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Auto-adaptive and Dynamical Clustering for Open-Circuit Fault Diagnosis
of Power Inverters

Thanh Hung Pham, Sanda Lefteriu, Cécile Labarre, Eric Duviella, Stéphane Lecoeuche

Abstract— This paper presents a fault diagnosis approach
for single open-circuit faults in inverters entirely from mea-
surements of the stator currents. These measurements are used
to extract the feature data; the feature data is then used to
create clusters in an on-line, adaptive and unsupervised way.
Auto-adaptive and Dynamical Clustering (AUDyC [1], [2]) is
the algorithm employed for this step. Based on the derived
clusters, appropriate formulations for the data labelling and
fault detection and isolation are proposed. The effectiveness of
the approach is validated on simulation and experiment data.

I. INTRODUCTION

An inverter is a power converter that changes Direct Cur-
rent (DC) to Alternative Current (AC). It is usually used to
connect DC sources (e.g., battery) and AC electrical devices
(e.g., AC electric motor). Fault diagnosis of the 3-phase
inverter associated to a 3-phase motor represents an active
area of research [3]. Because of aging or abnormal operating
conditions, semiconductor switches, such as Insulated-Gate
Bipolar Transistors (IGBTs), are the most vulnerable compo-
nents in the inverter. Their failure is due to the Short-Circuit
(SC) and Open-Circuit (OC) faults. The SC fault leads to a
high current which is destructive and makes the system shut
down immediately thanks to standard protection systems [4].
However, when the OC fault happens, the system can still
run with degraded performance causing secondary faults on
other system components. Thus, this paper focuses on OC
fault diagnosis of 3-phase power inverters.

In terms of methodology, most researchers focus on one
of these four approaches: model-based, signal-based, data-
driven and hybrid [5]. The model-based approach uses the
system model, obtained by physical principles or system
identification techniques, to predict the output, which is
compared to the measured output for diagnosing the fault
[6]. It should be noted that this model is generally difficult
to derive for a complex system, e.g., an asynchronous motor
associated with an inverter. Instead of system models, the
signal-based approach considers the measured signals for
extracting features which are used, together with prior knowl-
edge on the symptoms of healthy systems, to make diagnosis
decisions [3], [7]. However, this approach does not take
into consideration the dynamics of the input signal which
is usually impacted by unknown disturbances or unbalanced
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conditions. In contrast to the two previous approaches, data-
driven approaches consider a large volume of data and prior
knowledge of considered systems to make fault diagnosis
decisions thanks to data classification or clustering. Never-
theless, this approach suffers from a high computational cost,
and may not identify unknown fault types. To combine the
strengths of the previous approaches, our paper proposes a
hybrid approach where signal-based and data-driven methods
are combined.

For the 3-phase inverter, such a hybrid approach may be
based on measurements of voltages and/or currents. Voltage-
based methods use measurements of the three voltages at
the inverter output [4]. This method is independent of the
load, but requires additional sensors. The latter disadvantage
motivates us to develop a current-based method, the load in-
dependence being ensured by simply normalizing the current
data [3], [8].

The data-driven approach is used to determine the feature
classes, which are feature vector sets characterizing system
operation modes. In the context of OC fault diagnosis for in-
verters, previous works employed well-established statistical
methods such as Principle Component Analysis (PCA) [4]
and Support Vector Machines (SVM) [9], [10]. For these
previous methods, reference classes are already available
from the training data, and one needs to determine to
which class the new feature vector belongs to. For this
reason, they are called supervised methods, and unknown
operation modes may not be detected during the actual
system operation. To avoid this, Neural Networks (NN) can
be applied to learn and diagnose the OC faults of inverters
thanks to its powerful ability in non-linear approximation
and adaptive learning [11]-[14]. However, in these papers,
the number of classes is fixed, while the characteristics of
the class is adapted to include the new feature vector. This
issue may be tackled using adaptive unsupervised methods,
where reference classes (called clusters) are not available a
priori, but are created on-line. To our best knowledge, such
a method has not to be applied to diagnose the OC fault of
inverters yet. Moreover, most of existing clustering methods
do not predict the time evolution of modelled data classes
and their fusion.

In this paper, we employ the normalized DC current for
the feature extraction, and Auto-adaptive and Dynamical
Clustering (AUDyC) algorithm [1], [2] for feature clustering.
AUDyC does on-line, adaptive and unsupervised feature
learning, hence the unknown modes of operation can be
learnt from the measurement data. The main contribution
of our work resides in the application of AUDyC to perform



single OC fault diagnosis of inverters by identifying repre-
sentative data classes. Furthermore, appropriate conditions
for labelling classes and for diagnosing faults are presented.

The paper is organized as follows. Section II formu-
lates the fault diagnosis problem. Section III describes the
proposed method, and section IV validates it on two test
cases: the first considers simulation data from a 3-phase
inverter, while the second is measurement data from a 5-
phase inverter. Section V concludes the paper and presents
future work directions.

II. THE INVERTER IN NORMAL AND FAULTY OPERATION
MODES

This section presents the 3-phase inverter associated with
a motor in normal and faulty operation modes.
A. Inverter operation
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Fig. 1: 3-phase inverter driving a motor [4].

The considered system is a combination of a 3-phase
inverter and a motor with the following specifications: star
coupling for the stator with the isolated neutral, symmetric
motor electrical circuit operating under open-loop control
based on pulse width modulation (PWM). We assume that no
fault occurs during the motor starting period. Each inverter
leg is composed of two IGBTs and two inverse diodes as
illustrated in Fig. 1.

TABLE I: Operation modes, diode states and electric
potential of leg a.

iq <0 tq >0
Th open Ty closed 77 open Ty closed
normal or normal or
OC fault OC fault or | OC fault OC fault or
SC fault SC fault
T> open D1 closed D1 closed D1 open D1 open
D3> open D3y open Do closed D3> open
Vg = Vdc Va = Vic vg =0 Vg = Ve
normal or normal or
OC fault or OC fault or
SC fault SC fault SC fault SC fault
T5 closed | D1 open D1 open
D3> open D> closed
Vg =0 vg =0

Since the three legs of the inverter are symmetric, only
the operation states of leg a is described in Table I. An

inverter operation mode is defined as a time sequence of
IGBT operation states. In the normal operation mode, 7} and
Ty are alternatively open or closed with the PWM switching
frequency. When IGBT T} or T3 is closed all the time, the
inverter is in SC fault mode, which is not considered in this
work. When IGBT T or T5 is open all the time, the inverter
is in OC fault mode, which will be investigated in the next
subsection.
B. Open-circuit fault analysis
Fig. 2 illustrates the profiles of the three stator AC currents in
steady-state where the system is in the normal mode before
0.40 s, and in the 7} OC fault mode after 0.40 s.
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Fig. 2: Phase AC currents in the normal and 7} fault
modes.

The switching frequency of IGBTs is assumed to be
much higher than the sinusoidal signal frequency. In the
normal operation mode, when we generate the PWM signal
to control the IGBTs based on three sinusoidal signals with
frequency f and shifted by 27/3 between their phases, the
three profiles of the stator currents are also sinusoidal with
the same frequency and phase shifts at the steady state.
Indeed, there is still the small oscillation in the current
profiles because of IGBT switching (see Fig. 2).

The inverter is in T} (respectively T5) OC fault mode if T}
(respectively T5) is open all the time while other IGBTs are
still alternatively closed and open. In this case, if the current
iq(t) is negative, the current profiles are still sinusoidal. It
can be seen in Fig. 2 where the fault happens at 0.4 s. This
is due to the fact that the electric potential profile of phase
a, v,(t), does not change with respect to the normal mode
according to Table I. However, if the current i, (¢) is positive,
the electric potential of phase a, v,(t), is always equal to
zero, and the phase-a current, i,(t), reduces to zero quickly
and stays like this for about half a period [9].

Thus, we can deduce an important characteristic of the
stator currents in the faulty mode: the positive part of
the phase-a current, i,(t), is “cut-off” when T} is faulty.
Consequently, only the phase-a current is always negative
during the T fault mode. This results in the fact that the ratio
between its average and the average of its absolute value on
a fundamental signal period is equal to -1. Moreover, these
ratios for the other phase currents are theoretically constant.
Similarly, this observation can be easily extended to the
fault cases of the other IGBTs. Hence, each mode can be
represented by a vector constructed from these ratios. These
presented fault characteristics will be exploited to formulate
the feature variable in the next section.



III. HYBRID FAULT DIAGNOSIS METHOD

In this section, a hybrid diagnosis method is presented
which includes the following steps (as illustrated in Fig.
3): feature extraction, data clustering, labelling and fault
detection and isolation.

Observation| Feature 3
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=P extraction » detection and
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Fig. 3: Fault diagnosis algorithm.

A. Feature extraction

In this step, we focus on finding the feature vector which
gathers all the feature variables. The linear space representing
this vector is called feature space where feature vectors
corresponding to different operation modes are located in
different, distinguished regions in this space.

Let x(¢), B(t) be, respectively, the observation and feature
vectors at time instant ¢ = kts, where ¢, is the sampling
time, and k£ € N is the sampling time index. In our case,
the measured variables are the 3-phase currents denoted by
ia(t), ip(t), ic(t) € R. Therefore, the observation vector is
defined as:

x(t) = [ a(t) in(t) ic(t) ] €R%. (1)

According to the faulty mode analysis in Section II, the
feature vector is chosen as:

Bt)=[ Bult) Bt) Be(t) ] €R®, ()
. it — kty)
with §;(t) = l=ua,b,c, (2b)

P 7
Sonco linlt — kty)]

where N € N is the number of time samples on a funda-
mental signal period. The feature vector, 3(t), will be used
as the input to the following clustering procedure.

B. Data clustering

Here, we describe AUDyC, the algorithm chosen for data
clustering, thanks to its on-line, adaptive and unsupervised
learning capabilities [1], [2]. AUDyC automatically creates
data classes in the feature space from the feature data. In
our case, these classes represent the normal and single OC
fault (i.e., a single transistor is faulty at a time) modes.
Since each operation mode is ideally represented by a unique
nominal feature vector, we consider a simplified formulation
of AUDyC algorithm in this paper. This simplification is
obtained by assuming that the data of each class follows
a gaussian distribution around the nominal feature vector.
Thus, a class is characterized by the mean vector and the
covariance matrix. Class parameters are determined in the
following 5 main procedures: the similarity verification, the
creation, the adaptation, the fusion and the evaluation of

classes, as illustrated in Fig. 4. These steps are performed
whenever there is a new feature vector.

Rejection set, Reference classes

Creation
Feature Retference
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Fig. 4: AUDyC algorithm [2].

Similarity verification: This procedure finds the class to
which the new feature vector, 3(t), belongs, by quantifying
similarities between this vector and existing classes based on
membership functions defined as:

e
s (B(0)) = exp (—ﬁ LR té)ﬂ(t)), ()

where Bj (t) and X;(¢) are, respectively, the mean vector and
the covariance matrix of class C;, and B(t) = B(t) —B;(t—
ts). Then, the values of these functions are compared to a
threshold fi,,;,, Which leads to the definition of a similarity
set Cyin:

Based on the cardinality of this set, we determine the next
steps.

Creation: If card (Cyyy,) = 0, a new class C; is created
with the following parameters:

/Bj (t) = B(t)v (5)
%i(t) =013,
where I3 is the identity matrix of size 3, and 0 € R* is a
chosen parameter which determines the learning capacity of
the created class at its first moment.

Adaptation: If card (C;p,) = 1, the similarity class C; €
Cuin is adapted. Let n;(¢t) € N be the number of feature
vectors belonging to C; at time instant ¢. If n;(t —¢,) <
Nopin, where Ny, is a given threshold, the feature vector is
stored in the memory of class C;. Moreover, the parameters
of C; are modified using the new feature vector:

mo(t) =yt —t)+ 1,
B0 =Byt + 2, ©
S8 =S, t).

If Nppinn < n;(t —ts) < Nygg, Where Npo, is a given

threshold, the feature vector is stored. n;(t) and 3,(t) are

modified according to the same formulas in (6), and X;(¢)

is given as:

ni(t) — 2 B(t)BH)T
25 1 BOBOT

E0 = m =1 ny (1)



If nj(t —ts) = Npaa, the new feature vector is stored,
and the oldest one is forgotten. Therefore, the prototype
parameters are adapted by the following rules:

TLJ(t) = Nmax,
— — A
B;t) =B,t—ts)+ NL@) { _} } ; (8)
() =3;(t —ts) + AB)BAB(H)",
with
H-B.(t—t) ]
AB(D) — B ~By—1) "
ﬁ(t - Nmaa:ts + ts) - ﬁj(t - ts)
1
B = 1 ! Nmaa: -1
"~ Noaw 1 Noag +1
Nmaw_l 7Nmaa:_1

9
Fusion: When card (Cy;,) > 2, if each two classes
C;,C,, € Cyyy, satisty the condition:

tr (S;(1)3,1(1) + S (5 1(1) — 6 < e, (10)

all the similarity classes are fused, where tr(X) is the
trace of matrix X, € is a given threshold. The classes are
organized in the appearance order. The new class obtained
by fusing two first classes is fused with the third class. The
procedure is repeated until all the similarity classes are fused.
Then, the parameters of the final fusion class is adapted to
include the new feature vector. If (10) is not satisfied, only
the parameters of the class with the highest value of the
membership function in (3) is adapted with the new feature
vector.

Evaluation: After every Ny, time samples, a noisy
cluster C; is eliminated if:

card(Cj) < Nmin- (11)

C; is removed from the set of the reference classes, and all
its feature vectors are stored in a rejection set for reuse in
the next learning iteration (see Fig. 4).

AUDyC clusters feature data to different classes represent-
ing different system operation modes. These classes have no
physical meaning, hence, it is necessary to determine their
corresponding names in the following labelling procedure.

C. Labelling

Based on the physical knowledge available, conditions are
formulated to determine the class names. In our case, we
assume that there are 7 operation modes: normal mode and
6 single OC fault modes corresponding to the 6 IGBTs in
the 3-phase inverter.

Let 8, ;. By Be; € R be, respectively, the coordinates
of the mean vector 3; of class C;. From the analysis in
the last paragraph of Section II, we notice that the feature
variables defined by (2b) are close to zero in the normal
mode and converge to 1 or -1 in the faulty modes. Thus, a
labelling threshold ¢; is given to verify if the mean vectors of
the modelled prototypes are close to these reference values.
A class represents an operation mode if Bj satisfies the

TABLE II: Labelling conditions.

Mode Condition

Normal ‘E]‘ < V3¢

Fault Ty | —1—¢ <fB,; <—-1+¢
Fault T> 1—¢ </Ba,j < 14¢
Fault T3 —1—¢ <ﬁb,j < —1+4¢
Fault T4 l—a<Bp; < l+g
Fault 75 | —1—¢ <B.; <—-1l+¢
Fault Ty l—g<B.,;< 1l+4¢

corresponding conditions in Table II. If there is no satisfied
condition, the class represents an unknown mode.

Based on these labels, we can determine the mode names
of the new feature vectors in the following section.

D. Fault detection and isolation
This procedure concentrates on finding criteria which indi-
cate the similarity of the new feature vector and the clustered
classes. Using only the new feature vector for diagnosing
the OC fault may cause false alarms due to two reasons:
perturbations or temporary passage. The temporary passage
implies that the feature vector may rapidly pass through a
class which does not represent the actual operation mode. To
deal with these false alarm causes, we consider a sequence
of consecutive feature vectors, B(t) = {B(t — Nyts +
ts),...,B3(t)}, where Ny € Nis a chosen parameter defining
the width of the sequence. We find the reference class to
which most of vectors of B(t) belong. Then, the number
of vectors of B(t) belongs this class is used as the fault
indicator.

Let n,(t) € N be the number of existing classes. We define
the indication matrix M(t) € {0, 1}N7*"»(*) such that:

1, if p(B(t — kts + ) =
mgx pp(B(t — kts +t5)) > py,

0, if else,

my;(t) =

(12)
where my;(t) is the element on the k*" row and j*" column
of matrix M(¢), p;(B(t)) is the membership function of class
C; defined in (3), py is a given indication threshold. The
fault indicator is the maximum absolute column sum norm
of matrix M(t), that is:

Ny
I(t) = mj@x Z |mu;(t)]. (13)
k=1

Let jnqz be the index of the column whose absolute column
sum is highest. The system operation is in the mode corre-
sponding to class C; . if I(¢t) > Iy, where Iy € Nis a
given fault threshold. Otherwise, the system is in an unknown
faulty mode. The fault detection strongly depends on the
parameters chosen for the AUDyC algorithm. Therefore, the
detection time is not easy to be mathematically estimated.

The presented diagnosis procedure is validated using sim-
ulation and experiment data in the next section.



IV. DIAGNOSIS RESULTS

Using the proposed method, this section presents the
diagnosis results for the inverter single OC fault based on
simulation and experiment data. In Scenario 1, simulation
data are obtained using Simscape Electrical toolbox in Mat-
lab. In Scenario 2, experimental data on a 5-phase inverter
is provided by the L2EP laboratory in Lille, France. The
properties of the data and the parameters of the diagnosis
algorithm are presented in Table III. In the following result
analysis, the mode flag is described by the natural variable
fault. Tt is set to O if the operation mode is not detected.

TABLE III: Parameters for the data and the diagnosis

algorithm.
Parameter [ Unit | Scen. 1 [ Scen. 2
Data
Signal frequency [Hz] | 50 50
Sample time ¢ [us] | 200 80
PWM switching frequency [Hz] | 5000 10000
AUDyC
Class membership threshold fiyin | - 0.7 0.7
Initial covariance o - 0.8 0.8
Minimum class cardinality Ny, in - 40 150
Maximum class cardinality Nyaz - 100 250
Fusion threshold e - 3.2 3.2
Labelling
Labelling threshold ¢; [ - [ 0.1 [ 01
Fault detection and isolation
Indication threshold 11 s - 0.8 0.8
Sliding window width N ¢ - 50 150
Fault threshold 7 - 30 130

A. Scenario 1: Simulation data

The normal mode and 6 alternative single OC fault modes are
implemented as described in Table IV. The first row indicates
the time durations of each mode. The third row indicates the
corresponding reference values of the fault flag.

TABLE IV: Settings and detection times in Scenario 1.

Time [s] 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Fault None T Ts T3 Ty Ts Ts
faultycr 1 2 3 4 5 6 7

Det. time [ms] 17.4 26.2 25.2 22.2 124 | 21.8

The profiles of the phase currents and of the feature
variables are described in Fig. 5. This figure illustrates the
remark in Section IL.B: when an OC fault happens, the
positive (or negative) part of the current in the corresponding
leg is cut-off. It results in the -1 (or 1) value of the
corresponding feature variable.

Fig. 6 describes the feature classes obtained using AUDyC
corresponding to the operation modes. To verify if these
classes characterize the operation modes in Scenario 1, we
recall the conditions in Table II.

Fig. 7 and IV describes the diagnosed operation modes
and the corresponding detection times. We see that all
the operation modes are identified. The time duration of
the mode diagnosis includes two periods. For example, we
consider the time period from 0.2000 s to 0.2132 s. First
of all, from 0.2000 s, the system operation is still in the

0 0. 0.8
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Fig. 5: Profiles of currents and of feature variables.
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Fig. 6: Clustered classes in the feature space in Scenario 1.
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Fig. 7: Profiles of the fault flag in Scenario 1.

normal mode though a fault happens. From 0.2132 s, an
unknown operation mode is declared since the feature set,
B(t), is not close to any class. Until 0.2174 s, Mode 2
is declared, and thus, the detection time is 0.0174s. The
obtained detection times are short enough for turning off the
system or reconfiguring the controller without the damage to
the inverter and motor.



B. Scenario 2: Experiment data

Even though the paper focused on the 3-phase inverter, the
procedure can be applied to 5-phase inverters with minimal
changes as shown in this test case. The normal mode and
4 alternative single OC fault modes are implemented as
described in Table V. The diagnosis results similar to one
in Scenario 1 are illustrated in Fig. 8 and 9.

TABLE V: Settings and detection times in Scenario 2.

Time [s] 0.25 0.25 0.25 0.25 0.25
Fault None Ty Ts T Ty
faultyer 1 5 4 3 2
Det. time [ms] 22.88 | 36.64 | 27.20 | 30.32
1

i
0.5 | Mode 2

|

| Mode 5

Fig. 8: Projection of clustered classes on the 3,08,03. space
in Scenario 2.
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Fig. 9: Profiles of the fault flag in Scenario 2.

V. CONCLUSIONS

This paper presented a hybrid diagnosis approach for the
single open-circuit faults in inverters. The approach consists
of the following steps: feature extraction, data clustering,
labelling and fault detection and isolation. The normalized
DC current method is used to extract the features of different
faulty operation modes based on the motor stator currents.
In particular, the Auto-adaptive and Dynamical Clustering
algorithm was employed for data clustering thanks to its on-
line, adaptive and unsupervised learning capacities. Based
on the obtained classes, we formulate the conditions for the

labelling and fault detection and isolation. The approach was
validated on simulation and experiment data. The short term
future work concentrates on investigating the influence of
the algorithm parameters on the detection time and making
suggestions for choosing the ones yielding the smallest
possible times. Moreover, the proposed approach would be
compared with signal-based methods which is popularly used
in the power electronic community.
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