q ˙`ˆż h 2 dν 2 ´Hpν 2 |m 1 q ˙ď log ˜ÿ xPΩ 1 e h 3 pxq ¸`log ˜ÿ xPΩ 1 e h 4 pxq
¸.

First assume that ν 1 p0q ď ν 2 p0q. Thanks to Item piq of Lemma 5 above, there exists a coupling π of ν 1 and ν 2 such that the coupling r π defined as the push forward of π under the map S : Ω 2 1 Q px, yq Þ Ñ px ^y, x _ yq is still a coupling of ν 1 and ν 2 . It follows from the very definition of the coupling, from Condition [START_REF] Bonciocat | Mass transportation and rough curvature bounds for discrete spaces[END_REF], and by definition of the push-forward, that

ż h 1 dν 1 `ż h 2 dν 2 " ż Ω 2 1 rh 1 pxq `h2 pyqs dπpx, yq ď ż Ω 2 1 rh 3 px ^yq `h4 px _ yqs dπpx, yq (7) 
" ż Ω 2 1 h 3 pxq `h4 pyq dr πpx, yq " ż h 3 dν 1 `ż h 4 dν 2 .
Therefore, by (4),

ˆż h 1 dν 1 ´Hpν 1 |m 1 q ˙`ˆż h 2 dν 2 ´Hpν 2 |m 1 q ˙ď ˆż h 3 dν 1 ´Hpν 1 |m 1 q ż h 4 dν 2 ´Hpν 2 |m 1 q ˙ď log ˜ÿ xPΩ 1 e h 3 pxq ¸`log ˜ÿ xPΩ 1 e h 4 pxq

¸,

which proves (6) in this case. Now, if ν 1 p0q ą ν 2 p0q, then according to Item piiq of Lemma 5, there exists a coupling π of ν 1 and ν 2 such that the probability r π " S # π is now a coupling of ν 2 and ν 1 (in that order). Therefore, reasoning exactly as in [START_REF]Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport[END_REF] 

¸.

and completes the proof of Theorem 4.

A careful reading of the proof of Theorem 4 actually leads to a slightly more general result that we now describe. Consider a functional Φ on FpΩ 1 q and assume that it can be written as follows [START_REF] Dubuc | Critères de convexité et inégalités intégrales[END_REF] Φphq " sup

νPPpΩ 1 q "ż h dν ´Ψpνq * , h P FpΩ 1 q,
where Ψ : PpΩ 1 q Ñ R Y t8u is a given function. Then, we define by induction a sequence of functions Φ n on FpΩ n q as follows: Φ 1 " Φ and for all n ě 2,

Φ n phq " Φpa Þ Ñ Φ n´1 ph a qq, h P FpΩ n q,
where we recall that for all a P Ω 1 and h P FpΩ n q, the function h a : Ω n´1 Ñ R is defined by h a pxq " hpx, aq, x P Ω n´1 . Following the exact same proof of Theorem 4 (details of which are left to the reader), we can conclude that, if h 1 , h 2 , h 3 , h 4 : Ω n Ñ R are such that h 1 pxq `h2 pyq ď h 3 px ^yq `h4 px _ yq, @x, y P Ω n , then Φ n ph 1 q `Φn ph 2 q ď Φ n ph 3 q `Φn ph 4 q.

This is a generalization of Theorem 4 since the relative entropy Ψpνq " Hpν|m n q leads to Φphq " logp ş Ω 1 e h dm 1 q by (4), and therefore, by a straightforward induction, to Φ n phq " logp ş Ωn e h dm n q. However, we could not find any other explicit example of functional Φ and Φ n of real interest. One of the reasons can be found in Hardy, Littlewood and Polya [14, Chapter 3]. Indeed, studying the generalized mean F ´1p ş F phqdm 1 q, these authors prove that, under some mild assumptions, it must be that F pxq " κe cx for some constants κ, c, leading back to the previous example.

Another natural example may be given by Ψpνq " `8 for all ν expect one measure, say m 1 , for which Ψpm 1 q " 0. Then, Φphq " ş hdm 1 and therefore Φ n phq " ş hdm bn 1 , where m bn 1 is the n-fold product of m 1 , i.e. m bn 1 " m n . In that case, the conclusion above is nontrivial though being a consequence of the classical conclusion of the four functions theorem (by considering εh i in the limit ε Ñ 0). A further generalization may be as follows. Let U : r0, 8q Ñ R denote a semi-continuous, strictly convex function satisfying lim xÑ8 U pxq{x " 8 and U p1q ě 0. Then, given µ, ν P PpΩ n q, we set U µ pνq " ş U pf qdµ, if ν is absolutely continuous with respect to µ with density f , and U µ pνq " `8 otherwise. With such a definition, the special choice U pxq " x log x amounts to U µ pνq " Hpν|µq. Furthermore, since U p1q ě 0, by Jensen's inequality U µ pνq ě 0 for all ν P PpΩ n q. Also, for any f : t0, 1u n Ñ R and µ P PpΩ n q, set Λ µ pf q :" sup νPPpΩnq ´şΩn f dν ´Uµ pνq ¯which generalizes (4). For such U 's, as proved in [12, Proposition 2.9], it holds

Λ µ pf q " inf tPR "ż rU ˚pf `tq ´tsdµ * and U µ pνq " sup f "ż f dν ´Λµ pf q * " sup f "ż f dν ´ż U ˚pf qdµ *
with U ˚pyq :" sup xą0 txy ´U pxqu, y P R. For instance, the choice U pxq " x 2 {2, x ě 0 leads to Λ m 1 pf q " Var m 1 pf q `ş f dm 1 ´1 2 if f p0q ´f p1q P r´2, 2s and Λ m 1 pf q " maxpf p0q, f p1qq ´1 otherwise. At the price of multiplying h i by a constant, we can assume that max h ´inf ď 2 so that Φphq " Var m 1 phq `ş hdm 1 ´1 2 is explicit so that one can, at least theoretically, express Φ n in this case.

1.2.

From the Four Function Theorem to the Prékopa-Leindler Inequality. Using the Four Functions Theorem, we shall prove the following weak version of the Prékopa-Leindler Inequality. We state and prove the result in dimension one, for simplicity, but it holds in any dimension with no extra complication besides presentation. Proposition 7. Let f, g, h : R Ñ R be three continuous functions satisfying

1 2 f pxq `1 2 gpyq ď h ˆx `y 2 ˙@x, y P R.
Assume furthermore that h is convex and bounded from below. Then, it holds ˆżR e f pxq dx

˙1{2 ˆżR e gpyq dy ˙1{2 ď ż R e hpzq dz.
It should be noticed that equality cases are known in the Prékopa-Leindler inequality [8] and correspond to choosing precisely h convex, and f and g proper translation and dilation of h. Of course, the extra assumptions of continuity of f, g and lower boundedness of h could be removed via standard approximation arguments, but we refrain from further discussion, since it does not seem possible to remove the convexity assumption on h and to recover the full conclusion of Theorem 1.

Proof. Let f, g, h : R Ñ R be continuous functions satisfying

1 2 f pxq `1 2 gpyq ď h ´x `y 2 ¯@x, y P R ,
with h convex and bounded from below. First let us assume that f and g are bounded from above. For any n, define the following three functions on Ω n : for x " px 1 , . . . , x n q P Ω n , set

F n pxq :" f ˆřn i"1 x i ´n 2 ? n{2 ˙, G n pxq :" g ˆřn i"1 x i ´n 2 ? n{2 ˙and H n pxq :" h ˆřn i"1 x i ´n 2 ? n{2 ˙.
Then we observe that, for any x, y P Ω n , coordinate-wise

x `y " x ^y `x _ y.

Hence, the condition satisfied by f, g and h transfers to F n , G n and H n as follows: for all x, y P Ω n ,

F n pxq `Gn pyq ď 2H n ˆx ^y `x _ y 2 ˙ď H n px ^yq `Hn px _ yq ,
where the last inequality follows from the convexity of h. Let M ą 0 be a constant such that f ď M , g ď M and h ě ´M . Then, it holds F n pxq `Gn pyq ď minpH n px ^yq; 3M q `minpH n px _ yq; 3M q.

In other words F n , G n and H n ^3M satisfy the condition of the Four Functions Theorem (with h 3 " h 4 ) so that, denoting by m n the uniform probability measure on Ω n , ż Letting λ Ñ `8, the monotone convergence theorem gives the desired inequality. Finally, one can easily remove the upper boundedness assumption on f, g by truncation and monotone convergence.

2. Klartag-Lehec Prékopa-Leindler inequality on Z 2.1. From Klartag-Lehec Inequality to the Four Functions Theorem. To make clear the connection with the preceding section, let us first remark that Theorem 3 implies the one dimensional version of the Four Functions Theorem (and thus the result in all dimensions by tensorization). Indeed let f, g, h, k be four non-negative functions on t0, 1u satisfying the hypothesis of the Four Functions Theorem, namely for any x, y P t0, 1u , f pxq gpyq ď hpx ^yq kpx _ yq.

Setting for any x P Z f pxq :" f pxq1 t0,1u pxq, and similarly g, h, k, one may easily check that that for any x, y P Z

f pxq gpyq ď h ˆZ x `y 2 ^˙k ˆR x `y 2 V˙.
Therefore applying Theorem 3 we get the conclusion of the Four Functions Theorem, pf p0q `f p1qqpgp0q `gp1qq ď php0q `hp1qqpkp0q `kp1qq.

2.2.

Transport proof of the Klartag-Lehec Inequality. Our goal is now to establish the following entropic version of Klartag-Lehec Inequality which is actually stronger than Theorem 3. In what follows, we recall that the monotone coupling π between two probability measures ν 0 and ν 1 on R is defined by π " LawpF ´1 ν 0 pU q, F ´1 ν 1 pU qq, where U is a random variable uniformly distributed on p0, 1q and where for all i P t0, 1u, F ν i pxq " ν i pp´8, xsq, x P R, is the cumulative distribution of ν i and F ´1 ν i ptq " inftx P R : F ν i pxq ě tu, t P p0, 1q, is the generalized inverse of F ν i .

Theorem 8 (displacement convexity of entropy). Suppose that ν 0 , ν 1 are two probability measures on Z with compact supports. Define (recall the definition of the push forward right before Lemma 5) ν

´" m ´#π and ν `" m `#π,
where π is the monotone coupling between ν 0 and ν 1 , and for all x, y P Z, m ´px, yq :"

Z x `y 2 ^, m `px, yq :" R x `y 2 V .
Then, denoting by m the counting measure on Z, it holds where the supremum runs over all probability measures ν on Z with bounded support. Let f, g, h, k be four non-negative functions satisfying [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses [Panoramas and Syntheses[END_REF]. Given ε, κ ą 0 and setting f ε,κ pxq " maxpε, minpf pxq, κqq, one may simply check that equivalently for all x, y P Z, log f ε,κ pxq `log g ε,κ pyq ď log h ε,κ pm ´px, yqq `log k ε,κ pm `px, yqq .

Integrating this inequality with respect to the monotone coupling π of two probability measures on Z with bounded support ν 0 and ν 1 implies

ż log f ε,κ dν 0 `ż log g ε,κ dν 1 ď ż log h ε,κ pm ´q dπ `ż log k ε,κ pm `q dπ " ż log h ε,κ dν ´`ż log k ε,κ dν `.
Therefore, applying Inequality (9) of Theorem 8 implies

ż log f ε,κ dν 0 ´Hpν 0 |mq `ż log g ε,κ dν 1 ´Hpν 1 |mq ď ż log h ε,κ dν ´´H pν ´|mq `ż log k ε,κ dν `´H pν `|mq ď log ż h ε,κ dm `log ż k ε,κ dm,
where the last inequality is a consequence of Identity [START_REF] Fortuin | Correlation inequalities on some partially ordered sets[END_REF]. Then optimizing over all probability measures with bounded support ν 0 and ν 1 , and using again [START_REF] Fortuin | Correlation inequalities on some partially ordered sets[END_REF] one gets log

ż f ε,κ dm `log ż g ε,κ dm ď log ż h ε,κ dm `log ż k ε,κ dm.
The conclusion of Theorem 3 follows by monotone convergence as ε goes to 0 and κ goes to infinity.

Now we turn to the proof of Theorem 8 which in turn is a consequence of the following result of independent interest. In the proof of Theorem 9 we will make repeated use of the following elementary lemma:

Lemma 10.

(1) Let px 1 , y 1 q, px 2 , y 2 q P Z 2 be such that px 1 , y 1 q ‰ px 2 , y 2 q with x 1 ď x 2 and y 1 ď y 2 . Then t x 1 `y1 2 u " t x 2 `y2 2 u if and only if y 2 ´y1 `x2 ´x1 " 1 and x 1 `y1 2 P Z. In this case, r x 2 `y2 2 s " r x 1 `y1 2 s `1.

(2) Let px 1 , y 1 q, px 2 , y 2 q P Z 2 be such that

x 1 ď x 2 , y 1 ď y 2 , t x 1 `y1 2 u " a and t x 2 `y2 2 u " a 1 with a ă a 1 . ' If a 1 ě a `2, r x 1 `y1 2 s ‰ r x 2 `y2 2 s. ' If a 1 " a `1, r x 1 `y1 2 s " r x 2 `y2
2 s if and only if y 2 ´y1 `x2 ´x1 " 1 with

x 1 `y1 2 P Z `1 2 .
The following figures illustrate the next lemma.

x 1 x 2 y 1 " y 2 item (1) = t x 1 `y1 2 u " t x 2 `y2 2 u y 2 ´y1 `x2 ´x1 " 1, x 1 `y1 2 P Z x x`y 2 y x 1 " x 2 y 1 y 2 a a 1 x 1 x 2 y 1 " y 2 item (2), a 1 " a `1 a a " t x 1 `y1 2 u, a 1 " t x 2 `y2 2 u a 1 y 2 ´y1 `x2 ´x1 " 1, x 1 `y1 2 P Z `1 2 x x`y 2 y x 1 " x 2 y 1 y 2 Proof of Lemma 10. (1) If y 2 ´y1 `x2 ´x1 ě 2, then x 2 `y2 2 ě x 1 `y1 2 `1 and thus t x 2 `y2 2 u ě t x 1 `y1 2 u `1. Hence y 2 ´y1 `x2 ´x1 " 1.
Without loss of generality one can assume that x 1 " x 2 and y 2 " y 1 `1. But in this case,

x 2 `y2 2 " x 1 `y1 2 `1 2 . The fact that t x 1 `y1 2 u " t x 2 `y2 2 u then implies that x 1 `y1 2 P Z. The converse is obvious. In this case r x 2 `y2 2 s " r x 1 `y1 2 `1 2 s " x 1 `y1 2 `1 " r x 1 `y1 2 s `1. (2) If a 1 ě a `2, then r x 2 `y2 2 s ě t x 2 `y2 2 u " a 1 ě a `2 " t x 1 `y1 2 u `2 ě r x 1 `y1 2 s `1.
Now let us assume that a 1 " a `1. If y 2 ´y1 `x2 ´x1 " 2, then x 2 `y2 2 " x 1 `y1 2 `1 and so r x 2 `y2 2 s " r x 1 `y1 2 s `1. Therefore y 2 ´y1 `x2 ´x1 " 1 and so

x 2 `y2 2 " x 1 `y1 2 `1 2 . The condition t x 2 `y2 2 u " t x 1 `y1 2 u `1 then implies that x 1 `y1 2 P Z `1 2 . Then it holds r x 2 `y2 2 s " r x 1 `y1 2 `1 2 s " x 1 `y1 2 `1 2 " r x 1 `y1
2 s. The converse is obvious. Before proving Theorem 9 let us introduce some notation. We will denote M ´" tm ´px, yq : px, yq P supppπqu and for all a P Z, Spaq " tpx, yq P supppπq : m ´px, yq " au (with thus Spaq " H when a R M ´).

Lemma 11. For any a P Z, CardpSpaqq P t0, 1, 2u.

Proof of Lemma 11. Let a P M ´. By compactness of the support of π, the set Spaq is finite. Suppose that CardpSpaqq ą 1. Let x 0 be the minimal first coordinate of the elements of Spaq, and let y 0 be the minimal second coordinate of the elements of Spaq having x 0 as first coordinate. If px 1 , y 1 q is another element of Spaq, then either x 0 " x 1 and y 0 ď y 1 , or x 0 ă x 1 and in this case, by monotonicity of the support of π, one has y 0 ď y 1 . According to Item (1) of Lemma 10, one has x 0 `y0 2 P Z and (x 0 " x 1 and y 1 " y 0 `1) or (y 0 " y 1 and x 1 " x 0 `1). By monotonicity of the support of π, these two cases exclude each other and so CardpSpaqq " 2.

For i P t1, 2u, we will denote by M i ´the set of a P M ´such that CardpSpaqq " i. If a P M 1

´, the unique element of Spaq will be denoted by px 0 paq, y 0 paqq. If a P M 2

´, we will denote by px 0 paq, y 0 paqq and px 1 paq, y 1 paqq the two elements of Spaq, with the convention that x 0 paq ď x 1 paq and y 0 paq ď y 1 paq and x 0 paq`y 0 paq 2 P Z as in Lemma 10 and the proof above.

Proof of Theorem 9. Using the notation above, we need to show that the following quantity is less than or equal to 1.

P :" ÿ px,yqPZ 2
ν ´pm ´px, yqqν `pm `px, yqq ν 0 pxqν 1 pyq πpx, yq " ÿ aPM ´ÿ px,yqPSpaq ν ´paqν `pm `px, yqq ν 0 pxqν 1 pyq πpx, yq.

The strategy to bound P by 1 is to show that, in fact, P ď ÿ aPM ´ÿ px,yqPSpaq πpx, yq " 1. [START_REF] Gozlan | From concentration to logarithmic Sobolev and Poincaré inequalities[END_REF] For that purpose we consider two cases. First case. Let a P M ´be such that [START_REF] Gozlan | Displacement convexity of entropy and related inequalities on graphs[END_REF] m `pSpaqq X m `pSpa ´1qq " H and m `pSpaqq X m `pSpa `1qq " H.

Then let us show that for all px, yq P Spaq, it holds [START_REF] Hardy | Inequalities[END_REF] ν ´paqν `pm `px, yqq ν 0 pxqν 1 pyq ď 1.

We distinguish between two sub-cases, a P M 1 ´and a P M 2

´. Suppose first that a P M 1

´.

Then Spaq " tpx 0 , y 0 qu and therefore ν ´paq " πptpu, vq : m ´pu, vq " auq " πpx 0 , y 0 q.

Moreover, since a satisfies (13), Item 2 of Lemma 10 gives that ν `pm `px 0 , y 0 qq " πptpu, vq P Z 2 : m `pu, vq " m `px 0 , y 0 quq " πppx 0 , y 0 qq.

Since πpx 0 , y 0 q ď minpν 0 px 0 q, ν 1 py 0 qq, this gives [START_REF] Hardy | Inequalities[END_REF]. Now let us assume that a P M 2

´. Then one can assume without loss of generality that Spaq " tpx 0 , y 0 q, px 0 , y 0 `1qu with x 0 `y0 2 P Z and thus m `px 0 , y 0 `1q " m `px 0 , y 0 q `1. In this case, ν ´paq " πptpu, vq : m ´pu, vq " auq " πpx 0 , y 0 q `πpx 0 , y 0 `1q ď ν 0 px 0 q and reasoning as above ν `pm `px 0 , y 0 qq " πpx 0 , y 0 q ď ν 1 py 0 q and ν `pm `px 0 , y 0 `1qq " πpx 0 , y 0 `1q ď ν 1 py 0 `1q , which establish [START_REF] Hardy | Inequalities[END_REF].

Second case. Let a 0 P M ´and p ě 1 such that m `pSpa 0 `iqq X m `pSpa 0 `i `1qq ‰ H for all i P t0, . . . , p ´1u and such that m `pSpa 0 ´1qq X m `pSpa 0 qq " H and m `pSpa 0 pqq X m `pSpa 0 `p `1qq " H (i.e. p is maximal). Since m `pSpa 0 `iqq Ă ta 0 `i; a 0 `i `1u, the only possibility is that m `pSpa 0 `iqq " ta 0 `i; a 0 `i `1u for all i P t1, . . . , p ´1u (this set being empty if p " 1). Let us assume that a 0 P M 2 ´and a 0 `p P M 2

´(the other cases are dealt similarly). Let us denote px i 0 , y i 0 q " px 0 pa 0 `iq, y 0 pa 0 `iqq and px i 1 , y i 1 q " px 1 pa 0 `iq, y 1 pa 0 `iqq (recall that by definition x i 1 ě x i 0 and y i 1 ě y i 0 ). According to Lemma 10, it holds x i : a 0 `i ´1

: a 0 `i x x`y 2 y x i´1 0 " x i´1 1 " x i 0 " x i 1 y i´1 0 y i´1 1 y i 0 y i 1
Since πpx i´1 1 , y i´1 1 q ď ν 1 py i´1 1 q and πpx i 0 , y i 0 q ď ν 1 py i 0 q, by using Fact 1, one gets

α i ď ν ´pa 0 `i ´1q `ν´p a 0 `iq ν 0 px i´1 1 q " πpx i´1 0 , y i´1 0 q `πpx i´1 1 , y i´1 1 q `πpx i 0 , y i 0 q `πpx i 1 , y i 1 q ν 0 px i´1 1 q ď 1.
The last inequality holds since

x i´1 0 " x i´1 1 " x i 0 " x i 1 and y i´1 1 , y i 0 , y i 1 are pairwise distinct. (b) If x i´1 0 ‰ x i´1 1 " x i 0 " x i 1 , then necessarily y i´1 0 " y i´1 1 . x x`y 2 y x i´1 0 x i´1 1 " x i 0 " x i 1 y i´1 0 " y i´1 1 y i 0 y i 1
Using Fact 1, one gets ν ´pa 0 `i´1q ď ν 1 py i´1 1 q. Since ν ´pa 0 `iq " πpx i 0 , y i 0 q`πpx i 1 , y i 1 q and πpx i 0 , y i 0 q ď ν 1 py i 0 q one gets

α i ď 1 ν 0 px i´1 1 q " πpx i´1 1 , y i´1 1 q `πpx i 0 , y i 0 q `πpx i 1 , y i 1 q ‰ ď 1. (c) If x i´1 0 " x i´1 1 " x i 0 ‰ x i 1 , then necessarily y i 0 " y i 1 . x x`y 2 y x i´1 0 " x i´1 1 " x i 0 x i 1 y i´1 0 y i´1 1 y i 0 " y i 1 
Using Fact 1, one gets ν ´pa 0 `iq ď ν 1 py i 0 q. Since ν ´pa 0 `i ´1q " πpx i´1 0 , y i´1 0 q πpx i´1 1 , y i´1 1 q and πpx i´1 1 , y i´1 1 q ď ν 1 py i´1 0 q, it follows that

α i ď 1 ν 0 px i´1 1 q " πpx i´1 0 , y i´1 0 q `πpx i´1 1 , y i´1 1 q `πpx i 0 , y i 0 q ‰ ď 1. (d) If x i´1 0 ‰ x i´1 1 , x i´1 1 " x i 0 x i 0 ‰ x i 1 , then necessarily y i´1 0 " y i´1 1 and y i 0 " y i 1 . x x`y 2 y x i´1 0 x i´1 1 " x i 0 x i 1 y i´1 0 " y i´1 1 y i 0 " y i 1
Reasoning as in the preceding cases, one gets ν ´pa 0 `i ´1q ď ν 1 py i´1 1 q, ν ´pa 0 `iq ď ν 1 py i 1 q and so

α i ď 1 ν 0 px i´1 1 q " πpx i´1 1 , y i´1 1 q `πpx i 0 , y i 0 q ‰ ď 1.
Conclusion : by considering successively the elements a P M ´in increasing order, case 1 can be repeated successively several times and we may pass from case 1 to case 2 or from case 2 to case 1. Therefore after a finite use of cases 1 and 2 described above, ( 14) and ( 15) imply [START_REF] Gozlan | From concentration to logarithmic Sobolev and Poincaré inequalities[END_REF]. This concludes the proof of Theorem 9.

2.3.

From the Klartag-Lehec Inequality to the Prékopa-Leindler Inequality. First, let us explain how to recover the conclusion of Theorem 1 for t " 1{2 and continuous functions using Theorem 3. More precisely we are going to show that if F, G, H, K : R Ñ R `are continuous functions such that Then taking in particular H " K gives the conclusion of Theorem 1 for t " 1{2.

F pxqGpyq ď H ˆx `y 2 ˙K ˆx `y 2 ˙, @x, y P R then ( 16 
Proof of [START_REF] Klartag | Poisson processes and a log-concave Bernstein theorem[END_REF]. Let N ě 1 and for all positive integer n consider the grid x n i " ´N `2 iN n , i P t0, . . . , nu. Define f, g, h, k : Z Ñ R `as follows :

f piq :" # F px n i q if i P t0, . . . , nu 0 otherwise , hpiq :" # maxpHpx n i q, Hpx n i `N n qq if i P t0, . . . , nu 0 otherwise , gpiq :" # Gpx n i q if i P t0, . . . , nu 0 otherwise , kpiq :" # maxpKpx n i q, Kpx n i ´N n qq if i P t0, . . . , nu 0 
otherwise .

If i, j P t0, . . . , nu then, there is some ε P t0, 1u such that

x n i `xn j 2 " ´N `2 t i`j 2 uN n `ε N n " x n t i`j 2 u
`ε N n and so Hp

x n i `xn j 2
q ď hpt i`j 2 uq. Similarly, Kp

x n i `xn j 2
q ď kpr i`j 2 sq. Therefore, for all i, j P t0, . . . , nu,

f piqgpiq " F px n i qGpx n i q ď H ˆxn i `xn j 2 ˙K ˆxn i `xn j 2 ˙ď h ˆZ i `j 2 ^˙k ˆR i `j 2 V˙.
where the inequality comes from Jensen's inequality applied to the convex function x Þ Ñ x log x. On the other hand, it is easy to see that ν n ´and ν n `both weakly converge to ν 1{2 (this comes from the almost sure convergence of the underlying random variables) and that µ n weakly converges to µ. Therefore, by lower semicontinuity of pα, βq Þ Ñ Hpα|βq for the weak convergence topology, one concludes that 2Hpν 1{2 |µq ď lim inf Proof. Simply note that the functions F pxq " f pxqµpxq, Gpxq " gpxqµpxq, Hpxq " hpxqµpxq and Kpxq " kpxqµpxq, x P Z, satisfy the assumptions of Theorem 3.

Note that the cost function c µ always satisfies c µ px, xq " 0 and c µ px, x `1q " c µ px `1, xq " 0, @x, y P Z.

Let us introduce the optimal transport cost T cµ associated to this cost function c µ :

T cµ pν 0 , ν 1 q " inf πPΠpν 0 ,ν 1 q ij c µ px, yq dπpx, yq with Πpν 0 , ν 1 q the set of probability measures on Z 2 such that the first marginal of π is ν 0 and the second is ν 1 .

Corollary 14. Let µ be a probability measure on Z such that µpxq ą 0 for all x P Z. Then µ satisfies the following transport-entropy inequality : for all probability measures ν 0 , ν 1 on Z,

T cµ pν 0 , ν 1 q ď Hpν 0 |µq `Hpν 1 |µq.

Proof. Let u, v : Z Ñ R be such that upxq `vpyq ď c µ px, yq, @x, y P Z.

Then according to Corollary 13 applied to f " e u , g " e v and h " k " 1, it holds ˜ÿ xPZ e upxq µpxq ¸˜ÿ yPZ e vpyq µpyq ¸ď 1. This is the dual form of [START_REF] Leindler | On a certain converse of Hölder's inequality. II[END_REF].

The preceding corollary is the most interesting when the cost function c µ is non-negative. A natural condition ensuring non-negativity of c µ is the log-concavity of µ. We recall that a probability measure µ on Z is log-concave if it is such that µpx ´1qµpx `1q ď µpxq 2 , @x P Z.

If one defines, for any t P R, V µ ptq as the linear interpolation between log µpttuq and log µprtsq, then it is easy to check that µ is log-concave if and only if the function V µ is concave on R.

Lemma 15. Suppose that µ is log-concave on Z and such that µpxq ą 0 for all x P Z, then c µ px, yq ě 0 for all x, y P Z.

Proof. Without loss of generality, one can assume that x ă y. If px `yq " 2k, with k P Z, then we have to show that µpkq 2 ě µpxqµpyq. With the notation V µ introduced above, this inequality is equivalent to which again follows from the concavity of V µ .

As an illustration, we end this section with the computation of the cost c µ for two specific examples of probability measures µ on Z. Consider first the double-sided geometric-type measures µpxq " ce ´|x| , x P Z, where c is the normalization constant. Then, an easy computation leads to c µ px, yq " 2 minp|x|, |y|q1 xyă0 . While for µpxq " ce ´2x 2 (with c again the normalization constant), we get c µ px, yq " px ´yq 2 1 x`yP2Z `rpx ´yq 2 ´1s1 x`yP2Z`1 . There is essentially no gain in the first case, which corresponds to a flat situation, while the second example resembles the continuous setting with strictly convex potential for which Γ 2 -calculus applies (see [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses [Panoramas and Syntheses[END_REF][START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF][START_REF]Grundlehren der Mathematischen Wissenschaften[END_REF]).

xPΩn e h 1 pxq ÿ xPΩn e h 2 pxq ď ÿ xPΩn e h 3 pxq ÿ xPΩn e h 3

 3 pxq .

Ωn e Fn dm n ż Ωn e

 Ωn Gn dm n ď ˆżΩn e Hn^3M dm n ˙2 , Applying the Central Limit Theorem, one gets ˆżR e where γ denotes the Standard Gaussian probability measure on R. Replacing f, g, h by f λ pxq :" f pλ 1{2 xq, g λ pxq :" gpλ 1{2 xq and h λ pxq :" hpλ 1{2 xq, where λ ą 0, one easily gets ˆżR e f pxq e

( 9 )

 9 Hpν ´|mq `Hpν `|mq ď Hpν 0 |mq `Hpν 1 |mq. Before turning to the proof of Theorem 8, let us first recall how to recover Theorem 3 from Theorem 8. Proof of Theorem 3. The proof uses (again) the dual expression of the log-Laplace transform of any bounded function ϕ:

nÑ` 8 ` 3 . 2 2 \˘µ

 8322 Hpν n ´|µ n q `Hpν n `|µ n q ˘ď Hpν 0 |µq `Hpν 1 |µq, which proves the claim. Inequalities with curvature terms for log-concave distributions.Finally, let us show how to derive from Theorem 3 other versions adapted to log-concave probability measures. The following result is a straightforward restatement of Theorem 3.Corollary 13. Let µ be a probability measure on Z such that µpxq ą 0 for all x P Z.If f, g, h, k : Z Ñ R `are such that f pxqgpyq ď h ˆZ x `y 2 ^˙k ˆR x `y V˙e cµpx,yq , @x, y P Z,where c µ px, yq " log ˜µ `X x`y

  from the concavity of V µ . If x `y " 2k `1, then the inequality µpkqµpk `1q ě µpxqµpyq is equivalent to

  1 P Ω n´1 which is precisely the condition of the theorem in dimension n ´1 for the four functions

	h a 1 , h b 2 , h a^b 3 log ¨ÿ xPΩ n´1 and h a_b 4 . Applying the induction hypothesis we conclude that e h a 1 pxq '`log ¨ÿ xPΩ n´1 e h b 2 pxq 'ď log ¨ÿ xPΩ n´1 e h a^b 3 pxq '`log ¨ÿ xPΩ n´1	e h a_b 4	pxq '.

The latter holds for all a, b P Ω 1 . Hence, if we set H i paq :" log ´řxPΩ n´1 e h a i pxq ¯, for i P t1, 2, 3, 4u, we have H 1 paq `H2 pbq ď H 3 pa ^bq `H4 pa _ bq @a, b P Ω 1 .

Now applying the result on Ω

1 , we conclude that log ˜ÿ xPΩ 1 e H 1 pxq ¸`log ˜ÿ xPΩ 1 e H 2 pxq ¸ď log ˜ÿ xPΩ 1 e H 3 pxq ¸`log ˜ÿ xPΩ 1 e H 4 pxq

  , one getsş h 1 dν 1 `ş h 2 dν 2 ď ş h 3 dν 2 `ş h 4 dν 1, from which one concludes that (6) holds also in this case.Finally, taking the supremum over ν 1 and ν 2 in (6) gives , thanks to (4),

	log	˜ÿ xPΩ 1	e h 1 pxq ¸`log	˜ÿ xPΩ 1	e h 2 pxq ¸ď log	˜ÿ xPΩ 1	e h 3 pxq ¸`log	˜ÿ xPΩ 1	e h 4 pxq

  Theorem 9. With the same notation as inTheorem 8, it holds 

	(11)		ÿ			
			px,yqPZ 2		
	Proof of Theorem 8. The logarithm function being concave one gets by Jensen's inequality,
	thanks to (11),	H :"	ÿ px,yqPZ 2	log	ˆν´p m ´px, yqqν `pm `px, yqq ν 0 pxqν 1 pyq	˙πpx, yq ď 0.
	Now observe that, by definition of π, ν ´and ν `, H " ÿ zPZ logpν ´pzqqν ´pzq `ÿ zPZ logpν `pzqqν `pzq ´ÿ zPZ	logpν 0 pzqqν 0 pzq	´ÿ zPZ	logpν 1 pzqqν 1 pzq

ν ´pm ´px, yqqν `pm `px, yqq ν 0 pxqν 1 pyq πpx, yq ď 1.

" Hpν ´|mq `Hpν `|mq ´Hpν 0 |mq ´Hpν 1 |mq , completing the proof.
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Let us introduce P a 0 :" p ÿ i"0 ÿ px,yqPSpa 0 `iq ν ´pa 0 `iqν `pm `px, yqq ν 0 pxqν 1 pyq πpx, yq " p ÿ i"0 " ν ´pa 0 `iqν `pa 0 `iq ν 0 px i 0 qν 1 py i 0 q πpx i 0 , y i 0 q `ν´p a 0 `iqν `pa 0 `i `1q ν 0 px i 1 qν 1 py i 1 q πpx i 1 , y i 1 q

 and let us show that (15) P a 0 ď p ÿ i"0 ÿ px,yqPSpa 0 `iq πpx, yq.

We will use the following facts: ' Fact 1 : For all i P t0, . . . , pu it holds ν ´pa 0 `iq " πpx i 0 , y i 0 q `πpx i 1 , y i 1 q . ' Fact 2 : For all i P t1, . . . , pu ν `pa o `iq " πpx i´1 1 , y i´1 1 q `πpx i 0 , y i 0 q and ν `pa 0 q " πpx 0 0 , y 0 0 q and ν `pa 0 `p `1q " πpx p 1 , y p 1 q. Observe that

where, for i P t1, . . . , pu, α i " ν ´pa 0 `i ´1q ν 0 px i´1 1 qν 1 py i´1 1 q πpx i´1 1 , y i´1 1 q `ν´p a 0 `iq ν 0 px i 0 qν 1 py i 0 q πpx i 0 , y i 0 q. and α 0 " ν ´pa 0 q ν 0 px 0 0 qν 1 py 0 0 q πpx 0 0 , y 0 0 q α p`1 " ν ´pa 0 `pq ν 0 px p 1 qν 1 py p 1 q πpx p 1 , y p 1 q.

According to Fact 2, in order to prove [START_REF] Hillion | Contraction of measures on graphs[END_REF], it is enough to show that α i ď 1 for all i P t0, . . . , p `1u. For i " p `1, one can assume without loss of generality that x p 0 " x p 1 . Then, according to Fact 1, ν ´pa 0 `pq ď ν 0 px p 1 q and since πpx p 1 , y p 1 q ď ν 1 py p 1 q, it follows that α p`1 ď 1. The case i " 0 is similar. Now let us consider the case i P t1, . . . , pu. Observe that either x i´1 1 " x i 0 either y i´1 1 " y i 0 . Without loss of generality, one can assume that x i´1 1 " x i 0 (the case y i´1

1 " y i 0 follows by symmetry in x and y), so that

Let us consider the following subcases:

The functions f, g, h, k thus satisfy the assumption of Theorem 3 and so

By uniform continuity of f, g, h, k on r´2N, 2N s, multiplying both sides by p2N {nq 2.4. Displacement convexity of entropy : from discrete to continuous. In the same vein as in the previous sub-section, one can deduce from Theorem 8, the following wellknown continuous version of the displacement convexity of the relative entropy with respect to Lebesgue measure.

Theorem 12. Let ν 0 , ν 1 be probability measures on R with compact supports and define ν 1{2 as the law of X 0 `X1

2

, where pX 0 , X 1 q is distributed according to the monotone rearrangement coupling π between ν 0 and ν 1 . Then it holds 2Hpν 1{2 |Lebq ď Hpν 0 |Lebq `Hpν 1 |Lebq.

Proof. Without loss of generality, one can assume that Hpν 0 |Lebq `Hpν 1 |Lebq ă `8. Consider pX 0 , X 1 q distributed according to π and define, for n ě 1, π n " Law ´tnX 0 u n , tnX 1 u n ¯and ν n 0 " Law ´tnX 0 u n ¯and ν n 1 " Law ´tnX 1 u n ¯. The coupling π n is easily seen to be monotone. Since Theorem 8 immediately extends to probability measures on 1 n Z, one gets [START_REF] Knothe | Contributions to the theory of convex bodies[END_REF] Hpν n ´|m n q `Hpν n `|m n q ď Hpν n 0 |m n q `Hpν n 1 |m n q, where m n is the counting measure on 1 n Z and

Assuming that ν 0 pr´K, Krq " ν 1 pr´K, Krq " 1, where K ě 1 is an integer and denoting by µ n the probability measure 1 2nK 1 r´K,Kr m n , ( 17) is equivalent to (18)

Hpν n ´|µ n q `Hpν n `|µ n q ď Hpν n 0 |µ n q `Hpν n 1 |µ n q. Let µ be the uniform (continuous) distribution on r´K, Kr. On the one hand, for i P t0, 1u