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We revisit the theory of the collective neutral excitation mode in the fractional quantum Hall effect at Landau level filling fractions ν = 1/3 and ν = 7/3. We include the effect of finite thickness of the two-dimensional electron gas and use extensive exact diagonalizations in the torus geometry.

In the lowest Landau level the collective gapped mode a.k.a the magnetoroton always merges in the continuum in the long-wavelength limit. In the second Landau level the mode is well-defined only for wavevectors smaller than a critical value and disappears in the continuum beyond this point. Its curvature near zero momentum is opposite to that of the LLL. It is well separated from the continuum even at zero momentum and the gap of the continuum of higher-lying states is twice the collective mode gap at k = 0. The shape of the dispersion relation survives a perturbative treatment of Landau level mixing.

Introduction.-Quantum liquids display very special collective modes that dominates their low-energy longwavelength behavior. In the case of liquid Helium-4 the ground state has broken gauge symmetry associated with number conservation and as a consequence there is a phonon branch of excitations with no gap. While the gapless nature of the mode is dictated by general requirements, here the Goldstone theorem, its shape for finite wavevector is non-universal. Remarkably it has a nontrivial minimum dubbed the roton. This roton state has studied experimentally in great detail and Feynman [START_REF] Feynman | Statistical Mechanics[END_REF] has developped the so-called single-mode approximation (SMA) that captures in a neat way its nature.

Two-dimensional (2D) electronic systems under a strong magnetic field exhibit the fractional quantum Hall effect (FQHE) at low enough temperatures. The most prominent of these states of matter happens for filling factor ν = 1/3 of the lowest Landau level [2] (LLL). It has been observed for conventional semiconductor artificial devices, quantum wells and heterostructures, as well as in atomically 2D systems like monolayer and bilayer graphene. The ground state of the 2D electrons for Landau level filling factor ν = 1/3 is adequately described by the Laughlin wavefunction. This state has no broken symmetry and is a prime example of topological order. The incompressibility that is responsible for the macroscopic phenomenology of the state also leads to gapped collective neutral excitations. The lowest-lying density mode can be also be described by a Landau-level adapted single-mode approximation [3,4] (SMA) and it features also a minimum energy as a function of wavevector. This minimum is called the magnetoroton. In addition to the SMA its mere existence has been confirmed by exact diagonalization of small systems and there are trial wavefunctions constructed with composite-fermion states. In the composite fermion approach the magnetoroton is the lowest-energy particle-hole excitation between effective composite fermion Landau levels [START_REF] Jain | Composite Fermions[END_REF][START_REF] Toke | [END_REF]. Other wavefunc-tions have also been proposed [7][8][9]. Other FQHE states have more complex neutral excitations [START_REF] Balram | Positions of the magnetoroton minima in the fractional quantum Hall effect[END_REF][START_REF] Golkar | A Higher-Spin Theory of the Magnetorotons[END_REF]. Inelastic light scattering has been used to probe the collective mode and is partly explained by existing theories [START_REF] Pinczuk | Proceedings of the 12th International Conference on High magnetic Fields in Physics of Semiconductors[END_REF][START_REF] Pinczuk | [END_REF][14][15][16]. One intriguing suggestion is the existence of a two-roton bound state [16][17][18] as a possible lowest-lying state for small wavevectors. This question has proven difficult to answer mainly because of limitations of exact diagonalization to very small systems.

In this Letter we study the Laughlin state at ν = 7/3 and obtain the neutral excitation spectrum by using large-scale exact diagonalizations on the torus geometry with spin-polarized electrons. The transport phenomenology of this fraction has been known for some time to be analogous to that of ν = 1/3 as theoretically expected by uplifting the Laughlin wavefunction in the second Landau level [19] (LL). Here we find that there are very strong finite size effects, obscuring the spectrum structure up to N e = 10 electrons. However non-zero thickness of the 2D electron gas (2DEG) ressucitates the familiar magnetoroton provided one reaches large enough systems with N e ≥ 11 and use the torus geometry. For small width w/ 1 (where is the magnetic length /eB) the system may be compressible but for w/ = 2 -3 we observe the clear signature of the MR mode. However it has now a different structure w.r.t its LLL counterpart : it is well-defined only for wavevectors k 1.8 and enters the continuum beyond this value. For k ≈ 0 there are two gaps leading again to a welldefined mode in the long-wavelength limit. Contrary to the LLL case the curvature of the dispersion relation is upwards close to k = 0 and there is a secondary maximum in addition to a roton minimum. There is no clear limiting behavior when k → ∞ which is in line with the fact that in this limit the magnetoroton is expected to become a quasihole-quasielectron pair and their size is probably very large [20,21]. It may very well be that the collective mode at small wavevector is not continuously connected to the quasiparticle-quasihole mode expected at larger wavevector. The shape of the dispersion relation of MR mode is essentially unaffected by Landau level mixing effects, at least in a perturbative treatment.

2DEGs comes mostly in two varieties : heterostructures and quantum wells. In the first case the potential felt by electrons in the z direction perpendicular to the 2D plane is approximately triangular and a trial wavefunction has been proposed by Fang and Howard φ F H (z) = ze -bz/2 where the parameter b can be determined variationally as a function of the junction parameters including the electronic density [22]. In quantum wells (QW) the corresponding wavefunction is the usual eigenstate for a square well with some finite width. The electron interactions are then approximated by assuming that the z motion is frozen in its ground state :

V (x -y) = e 2 dz 1 dz 2 |φ(z 1 )| 2 |φ(z 2 )| 2 (x -y) 2 + (z 1 -z 2 ) 2 (1) 
This modified form of the potential can then be written in second quantized form projected onto the LLL or the second Landau level. From a practical point of view it has been noted that a simple Gaussian wavefunction reproduces correctly the LL-projected Hamiltonian [23]. This is the model we use in this paper. The effect of the finite width has been studied notably by exact diagonalization of small systems [23][24][25]. It is known that wide wells have a tendency to stabilize quantum Hall states in the second Landau level mainly based on overlap calculations with model states [24][25][26]. If the width of the well becomes very large then the electronic density may prefer to form two layers of charge giving rise to an effective two-component system whose physics is now quite distinct [START_REF] Shayegan In | topological aspects of low-dimensional systems[END_REF]. In this work we consider only the single-component case which is realized for not too thick samples. It is known that there are samples with density small enough to stay in the one-component regime but with values w/ up to 5 to 6 for ν = 1/3. Previous studies have shown that the activation gap decreases with w but the FQHE regime survives [START_REF] Shayegan | [END_REF][29][30][31][32]. For example references [START_REF] Shayegan In | topological aspects of low-dimensional systems[END_REF]30] have studied a system with density n = 6.4 × 10 -10 cm 2 and a width w SQ = 75nm which leads to a quantum Hall state at ν = 7/3 with w SQ / = 3.2 while retaining single-component physics.

Lowest Landau level.-To study the FQHE with the modified potential Eq.( 1) we use the torus geometry [START_REF] Haldane | The Quantum Hall Effect[END_REF] : magnetic translation symmetries allow to classify eigenstates by a two-dimensional conserved quasimomentum K living in a discrete Brillouin zone with only N 2 points where N is the GCD of the number of electrons N e and the number of flux quanta N φ though the system. We fix the filling factor N e /N φ = 1/3. On a rectangular cell with periodic boundary conditions we have :

K 2 = (2πs/L x ) 2 + (2πt/L y ) 2 , (2) 
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FIG. 1: Spectra for systems of N e = 5 up to N e = 12 electrons at filling ν = 1/3 in a rectangular cell with aspect ratio L x /L y = 0.9. No finite width is assumed. The magnetoroton branch is clearly defined for all momenta. There is a clear minimum at wavevector K ≈ 1.5. Finite-size effects are negligible. The biggest system corresponds to blue points. The red square points are the SMA values.

where s, t are integers running from 0 to N . The manybody eigenstates can then be plotted against the dimensionless momentum k ≡ |K| . We use an aspect ratio L x /L y = 0.9 in this work since the physics is only weakly dependent of this value even in the second LL. For zero width we recover the well-known shape of the magnetoroton mode [3,4]. For small wavevectors its energy rises and disappears into the continuum. He and Platzman have argued [16] that there is a crossing of levels close to k = 0 and that a state with a two-roton character becomes lower in energy. Present data does not shed any light on this issue. The magnetoroton is shown in Fig. [START_REF] Feynman | Statistical Mechanics[END_REF]. The ground state is at K = 0 and is isolated by a large gap from all excitations. The magnetoroton branch is well-defined and is rather insensitive to finite-size effects.

When including finite-width effects the overall shape does not change, notably the K = 0 behavior remains but the energy scale is lowered. This is the case for realistic wavefunctions included in the modified potential Eq.( 1), be it Gaussian, square well or Fang-Howard (the modification proposed by Zhang and Das Sarma [START_REF] Zhang | [END_REF] leads to a clear splitting of the magnetotoroton from the continuum at K = 0 but it is not clear if this feature is physical since it is a phenomenological ansatz, not based on a definite modeling of the z wavefunction : see Supplemental Material). Second Landau level.-We now turn to the study of ν = 7/3 state. The first approach to the FQHE physics in the second Landau level is to use the orbital wavefunctions and fully neglect Landau level mixing. This is an approximation which is less good than in the LLL but has the merit of mapping the problem on the very same Hamiltonian as in the LLL with renormalized matrix elements. This is the point of view we adopt with the added finite-width effects. For small systems it is known [START_REF] Haldane | The Quantum Hall Effect[END_REF] that the system is probably gapless in the zero- 
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FIG. 4: Spectrum of N e = 12 electrons on a rectangular cell with aspect ratio L x /L y = 0.9 for ν = 7/3 and Gaussian width w/ = 3. Blue points comes frome exact diagonalization while red points are results of the SMA applied to the exact ground state. The shape of the collective mode is correctly reproduced but the energies are much higher.

width case. While the study of larger system sizes up to N e = 12 does not allow to strengthen this conclusion we find that nonzero width gives rise to a well-defined collective mode well separated from the continuum. We plot a typical spectrum in Fig. (2) for N e = 12 electrons in a rectangular cell with a Gaussian wavefunction width w/ = 3. This mode now is definitely separated from the continuum at K = 0 and has one maximum and one minimum before seemingly entering the continuum for k ≈ 1.8. These features are not seen in the spherical geometry [35][36][37] for the same sizes. This means one needs much larger spheres than toruses. Note that torus geometry for zero width in the LLL case ν = 1/3 gives results consistent with the sphere results [23]: the large wavevector limit of the MR branch is approximately 0.09e 2 / in Fig.

(1).

There is an obvious limitation in torus calculations which is the discretization of momenta in Eq.( 2). One way to overcome this is to perform calculations in an oblique cell with varying angle, allowing overlaps in momenta definition. This can be seen in Fig. (3) where we have used a set of cell interpolating between a square and an hexagonal cell. One can see more clearly the dispersion relation of the MR mode. Concerning the spectrum at zero wavevector, our data show that the second excited state has an energy gap which is very close to twice the first energy gap. So the continuum of states is likely to be a two-particle continuum made of the MR excitations.

Single mode approximation.-To get a trial wavefunction to describe the MR, Girvin MacDonald and Platzman have proposed to adapt an idea due to Feynman. The guiding center structure factor S 0 (q) for N e = 12 electrons in a rectangular cell with aspect ratio L x /L y = 0.9 for the ν = 1/3 state (a) in the LLL and zero width. In the second LL (b) with a Gaussian width w/ = 3 the isotropy is almost as good as in the LLL.

One creates a density excitation by acting upon the ground state with a density operator of definite momentum ρK and one projects the resulting state into the LLL :

|Ψ SM A (K) ≡ P LLL ρK |Ψ 0 . (3) 
These trial states give a successful estimate of the energy of the MR in the LLL case : see Fig. 4) with red symbols. The overall shape of the collective mode is well reproduced by the SMA while now the energies are too high by a factor of 30 -50%. The SMA works only if we use the true ground state in Eq.( 3) : indeed using the Laughlin wavefunction in the 2nd Landau level is much less satisfactory [38]. The composite fermion wavefunctions are also able to reproduce the MR dispersion accurately in the LLL. In Scarola et al. [39,40] there is a calculation of the MR in the 2nd LL which has a shape similar to what we observe but these results are obtained in the case of zero-width.

Guiding-center static structure factor-An important quantity is the LL-projected static structure factor which can be defined through the guiding center coordinates R i :

S 0 [q] = i<j exp iq(R i -R j ) (4) 
It can be used to reveal the fluid or crystalline character of the system. When evaluated in the ν = 1/3 state it is almost perfectly isotropic : see the three-dimensional plot Fig. (5a). For the largest system studied here this quantity is also isotropic for ν = 7/3 with no evidence of incipient charge-density wave order: see Fig. (5b).

Energy scales.-The finite-size dependences of the gaps one can define in the spectra above are very irregular. This is the case in the LLL but to a lesser degree. So it is difficult to give an estimate of gaps even for finite width. We just quote that for bigger sizes the K = 0 gaps seem to stabilize and are ≈ 0.017e 2 / for w = 2 and ≈ 0.0075e 2 / for w = 3 . As is the case for the LLL, the gaps are smaller with wider wells. For smaller widths w/

1 the MR branch is not well-defined and it is not possible to give a estimate of the K = 0 or MR gaps. The gaps we estimate are defined through the dispersion relation of the collective mode. As such they are not directly related to the quasiparticle-quasihole gap that governs the activated law of the longitudinal resistance.

Landau level mixing.-For comparison with experiments it is important to know how the dispersion relation is changed by the inclusion of Landau level mixing i.e. by virtual transtions towards the occupied LLL and unoccupied N > 1 LLs. This is an effect which is stronger in the second LL than in the LLL and hence worth studying. The strength of these effects is characterized by the ratio of the typical interaction energy and the cyclotron energy κ = (e 2 / )/( ω c ) where ω c = eB/m is the cyclotron frequency. Perturbation theory treatment at first order in κ leads to an effective Hamiltonian with two-body as well as three-body interactions. They can be included in the exact diagonalization scheme following ref. (41). We find that while all energies are shifted by a κ-dependent value the dispersion remains essentially unaltered (see Figs. (S5a,b) in supplementary material). Notably the characteristic wvavectors and gaps undergo only small small changes for κ 1, a value beyond which it is not clear one can trust perturbation theory.

Experimental studies.-Several experiments have probed the MR in the LLL by inelastic light scattering [START_REF] Pinczuk | Proceedings of the 12th International Conference on High magnetic Fields in Physics of Semiconductors[END_REF][START_REF] Pinczuk | [END_REF][14][42][43][44] as well as phonon absorption [45,46] Detailed studies of the MR dispersion relation at ν = 1/3 are in quantitative agreement with theoretical calculations [43,47] contrary to the magnetotransport gaps. Some details of the excited states beyond the lowest-lying MR branch are seen experimentally [47,48]. Recent works have started the study of the second Landau level physics where several phases are in competition beyond the FQHE liquids [49][50][51][52][START_REF] Jeong | Competing states for the fractional quantum Hall effect in the 1/3-filled second Landau level[END_REF]. The collective mode shape we observe from exact diagonalization and SMA calculations should be accessible to inelastic light scattering provided one uses a wide enough quantum well. Strictly speaking we cannot exclude that this shape is also correct for small width where finite-size effects are more problematic. The existence of multiple critical points with vanishing derivatives in the dispersion should appear as several points with enhanced density of states.

Summary.-By diagonalization of the Coulomb interaction in the second Landau level for filling factor ν = 7/3 we have obtained the dispersion relation of the collective mode -the magnetoroton -expected from a liquid state with Laughlin-like correlations. The observation of this mode requires both very large systems with more than 10 electrons and also a finite width of the electron gas. Even if this width reduces the gap scale as is the case in the LLL we find that the MR mode becomes discernable only when w/ 1. The Laughlin-like physics at ν = 7/3 is also seen in the guiding center structure factor which is almost isotropic. The mode at long wavelength stays definitely below a higher-lying continuum of states. The gap from the ground state to the continuum is almost exactly twice the MR gap indicating the two-particle nature of these states. While the MR minimum is at the same wavevector as in the LLL case there is also a maximum of the dispersion at k ≈ 0.8. The MR mode disappears in the continuum for k ≈ 1.8. These features are captured correctly by the SMA and are resilient to Landau level mixing.
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 23 FIG.2: Spectrum of N e = 12 electrons on a rectangular cell with aspect ratio L x /L y = 0.9 for ν = 7/3. The width is taken to be Gaussian w/ = 3. The magnetoroton branch is clearly defined only for momenta 1.8 -1 . The solid green line is a fit by a quartic polynomial. The dispersion relation has a maximum and a minimum.

  FIG.5: The guiding center structure factor S 0 (q) for N e = 12 electrons in a rectangular cell with aspect ratio L x /L y = 0.9 for the ν = 1/3 state (a) in the LLL and zero width. In the second LL (b) with a Gaussian width w/ = 3 the isotropy is almost as good as in the LLL.

  [START_REF] Feynman | Statistical Mechanics[END_REF] where we have plotted the SMA states in red squares. The small wavevector behavior and the MR minimum are correctly reproduced. By using the ground state for ν = 7/3 one can obtain the SMA states in the second LL. The results for N e = 12 electrons are plotted in Fig.(