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Auto-adaptive and Dynamical Clustering for Open-Circuit Fault Diagnosis
of Power Inverters

Thanh Hung Pham, Sanda Lefteriu, Cécile Labarre, Eric Duviella, Stéphane Lecoeuche

Abstract— This paper presents a fault diagnosis approach
for single open-circuit faults in inverters entirely from mea-
surements of the stator currents. These measurements are used
to extract the feature data; the feature data is then used
to create clusters in an online, adaptive and unsupervised
way. Auto-adaptive and Dynamical Clustering (AUDyC) is
the algorithm employed for this step. Based on the derived
clusters, appropriate formulations for the data labelling and
fault detection and isolation are proposed. The effectiveness of
the approach is validated on simulation and experimental data.

I. INTRODUCTION

An inverter is a power converter that changes Direct Cur-
rent (DC) to Alternative Current (AC). It is usually used to
connect DC sources (e.g., battery) and AC electrical devices
(e.g., AC electric motor). Fault diagnosis of the 3-phase
inverter associated to a 3-phase motor represents an active
area of research [1]. Because of aging or abnormal operating
conditions, semiconductor switches, such as Insulated-Gate
Bipolar Transistors (IGBTs), are the most vulnerable compo-
nents in the inverter. Their failure is due to the Short-Circuit
(SC) and Open-Circuit (OC) faults. The SC fault leads to a
high current which is destructive and makes the system shut
down immediately thanks to standard protection systems [2].
However, when the OC fault happens, the system can still
run with degraded performance causing secondary faults on
other system components. Thus, this paper focuses on OC
fault diagnosis of 3-phase power inverters.

In terms of methodology, most researchers focus on one of
the following approaches: model-based, signal-based, data-
driven and hybrid [3]. The model-based approach uses the
system model, obtained by physical principles or system
identification techniques, to predict the output, which is
compared to the measured output for diagnosing the fault
[4]. It should be noted that this model is generally difficult
to derive for a complex system, e.g., an asynchronous motor
associated with an inverter. Instead of system models, the
signal-based approach considers the measured signals for
extracting features which are used, together with prior knowl-
edge on the symptoms of healthy systems, to make diagnosis
decisions [1], [5]. However, this approach does not take
into consideration the dynamics of the input signal which
is usually impacted by unknown disturbances or unbalanced
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conditions. In contrast to the two previous approaches, data-
driven approaches consider a large volume of data and prior
knowledge of considered systems to make fault diagnosis
decisions thanks to data classification or clustering. Never-
theless, this approach suffers from a high computational cost,
and may not identify unknown fault types. To combine the
strengths of the previous approaches, our paper proposes a
hybrid approach where signal-based and data-driven methods
are combined.

For the 3-phase inverter, such a hybrid approach may be
based on measurements of voltages and/or currents. Voltage-
based methods use measurements of the three voltages at
the inverter output [2]. This method is independent of the
load, but requires additional sensors. The latter disadvantage
motivates us to develop a current-based method, the load in-
dependence being ensured by simply normalizing the current
data [1], [6].

The data-driven approach is used to determine the feature
classes, which are feature vector sets characterizing system
operation modes. In the context of OC fault diagnosis
for inverters, previous research proposed well-established
statistical methods such as Principle Component Analysis
(PCA) [2] and Support Vector Machines (SVM) [7], [8].
For these previous methods, reference classes are already
available from the training data, and one needs to determine
to which class the new feature vector belongs to. For this
reason, they are called supervised methods, and unknown
operation modes may not be detected during the actual
system operation. To avoid this, Neural Networks (NN) can
be applied to learn and diagnose the OC faults of inverters
thanks to their powerful ability in nonlinear approximation
and adaptive learning [9]–[12]. However, in these papers, the
number of classes is fixed, while the characteristics of the
class is adapted to include the new feature vector. This issue
may be tackled using adaptive unsupervised methods, where
reference classes (called clusters) are not available a priori,
but are created online. To the author’s best knowledge, such
a method has yet to be applied to diagnose the OC fault of
inverters. Moreover, most of existing clustering methods do
not predict the time evolution of modelled data classes and
their fusion.

In this paper, we employ the normalized DC current for
the feature extraction, and Auto-adaptive and Dynamical
Clustering (AUDyC) algorithm [13], [14] for feature cluster-
ing. AUDyC does online, adaptive and unsupervised feature
learning, hence the unknown modes of operation can be
learnt from the measurement data. The main contribution
of our work resides in the application of AUDyC to perform



single OC fault diagnosis of inverters by identifying repre-
sentative data classes. Furthermore, appropriate conditions
for labelling classes and for diagnosing faults are presented.

The paper is organized as follows. Section II formu-
lates the fault diagnosis problem. Section III describes the
proposed method, and section IV validates it on two test
cases: the first considers simulation data from a 3-phase
inverter, while the second is measurement data from a 5-
phase inverter. Section V concludes the paper and presents
future work directions.

II. THE INVERTER IN NORMAL AND FAULTY OPERATION
MODES

This section presents the 3-phase inverter associated with
a motor in normal and faulty operation modes.
A. Inverter operation

Fig. 1: 3-phase inverter driving a motor [2].

The considered system is a combination of a 3-phase
inverter and a motor with the following specifications: star
coupling for the stator with the isolated neutral, symmetric
motor electrical circuit operating under open-loop control
based on pulse width modulation (PWM). We assume that no
fault occurs during the motor starting period. Each inverter
leg is composed of two IGBTs and two inverse diodes as
illustrated in Fig. 1.

TABLE I: Operation modes, diode states, transistor states
and electric voltage of leg a.

ia < 0 ia > 0
T1 open T1 closed T1 open T1 closed

normal or normal or
OC fault OC fault or OC fault OC fault or

SC fault SC fault
T2 open D1 closed D1 closed D1 open D1 open

D2 open D2 open D2 closed D2 open
va = Vdc va = Vdc va = 0 va = Vdc
normal or normal or
OC fault or OC fault or
SC fault SC fault SC fault SC fault

T2 closed D1 open D1 open
D2 open D2 closed
va = 0 va = 0

Since the three legs of the inverter are symmetric, only
the operation states of leg a are described in Table I. An

inverter operation mode is defined as a time sequence of
IGBT operation states. In the normal operation mode, T1 and
T2 are alternatively open or closed with the PWM switching
frequency. Note that the dead time is not considered here,
i.e., it is assumed to be zero. When IGBT T1 or T2 is closed
all the time, the inverter is in SC fault mode, which is not
considered in this work. When IGBT T1 or T2 is open all
the time, the inverter is in OC fault mode, which will be
investigated in the next subsection.
B. Open-circuit fault analysis

Fig. 2 illustrates the profiles of the three stator AC currents
in steady-state where the system is in the normal mode before
0.40 s, and in the T1 OC fault mode after 0.40 s.

Fig. 2: Phase AC currents in the normal and T1 faulty
modes.

The switching frequency of IGBTs is assumed to be
much higher than the sinusoidal signal frequency. In the
normal operation mode, when we generate the PWM signal
to control the IGBTs based on three sinusoidal signals with
frequency f and shifted by 2π/3 between their phases, the
three profiles of the stator currents are also sinusoidal with
the same frequency and phase shifts at the steady state.
Indeed, there is still the small oscillation in the current
profiles because of IGBT switching (see Fig. 2).

The inverter is in T1 (respectively T2) OC fault mode if T1
(respectively T2) is open all the time while other IGBTs are
still alternatively closed and open. In this case, if the current
ia(t) is negative, the current profiles are still sinusoidal. It
can be seen in Fig. 2 where the fault happens at 0.4 s. This
is due to the fact that the electric potential profile of phase
a, va(t), does not change with respect to the normal mode
according to Table I. However, if the current ia(t) is positive,
the electric potential of phase a, va(t), is always equal to
zero, and the phase-a current, ia(t), reduces to zero quickly
and stays like this for about half a period [7].

Thus, we can deduce an important characteristic of the
stator currents in the faulty mode: the positive part of
the phase-a current, ia(t), is “cut-off” when T1 is faulty.
Consequently, only the phase-a current is always negative
during the T1 fault mode. This results in the fact that the ratio
between its average and the average of its absolute value on
a fundamental signal period is equal to -1. Moreover, these
ratios for the other phase currents are theoretically constant.
Similarly, this observation can be easily extended to the
faulty cases of the other IGBTs. Hence, each mode can be
represented by a vector constructed from these ratios. These
presented fault characteristics will be exploited to formulate
the feature variable in the next section.



III. HYBRID FAULT DIAGNOSIS METHOD

In this section, a hybrid diagnosis method is presented
which includes the following steps (as illustrated in Fig.
3): feature extraction, data clustering, labelling and fault
detection and isolation.

Fig. 3: Fault diagnosis algorithm.

A. Feature extraction
In this step, we focus on finding the feature vector which

gathers all the feature variables. The linear space representing
this vector is called feature space where feature vectors
corresponding to different operation modes are located in
different regions in this space.

Let x(t), β(t) be, respectively, the observation and feature
vectors at time instant t = kts, where ts is the sampling
time, and k ∈ N is the sampling time index. In our case,
the measured variables are the 3-phase currents denoted
by ia(t), ib(t), ic(t) ∈ R. Therefore, the observation
vector is defined as x(t) =

[
ia(t) ib(t) ic(t)

]T ∈ R3.
According to the faulty mode analysis in Section II, the
feature vector is chosen as:

β(t) =
[
βa(t) βb(t) βc(t)

]T ∈ R3, with (1a)

βl(t) =
〈il(t)〉
〈|il(t)|〉

, l = a, b, c, (1b)

where 〈f(t)〉 =
∑N−1

k=0 f(t − kts)/N is the average of
function f(t), N ∈ N is the number of time samples on
a fundamental signal period. Notice that −1 ≤ βl(t) ≤ 1.
When the lower transistor of phase l is faulty, il(t) > 0
∀t, and thus, βl(t) = 1. Similarly, when the upper transistor
of phase l is faulty, βl(t) = −1. These remarks illustrate
the relevance of (1b) for the feature extraction. The feature
vector will be used as the input to the following clustering
procedure.
B. Data clustering

Fig. 4: AUDyC algorithm [14].

Here, we describe AUDyC, the algorithm chosen for data
clustering, thanks to its online, adaptive and unsupervised
learning capabilities [13], [14]. AUDyC automatically creates
data classes in the feature space from the feature data. In
our case, these classes represent the normal and single OC
fault (i.e., a single transistor is faulty at a time) modes.
Since each operation mode is ideally represented by a unique
nominal feature vector, we consider a simplified formulation
of AUDyC in this paper. This simplification is obtained by
assuming that the data of each class follows a gaussian dis-
tribution around the nominal feature vector. Thus, a class is
characterized by the mean vector, the covariance matrix and
a set of feature vectors. Class parameters are determined in
the following 5 main procedures: the similarity verification,
the creation, the adaptation, the fusion and the evaluation of
classes, as illustrated in Fig. 4. At each time instant, a loop
over these steps is performed on a vector set composed of the
new feature vector and the rejected vectors from the previous
loop. After each iteration, a vector of this set is clustered,
and class parameters are modified.
Similarity verification: This procedure finds the class to
which the new feature vector, β(t), belongs, by quantifying
similarities between this vector and existing classes based on
membership functions defined as:

µj(β(t)) = exp
(
−1

2
β̃(t)T Σ−1

j (t− ts)β̃(t)

)
, (2)

where βj(t) and Σj(t) are, respectively, the mean vector and
the covariance matrix of class Cj , and β̃(t) = β(t)−βj(t−
ts). Then, all classes j satisfying µj(β(t)) ≥ µmin with the
given threshold µmin are gathered in a set denoted by Cwin.
Based on the cardinality of this set, we determine the next
steps.
Creation: If card (Cwin) = 0, a new class Cj is created with
the following parameters:{

βj(t) = β(t),
Σj(t) = σ2I3,

(3)

where I3 is the identity matrix of size 3, and σ ∈ R+ is a
chosen parameter which determines the learning capacity of
the created class at its first moment.
Adaptation: If card (Cwin) = 1, the similarity class Cj ∈
Cwin is adapted. Let nj(t) ∈ N be the number of feature
vectors belonging to Cj at time instant t. If nj(t − ts) <
Nmin, where Nmin is a given threshold, the feature vector is
stored in the memory of class Cj . Moreover, the parameters
of Cj are modified using the new feature vector:

nj(t) = nj(t− ts) + 1,

βj(t) = βj(t− ts) +
β̃(t)

nj(t)
,

Σj(t) = Σj(t− ts).

(4)

If Nmin ≤ nj(t − ts) < Nmax, where Nmax is a given
threshold, the feature vector is stored. nj(t) and βj(t) are
modified according to the same formulas in (4), and Σj(t)



is given as:

Σj(t) =
nj(t)− 2

nj(t)− 1
Σj(t− ts) +

β̃(t)β̃(t)T

nj(t)
. (5)

If nj(t− ts) = Nmax, the new feature vector is stored, and
the oldest one is forgotten. Therefore, the class parameters
are adapted by the following rules:

nj(t) = Nmax,

βj(t) = βj(t− ts) +
∆β(t)

Nmax

[
1
−1

]
,

Σj(t) = Σj(t− ts) + ∆β(t)B∆β(t)T ,

(6)

with

∆β(t) =

[
β(t)− βj(t− ts)

β(t−Nmaxts + ts)− βj(t− ts)

]T
,

B =
1

Nmax

 1
1

Nmax − 1
1

Nmax − 1
−Nmax + 1

Nmax − 1

 .
(7)

Fusion: When card (Cwin) ≥ 2, if each two classes
Cj ,Cm ∈ Cwin satisfy the condition:

tr
(
Σj(t)Σ

−1
m (t) + Σm(t)Σ−1

j (t)
)
− 6 < εf , (8)

all the similarity classes are fused, where tr(X) is the
trace of matrix X, εf is a given threshold. The classes are
organized in the appearance order. The new class obtained
by fusing two first classes is fused with the third class. The
procedure is repeated until all the similarity classes are fused.
Then, the parameters of the final fusion class is adapted to
include the new feature vector. If (8) is not satisfied, only
the parameters of the class with the highest value of the
membership function in (2) is adapted with the new feature
vector.
Evaluation: After every Nmin time samples, a noisy cluster
Cj is eliminated if card(Cj) < Nmin. Cj is removed from
the set of the reference classes, and all its feature vectors
are stored in a rejection set for reuse in the next learning
iteration (see Fig. 4).

AUDyC clusters feature data to different classes represent-
ing different system operation modes. These classes have no
physical meaning, hence, it is necessary to determine their
corresponding names in the following labelling procedure.
C. Labelling

Based on the physical knowledge available, conditions are
formulated to determine the class names. In our case, we
assume that there are 7 operation modes: normal mode and
6 single OC fault modes corresponding to the 6 IGBTs in
the 3-phase inverter.

Let βa,j , βb,j , βc,j ∈ R be, respectively, the coordinates
of the mean vector βj of class Cj . From the analysis in
the last paragraph of Section II, we remind that the feature
variables defined by (1b) are close to zero in the normal
mode and converge to 1 or -1 in the faulty modes. Thus, a
labelling threshold εl is given to verify if the mean vectors

TABLE II: Labelling conditions.

Mode Condition

Normal
∣∣∣βj

∣∣∣ < √3εl
Fault T1 −1− εl < βa,j < −1 + εl
Fault T2 1− εl < βa,j < 1 + εl
Fault T3 −1− εl < βb,j < −1 + εl
Fault T4 1− εl < βb,j < 1 + εl
Fault T5 −1− εl < βc,j < −1 + εl
Fault T6 1− εl < βc,j < 1 + εl

of the modelled classes are close to these reference values
as in Table II. If there is no satisfied condition, the class
represents an unknown mode.

Based on these labels, we can determine the mode names
of the new feature vectors in the following section.
D. Fault detection and isolation

This procedure concentrates on finding fault indicator. Us-
ing only the new feature vector for diagnosing the OC fault
may cause false alarms due to two reasons: perturbations or
temporary passage. The temporary passage implies that the
feature vector may rapidly pass through a class which does
not represent the actual operation mode. To deal with these
false alarm causes, we consider a sequence of consecutive
feature vectors, B(t) = {β(t−Nf ts + ts), . . . ,β(t)}, where
Nf ∈ N is a chosen parameter defining the width of the
sequence. We find the class to which most of vectors of B(t)
belong. Then, the number of vectors of B(t) that belong to
this class is used as the fault indicator.

Let np(t) ∈ N be the number of existing classes. We define
the indication matrix M(t) ∈ {0, 1}Nf×np(t) such that:

mkj(t) =


1, if µj(β(t− kts + ts)) =

max
p

µp(β(t− kts + ts)) ≥ µf ,

0, if else,

(9)

where mkj(t) is the element on the kth row and jth column
of matrix M(t), µj(β(t)) is the membership function of class
Cj defined in (2), µf is a given indication threshold. The
fault indicator is the maximum absolute column sum norm
of the matrix M(t), that is I(t) = ‖M(t)‖1.

Let jmax be the index of the column whose absolute
column sum is highest. The system operation is in the mode
corresponding to class Cjmax

if I(t) ≥ If , where If ∈ N is a
given fault threshold. Otherwise, the system is in an unknown
faulty mode. The fault detection strongly depends on the
parameters chosen for the AUDyC algorithm. Therefore, the
detection time is not easy to be mathematically estimated.

The presented diagnosis procedure is validated using sim-
ulation and experimental data in the next section.

IV. DIAGNOSIS RESULTS

Using the proposed method, this section presents the
diagnosis results for the inverter single OC fault based on
simulation and experiment data. In Scenario 1, simulation
data are obtained using Simscape Electrical toolbox in Mat-
lab. In Scenario 2, experimental data on a 5-phase inverter



is provided by the L2EP laboratory in Lille, France. The
properties of the data and the parameters of the diagnosis
algorithm are presented in Table III. In the following result
analysis, the mode flag is described by the natural variable
fault. It is set to 0 if the operation mode is not detected.
Generally, there is rule for choosing the algorithm parame-
ters. Their values given in Table III were obtained by trying
different combinations for Scenario 1.

TABLE III: Parameters for the data and the diagnosis
algorithm.

Parameter Unit Scen. 1 Scen. 2
Data

Signal frequency [Hz] 50 50
Sample time ts [µs] 80 80
PWM switching frequency [Hz] 5000 10000

AUDyC
Class membership threshold µmin - 0.7 0.7
Initial covariance σ - 0.8 0.8
Minimum class cardinality Nmin - 150 150
Maximum class cardinality Nmax - 250 250
Fusion threshold εf - 3.2 3.2

Labelling
Labelling threshold εl - 0.1 0.1

Fault detection and isolation
Indication threshold µf - 0.7 0.7
Sliding window width Nf - 150 150
Fault threshold If - 130 130

A. Scenario 1: Simulation data
The normal mode and 6 alternative single OC fault modes

are implemented as described in Table IV. The first row
indicates the time durations of each mode.

TABLE IV: Settings and detection times in Scenario 1.

Time [s] 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Fault None T1 T2 T3 T4 T5 T6
faultref 1 2 3 4 5 6 7
Det. time [ms] 22.6 30.6 30.9 28.5 17.8 28.4

The profiles of phase currents, of feature variables and
of fault flag are described in Fig. 5. This figure illustrates
the remark in Section II.B: when an OC fault happens, the
positive (or negative) part of the current in the corresponding
leg is cut-off. It results in the -1 (or 1) value of the
corresponding feature variable.

Fig. 6 describes the feature classes obtained using AUDyC
corresponding to the operation modes. To verify if these
classes characterize the operation modes in Scenario 1, we
recall the conditions in Table II.

The last subfigure in Fig. 5 and Table IV describe the
diagnosed operation modes and the corresponding detection
times. We see that all the operation modes are identified. The
time duration of the mode diagnosis includes two periods.
For example, we consider the time period from 0.2000s to
0.2132s. First, from 0.2000s, the system is still in normal
operation mode even though a fault happens. From 0.2132s,
an unknown operation mode is declared since the feature
set, B(t), is not close to any class. Until 0.2226s, Mode
2 is declared, and thus, the detection time is 0.0226s. The
obtained detection times (in Table IV) are short enough for

Fig. 5: Profiles of currents, of feature variables and of fault.

Fig. 6: Clustered classes in the feature space in Scenario 1.

turning off the system or reconfiguring the controller without
causing damage to the inverter and motor.
B. Scenario 2: Experimental data

TABLE V: Settings and detection times in Scenario 2.

Time [s] 0.25 0.25 0.25 0.25 0.25
Fault None T4 T3 T2 T1
faultref 1 5 4 3 2
Det. time [ms] 22.9 36.6 27.2 30.3

Even though the paper focused on the 3-phase inverter, the
procedure can be applied to 5-phase inverters with minimal
changes as shown in this test case. The normal mode and 4
alternative single OC fault modes are implemented as given
in Table V. Figure 7 illustrates the schematic diagram of the
investigated 5-phase inverter associated to the 5-phase motor



with the closed-loop regulator. The current profiles are shown
in Fig. 8.

Fig. 7: Schematic diagram of the 5-phase inverter [1].

Fig. 8: Current profiles in Scenario 2.

V. CONCLUSIONS

This paper presented a hybrid diagnosis approach for the
single open-circuit faults in inverters. The normalized DC
current method is used to extract the features of different
faulty operation modes based on the motor stator currents.
In particular, the Auto-adaptive and Dynamical Clustering
algorithm was employed for data clustering thanks to its
online, adaptive and unsupervised learning capacities. Based
on the obtained classes, we formulate the conditions for the
labelling and fault detection and isolation. The approach was
validated on simulation and experimental data. The short
term future work concentrates on investigating the influence
of the algorithm parameters on the detection time and making
suggestions for choosing the ones yielding the smallest
possible detection times. The algorithm robustness may be

also evaluated with the load switching and/or intermittent
fault. Moreover, the proposed approach will be compared
with state of the art signal-based methods in the power
electronics community.
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