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Local immunomodulation combined to radiofrequency ablation results in
a complete cure of local and distant colorectal carcinoma
Katia Lemdania,b,c,d,e,f, Nathalie Mignet c,d,e,f, Vincent Boudyc,d,e,f,g, Johanne Seguin c,d,e,f,h, Edward Oujagirc,
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ABSTRACT
Radiofrequency ablation (RFA) of colorectal liver metastases activates a specific T-cell response that is
ineffective in avoiding recurrence. Recently, local immunomodulation garnered interests as a way to
improve the immune response. We were interested in improving the RFA immune response priming to
propose a curative treatment of colorectal cancer (CRC) based on antitumor immunity. First, we
demonstrated that the RFA did not increase the tumor infiltrating lymphocytes in secondary distant
tumors of patients and in mice model and could not avoid relapse. Remarkably, RFA and in situ
immunomodulation with GM-CSF-BCG hydrogel induced complete cure of microscopic secondary
lesions in mice, related to a strong specific immune response. Then, we demonstrated that the immune
escape of large secondary lesions was reversed by addition of the systemic PD-1 blockade to the in situ
immunomodulation. The lack of an effective distant immune response in patients treated with RFA
confirmed the relevance of this new combination strategy. Increasing the in situ priming response of
radiofrequency ablation provides effective adjuvants to induce an abscopal effect. In the case of large
lesions, synergy between PD1 blockade inhibitor, ineffective alone or after single RFA, with in situ
immunomodulation, could lead to reconsideration of the use of checkpoint inhibition in metastatic MSS
CRC.
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Introduction

Surgical resection has proved to be the most effective and
potentially curative for liver metastases. Because of the location
and the extension of the lesion, a curative surgical treatment
can however be performed in less than 30% of the patients.1,2

Moreover, patients with large numbers of colorectal liver
metastases (CRLMs) are potential candidates for resection,
but the benefit from surgery is unclear.3 Furthermore, half of
the patients, with liver resection considered complete, develop
intrahepatic recurrence suggesting the existence of non-
detectable metastases. Radiofrequency ablation (RFA), daily
used in clinical practice, represents an alternative intervention
modality4 to treat primary and metastatic hepatic tumors, when
surgery is not feasible and leads to an improvement of overall
survival and disease-free survival.5 RFA induces hyperthermia
in tumor tissue which increases the release, exposure or dena-
turation of tumor antigens. The pro-inflammatory effects of

necrotic cells are well documented and appear related to the
release of endogenous adjuvants essential for the activation of
a cellular response.6,7 However, RFA results are compromised
by high rates of local and systemic relapse.8,9 Several studies
showed a T-cell specific response after RFA in patients with
malignant liver tumors. Nevertheless, this response was not
correlated with a clinical efficacy.10,11

Clinical trials using autologous cancer cells, expressing all
tumor antigens, combined with Bacillus Calmette-Guerin (BCG)
showed a potential benefit for patients with colorectal tumor.12,13

To improve immunogenicity, autologous cells were geneti-
cally modified to secrete Granulocyte-Macrophage Colony-
Stimulating Factor (GM-CSF), required on the tumor site to
induce specific immunity.14,15 Efficiency of adjuvants, GM-CSF
or BCG, was related to the local recruitment and maturation of
DCs which represents the critical step in cell-mediated antitumor
response.16,17 However, high concentrations of systemic GM-CSF
can also result in immune suppression.18 Considering these
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adverse effects, the in situ controlled release of GM-CSF has been
proposed. Biomaterials, such as gels, were used to enhance vaccine
efficacy, avoiding the side effects of systemic delivery, and prevent-
ing protein degradation.19 Some gels, such as thermosensitive
hydrogels are FDA approved. Upon temperature and concentra-
tion increase, they undergo a sol-gel transition phase.20 Because of
their low toxicity and biocompatibility, poloxamer-based gels have
been selected in this study for in situ immunomodulation
approach.

Immune checkpoint inhibitors, particularly inhibitor of pro-
grammed cell death protein 1 (anti-PD-1), provide favorable
results in colorectal carcinoma patients with mismatch repair
deficiency (MMR), which represents only 5 to 15% of cases. Shi
et al. demonstrated that anti-PD1 improved RFA efficacy in
mice colorectal tumors.21 The lymphocytes CD8+ T infiltrating
tumors are the only the ones expressing PD-1 phenotype.22 In
addition, vaccination strategies have been shown to stimulate
antigen-specific CD8+ T cells in patients with tumors. However,
these CD8+ T cells remain hypo-responsive at the tumor site and
cannot eradicate the tumor.23 Therefore, it appears necessary to
strongly prime and amplify this immune response in order to
gain significant clinical benefits.

In this work, we propose to prime a strong anti-tumor
immune response during RFA of murine colorectal tumors.
For this purpose, we combined RFA with local stimulation
using GM-CSF and BCG. The local delivery of the drugs was
performed thanks to a thermo-sensitive hydrogel in order to
optimize the bioavailability of the immunomodulatory com-
bination. This combination strategy was carefully chosen to be
directly applied in standard protocols of colorectal cancer
treatment.

Results

RFA treatment alone did not increase TILs in patients’ color-
ectal hepatic metastases

It has been demonstrated that RFA induces a systemic
immune response in patients with colorectal carcinoma.10

However, only few studies were interested in the immune
environment outside the tumor zone ablation. In order to
investigate modification of the immune infiltrate after RFA
in patients with liver metastases from colorectal carcinoma,
we performed a retrospective study. Thirteen patients who
received initial hepatic RFA followed by distant liver tumor
resection were included in the ’RFA (+)’ group, whereas 40
paired patients who received liver tumor resection only were
identified as ’RFA (-)’ group. Patients were matched according
to age, sex, number and size of metastases and tumor status
(Table. S1).

We evaluated lymphoid cells density in distant liver metas-
tases by automatic count, as described by Allard et al.24 Our
data showed low lymphocyte densities of CD3, CD4 and CD8
on the patient tumors (Figure 1(a)). Furthermore, lymphocyte
infiltration analysis showed similar patterns for all markers in
both groups; characterized by a small increase of TILs on the
tumor front (Figure 1(b)).

There was no difference in the density of CD3+ TILs liver
metastases between RFA (+) group and RFA (-) group in each
of tumor tissue, tumor front, and the surrounding non tumor
tissue (Figure 1(c), Table S2). In addition, we observed no
difference on CD8+ TILs and CD4+ TILs expression between
both groups of patients (Figure 1(d), 1(e), Table S2). Finally,
the expression of FoxP3 TILs was similar (data not shown).
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Figure 1. Tumor infiltrating lymphocytes (TILs) quantification in human liver metastases.
(a). Representative images showing CD3, CD4 and CD8 staining of patients from RFA (-) group and RFA (+) group. (b). Patterns of TILs CD3, CD4 and CD8 densities
according to the distance from tumor invasive front. (c, d, e). Lymphocytes density of CD3, CD4, and CD8 T cells on tumor biopsies in adjacent tissue (negative
distance), tumor front (0) and tumor tissue (positive distance).
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These data suggest that RFA of liver metastases did not induce
an increase of TILs count in distant lesions. The combination
of RFA and local immunotherapy (BCG-GM-CSF) could
improve anti-tumor immune response in liver metastases
from colorectal cancer.

Combination of RFA and local immunostimulation
resulted in complete cure of local and distant mice tumors
in model of micro-metastases

The panel of the experiment is described on Figure 2(a). As
no significant difference was observed between RFA and RFA
+ empty gel treatments, RFA + empty gel was chosen as
a control group for all experiments. We found that GM-CSF-
BCG loaded gel alone had a short effect on the local tumor
whereas RFA induced a significant complete regression of the
treated tumor (Figure 2(b)). The changes on distant tumor
growth were visualized by bioluminescence imaging (Figure 2
(c)). RFA-empty gel treatment alone showed only a short
inhibitory effect on distant tumor progression. RFA combined
with GM-CSF and BCG liquid solution had a modest effect.
By contrast, complete treatment (RFA+Gel-GM-CSF-BCG)
resulted in a complete tumor regression at 15 days after
treatment. Moreover, CD8+ T cells depletion of mice treated
with the complete combination completely abolished the con-
trol of tumor growth (Figure 2(d)), confirmed that the treat-
ment effect was mediated by CD8+ T cells. Mice survival was
significantly improved with RFA with local complete combi-
nation as compared to all other groups (Figure 2(e)) with
a survival of 50% of mice, 9 months after treatment.

Antitumor immune memory of cured mice
To evaluate the immunological memory of T lymphocytes,

mice which showed a complete regression of distant tumors
were re-challenged with CT26-Luc cells and a CT26-Luc
fragment. As shown in Figure 2(f), no tumor growth was
observed after tumor cells injection and rapid regression was
observed after tumor fragment implantation. Our results show
that RFA combined with local immunostimulatory hydrogel
induced a strong antitumor immunity able to eliminate resi-
dual tumors and control tumor recurrences.

Combination treatment provides an increase in infiltrating
T cells in the distant tumors.

Given the capacity of RFA combined to GM-CSF-BCG
loaded gel to inhibit tumor growth, we sought to determine
the intratumoral infiltration of CD8+ cytotoxic T lymphocytes,
CD4+ T helper lymphocytes, FoxP3+ regulator T lymphocytes
and CD45R B lymphocytes The distant tumors were harvested
at day 17 after treatment and TILs were evaluated by immu-
nohistochemistry as described in material and methods. We
observed a significant increase of CD3+, CD4+ and CD8+

T cells infiltration in distant tumors with RFA and local immu-
nostimulation. The level of FoxP3 expression was also
enhanced (Figure 3(a, b)). However, B lymphocytes infiltration
on distant tumors was similar in all groups (Fig. S1). These
results indicate that treatment of the local tumor with RFA
combined with Gel-GM-CSF-BCG induce a sustained immune
response in the distant tumor, mediated by effector T cells.

Intratumoral Gel-GM-CSF-BCG administration increased
systemic specific T cell immune responses induced by RFA

To determine the impact of local tumor immunomodula-
tion on the systemic response, we analyzed CD4+ and CD8+

T cells populations from the spleen by flow cytometry. No
differences were found between the percentage of cells in
untreated, RFA and complete treatment groups (data not
shown).

In order to study the function of peripheral T lymphocytes,
we analyzed the ability of T cells from the spleen to produce
IFN-γ and TNF-α. PMA/ionomycine stimulation, used as
positive control, showed an increase of TNF-α and IFN-γ
expression in all groups, confirming the features of
T lymphocytes. We did not observe differences of both cyto-
kines expression by CD4+ and CD8+ T cells between RFA
group and the control. By contrast, the expression of IFN-γ
and TNF-α by T cells was increased by a factor of 4 with the
complete combination therapy (Figure 4(a)).

Cytokines expression within CD4+ and CD8+ T cells were
significantly higher in the complete treatment group after sti-
mulation with heated CT26-Luc (Figure 4(b)), which demon-
strates the specificity of the antitumor immune response.

Association of RFA and local immunotherapy with anti-
PD1 resulted in a synergistic antitumor effect in a model of
distant macro-metastasis.

The efficacy of PD1 blockade therapy is related to a pre-
existing T cell immune response.25,26 As we shown in the
previous experiments an increased T cells mediated immune
response with the combined treatment, we investigated the
addition of an anti-PD1 treatment to RFA-local immunomo-
dulation to treat macro-metastases. For this purpose, we
developed a model of large lesions and evaluated this
association.

We observed a greater effect of RFA and Gel-GM-CSF-
BCG combination compared to RFA therapy alone. The
systemic administration of anti-PD1 enhanced RFA + Gel-
GM-CSF-BCG effect on distant tumor and led to a complete
regression of distant tumor on the majority of mice (Figure 5
(b)). The complete treatment had also a great effect on the
survival of mice with 33% of mice survival after 4 months
(Figure 5(c))

Effect of complete combination and anti-PD1 on lymphoid
and myeloid cells infiltrating the tumor

To assess the involvement of immune cells in the different
group of mice, we analyzed intratumoral TILs (defined as CD3+

CD4+ CD8+) andMDSCs (defined as Ly6-Gr1+CD11b+ cells) on
CD45+ cells in the distant tumors of mice, 13 days post treat-
ment. We observed a 2 fold to a 20-fold increase of the CD45+

immune cells in the distant tumor of the complete treated mice
as compared to untreated, RFA +anti-PD1, RFA and RFA-Gel-
GM-CSF-BCG groups (data not shown). MDSCs analysis
demonstrated a significant decrease of MDSCs Ly6-Gr1+

CD11b+ cells infiltrating tumors from complete treatment
group mice as compared to the other groups (Figure 6(a)).
There was no difference in macrophages F4/80 cells and den-
dritic cells CD11c+ CD80+ CD86+ (Fig. S2). Inversely, T cell
infiltration was characterized by a significant increase of CD8+

T cells proportion, while the proportion of CD4+ T cells was
similar (Figure 6(b)).

Complete combination therapy and PD-1 checkpoint inhi-
bitor enhanced systemic specific immune response

We next assessed the composition and the activation status
of lymphocytes in the spleen to explore whether systemic

ONCOIMMUNOLOGY e1550342-3
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Figure 2. RFA and Gel-GM-CSF-BCG combination therapy improve antitumor effect of RFA in adjuvant model and maintain immunity against tumor re-challenge.
(a). Panel treatment: Balb/c mice were implanted subcutaneously with CT26-Luc tumor fragment on the right flank, when the tumor reached about 300 mm3, RFA
was applied with respected parameters (Temperature above 60°C, 2 cycles time) and the hydrogel containing GM-CSF and BCG (Gel-IM) was injected in the treated
tumor by the same route. The distant tumor was implanted (25000 CT26-Luc cells) on the opposite flank of the mice. (b). Effect of RFA on the local treated tumor.
The tumor volume was measured with bioluminescence imaging every three days after RFA. Mice were injected by i.p. route with 2 mg of Luciferin and signal
acquisition was performed with an iCDD camera during 10 minutes, (n = 10 per group). (c). Representation of the distant tumor growth with Bioluminescence
imaging on day 3, 7, 13 and 21 after treatment. (d). Monitoring of distant tumor growth with bioluminescence (n = 10). Mice were injected by i.p. route with 2 mg of
Luciferin and signal acquisition was performed with iCDD camera during 10 minutes (n = 10 per group). A two-way repeated measure ANOVA with Bonferroni
posttest was performed. The results were represented with arbitrary unit. (e). Kaplan–Meier survival curves are shown. Long-rank test was performed, *** P < 0,001.
All groups were compared to control (RFA+empty gel). (f). Memory antitumor response. Mice of RFA +Gel-GM-CSF-BCG group which presented a complete regression
of distant tumor were re-challenged successively with tumor cells at day 0 and tumor fragments at day 29. Tumor volume was measured by bioluminescence every
3 days (n = 4). Error bars = SD, * P < 0. 05, ** P < 0. 01, *** P < 0. 001.
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tumor antigen specific T cells had been induced. We detected
a significant increase of TNF-α producing CD4+ and CD8+

T cells and a significant increase of IFN-γ producing CD8+

T cells in the complete treatment group compared with the
untreated group and the RFA +anti-PD1 group (Figure 7).

These data suggest that the in situ immunomodulation
with the thermosensitive hydrogel containing GM-CSF-BCG
boosted RFA- anti-PD1 antitumor response and induced
adaptive specific CD8+ T cell immune response.

Discussion

In this study, we demonstrated that RFA alone does not
increase Tumor infiltrating lymphocytes on distant tumor in
both mice model and patients with liver metastases from
colorectal carcinoma. It has been established that RFA
enhanced specific T cells response in patients with malignant
liver tumors. Indeed, hyperthermia increases the release of
tumor antigens27 and the induction of pro-inflammatory
effect triggering the recruitment and maturation of DCs.
These pro-inflammatory effects appear related to the release
of essential endogenous adjuvants, such as B1 nucleoproteins,
hsp70 and gp96 heat shock proteins required for the activa-
tion of an effective antitumor immunity.28

Some analyses have shown that RFA is specifically asso-
ciated with a systemic immune response and lymphocyte

infiltration in the treated tumor.29 However, systemic effects
induced by RFA are controverted30 and the abscopal effects
might depend upon activation of antitumor immune
response.

In our retrospective study of patients, we were interested
on the analysis of TILs within distant hepatic metastasis.
Patients who received RFA followed by resection were
matched with patients who received resection alone. We
used an automatic lymphocyte counting method to study
lymphoid infiltration on the surrounding non tumor tissue,
the tumor front and the tumor tissue of complete patient’s
biopsies. We showed that RFA did not increase T CD4 and
T CD8 infiltration in the tumor microenvironment of liver
distant lesions, explaining the hepatic and extrahepatic relapse
observed (lung metastases, peritoneal carcinomatosis). These
results confirmed the necessity of enhancing the priming of
T-cell immune response for an efficient immunotherapy in
metastatic colorectal carcinoma.

To enhance immune response after RFA, we have cho-
sen two adjuvants, BCG and GM-CSF. BCG vaccine is
widely used in the treatment of bladder carcinoma.31 Live
BCG vaccine has also been associated with irradiated
tumor cells in immunotherapy trials for colon cancer.32

BCG induces a non-specific immune response after bind-
ing to TLR2/TLR4 receptors. This link induces activation
of complex signaling pathways which leads to the
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Figure 3. IHC analysis demonstrated an increase of TILs with complete combination therapy.
Tumors from Untreated, RFA and RFA + Gel-GM-CSF-BCG groups were removed 17 days and fixed for further analysis (n = 5). IHC’s staining CD3, CD4, CD8, FoxP3
were performed. (a). Representative images of Tumor-infiltrating lymphocytes in the different groups. Scale bar 50 µm. (b). Quantification of lymphocytes density on
the tumor using macro image J as described on supplementary materials (S3, S4, S5, and S6). White bar represents the untreated group, grey bar, the RFA treated
group and the black column the group which received the complete treatment. One way Anova with Bonferroni Comparison Test was performed, *P < 0.05,
**P < 0.01.
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expression of inflammatory cytokines, TNF-α, IL-12, and
up-regulates MHC class I molecules, playing a crucial role
in the maturation of DCs.33 GM-CSF is an important
chemokine for anti-tumor immune response regulation
involved in the activation of both innate and adaptive
immunity. The cytoplasmic domains of GM-CSF receptor
are associated with the phosphorylation of Janus kinase 2
(JAK2) and regulates differentiation and maturation of
macrophages.34 Nevertheless, through in situ interactions

in the tumor micro-environment, GM-CSF was described
as a potent tumor-promoting factor, increasing tumor cell
growth in multiple cancer types.35,36 RFA provided all
tumour antigens like thermally inactivated autologous
whole cells and reduces the risks of tumor escape with
GM-CSF.37

The advantage of a continuous release of GM-CSF has
previously been shown, particularly in increasing to increase
protein half-life and reducing the immunosuppressive effects
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Figure 4. Induction of specific T cells response after RFA+ Gel-GM-CSF-BCG treatment.
At day 17 after treatment, spleen from Untreated (pink color), RFA (blue color) and RFA + Gel-GM-CSF-BCG (grey color) groups were removed (n = 5). The organs
were dissociated and splenocytes were collected in fresh media. Flow cytometry analysis of IFN-γ and TNF-α secreted by T CD4+ and T CD8+ was performed. (a). IFN-γ
and TNF-α positive cells analysis on fresh non stimulated splenocytes. (b). 2.104 CT26-Luc cells were incubated at 46°C for 1 hour and co-culture with 2.105 fresh
splenocytes. IFN-γ and TNF-α expressed by stimulated splenocytes was analyzed by flow cytometry. One way Anova with Bonferroni’s Comparison Test. *P < 0.05,
**P < 0.01, ***P < 0.001.
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observed at high doses. Here, we propose to control the intra-
tumoral release of GM-CSF with the use of bio-adhesive
thermosensitive hydrogel based on a previous physico-
chemical study. The prepared solution is compatible with
biomolecules and gelify at physiological temperature, allowing
a larger surface of interaction and a prolonged effect. The
formulation has been optimized for a prolonged release of
GM-CSF over several days to allow the induction of an effec-
tive immune response (unpublished data).

Immunocompetent mice were grafted subcutaneously
with local and distant tumors. The local lesion was treated
with RFA associated with in situ immunotherapy to induce
an immune response according two different protocols,
distant microscopic and distant macroscopic tumors. This
design simulated two very common clinical situations
explaining the evolution of distant occult or unresected
lesions at the time of RFA treatment. In the adjuvant pro-
tocol targeting distant micrometastases, RFA combined with
Gel-GM-CSF-BCG resulted in a complete response in mice,
while the local administration of the immunomodulatory
gel alone or RFA alone was ineffective. The abscopal effect
resulted in a regression of distant lesions mediated by

cytotoxic T cells response and increase animal survival. In
human cancer, involvement of tumor infiltration of T cells
to obtain an antitumor immune response is considered to
be predictive factors, associated with long-term survival of
patients.24,38 In our strategy, RFA and local combination
therapy showed a strong increase of TILs in the distant
tumors.

In some cancers, it has been shown an increase of Th1/Th2
ratio induced by B cells infiltrating tumors.39 Indeed, CD20 + B
cells within the tumor microenvironment represent important
and clinically relevant markers.40,41 However, the role of
CD20 + B cells in CRC remains unclear.42 It was suggested
that a lower density of CD20 + B cell infiltration correlated
with poor clinical outcomes in the primary CRC39A high den-
sity of CD20 + B cells was therefore significantly correlated
with an improved of the overall survival of patients.43 In our
strategy, RFA and local combination therapy did not induce an
increase of B cells infiltrating the distant tumors.

The complete response after tumor rechallenge confirmed
the activation of a strong immune response. In this model, the
cells effectors were not altered by the immunosuppressive
microenvironment. The tumor infiltration was associated to
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Figure 5. RFA and Gel-GM-CSF-BCG combination therapy improve PD1 response in macro metastases model.
(a) Panel treatment. Balb/c mice were implanted subcutaneously with CT26-Luc tumor fragment on both flanks. The local tumor was treated with RFA and the
hydrogel containing GM-CSF and BCG was injected by the same route. Anti-PD1 was injected 4 times after treatment at days 4, 7, 10 and 12. (b) Tumor volume of
distant tumor was measured every 3 days with calliper and the volume was calculated according to the formula (Width*Width*Length/2). n = 10 per group. A two-
way repeated measure ANOVA with Bonferroni posttest was performed. (c) Kaplan–Meier survival curves are shown in this graph; long-rank test was performed. All
groups were compared to control (RFA+empty gel) ns: non-significant, * P < 0.05, **P < 0.01, ***P < 0.001
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the activation of peripheral lymphocytes with increase of IFN-
γ and TNF-α synthesis inducing a Th1 immune response.
This process might be an important mechanism underlying
the synergistic effect of these combination therapies.

However, RFA and local immunomodulation increased
TILs and controlled the distant tumor in adjuvant situation
only. The combination strategy was not sufficient to treat
macro metastases, possibly due to the exhaustion of TILs
and the overexpression of PD-1 phenotype. Monoclonal anti-
bodies targeting the immune checkpoints, PD1 particularly
provided a clinical efficacy in gastrointestinal cancers with
MMR. These tumors had more mutations producing neo-
antigens, recognized and targeted by anti-tumor immune
response. However, in microsatellite stable (MMS) colorectal
cancers, checkpoint blockade did not demonstrate any effect
suggesting that the efficacy of anti-PD1 is associated with pre-
existing antitumor immunity. Radiotherapy and checkpoint
inhibitors combined have been shown to synergistically
enhance antitumor immunity in preclinical studies.44

Moreover, Shi et al. have shown that the association of RFA
and anti-PD1 is efficient in the treatment of metastatic color-
ectal cancer in mice.21 Therefore, for the treatment of residual
macro-disease, we proposed the association of local therapy

(RFA +Gel-GM-CSF-BCG) with systemic anti-PD1 injection.
We demonstrated a synergy between the local combination
treatment and PD1 checkpoint inhibitor. Indeed, this associa-
tion inhibited growth of distant tumor, enhanced T cells
infiltration and decreased MDSCs infiltration on distant
tumors.

MDSCs have been functionally defined by their ability to
suppress T cells in tumor-bearing mice, as well as cancer
patients and then play an important role in tumor evasion
of immunosurveillance.45 Recent reports have suggested
that the survival, differentiation, and suppressive activity
of MDSCs are influenced by TLR signaling.46 As MDSCs
express TLRs and accumulate in cancer, they, (as well as
DCs), appear to be primary targets of TLR ligands when
administered into tumor-bearing hosts. Activation of TLRs
by administration of an appropriate ligand leads to loss of
the suppressive activity of MDSCs, resulting in the inhibi-
tion of tumor growth by restoring anti-tumor T cell
responses.47 Granulocyte-macrophage colony promotes the
proliferation and differentiation of bone marrow stromal
cells into MDSCs by activating nuclear factor kappa
B (NF-κB) and Janus kinase/signal transducers and activa-
tors of transcription (JAK/STAT) signal pathway.48
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Figure 6. Complete treatment of primary tumors increased cytotoxic T lymphocytes and decreased MDSC in distant tumors.
Mice were treated as described in Figure 5. At day 13 after treatment, secondary tumors (n = 5/group) from untreated (white bars), RFA (light grey bars), RFA – Gel-
GM-CSF-BCG (dark grey), RFA + anti-PD1 (slashed light grey bars), and RFA-Gel-GM-CSF-BCG + anti-PD1 (slashed dark grey bars) groups were removed and
hematopoietic cells were extracted as described in Materials and Method. MDSC and T lymphocytes were analyzed with anti CD11b and Ly6-G, anti CD3, CD4 and
CD8 antibodies, antibodies respectively. Gel-GMCSF-BCG was replaced by ‘Gel-IM’ in these figures. One way Anova with Bonferroni’s Comparison Test. *P < 0.05,
**P < 0.01, ***P < 0.001.
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However, this activation is related to GM-CSF admini-
strated dose. In our study, we demonstrated that the con-
trol of GM-CSF release with the hydrogel avoids MDSCs
stimulation and promotes T effectors activation.

In human CCR, several studies have shown that lymphocytic
infiltration was a good prognostic factor,38,49 even in the color-
ectal liver metastasis. We have shown an increase of T cells
infiltration on distant tumor with complete treatment.

Figure 7. The combination of RFA gel GM-CSF BCG with anti-PD1 enhanced tumor specific T cell response.
Mice were treated as described in Figure 5. At day 13 after treatment, spleen from all groups (n = 5/group) were removed and treated as described in Figure 4. Flow
cytometry analysis of IFN-γ and TNF-α expressed by CD4+ and T CD8+ T lymphocytes were performed. (a) Quantification of IFN-γ and TNF-α secreted by unstimulated
and stimulated splenocytes with heated CT26 tumor cells from untreated (white box), RFA(light grey box), RFA- Gel-GM-CSF-BCG (dark grey box), RFA + anti-PD1
(light grey hatched box), RFA -Gel-GM-CSF-BCG + anti-PD1 (dark grey hatched box) groups. Anova test was performed. (b). Overlays representation of IFN-γ and TNF-
α cytokines expressed on stimulated splenocytes by heated CT26 from untreated, RFA + anti PD1 and RFA-Gel-GM-CSF-BCG + anti-PD1 groups. Two way Anova with
Bonfonni’s post-test. Error bars: SD, Cross: Mean, Horizontal bar: median * P < 0.5, ** P < 0.01
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Moreover, specific T cell response was activated as demonstrated
by the increase of IFN-γ and TNF-α synthesis in lymphocytes
from spleen after co-culture with heated tumor cells.
Interestingly, RFA and PD1 combination were less effective. In
fact, the in-situ induction of a strong T cells mediated immune
response leaded to the sensibility of the macroscopic distant
tumor to PD1 antibody. Both CD8+ T cells and IFN-γ expression
are critical for anti-tumor immunity.50 IFN-γ secreted by
immune cells in the tumor microenvironment induces growth
arrest, MHC class I expression, contributes to the recruitment of
effector cells, causes T-reg fragility and coordinates the process
of innate and adaptive antitumor response.51 Th1 cells promotes
durable tumor specific CTL responses, are particularly impor-
tant for activated T Cells maturation52 and induction of strong
immunological memory against tumor rechallenge. In addition,
IFN-γ signature is associated with better survival for pembroli-
zumab treated melanoma patients.53 Otherwise, TNF-α cytokine
is produced by immune cells and has a capacity to suppress
tumor cell proliferation and induce tumor regression. TNF-α is
also a potent anti-tumor cytokine which enhances the activity of
macrophages, NK cells and cytotoxic T cells.54 It has been shown
that in situ vaccination using IL-12 and TNF-α in microsphere
generates a systemic anti-tumor immune response capable of
eradicating distant metastasis.55

Here, we demonstrated that RFA associated with local immu-
nomodulation increased specific T cells immune response and
induced a complete tumor regression on adjuvant model.

BCG is currently used to treat superficial bladder cancer.56

The injection of BCG in the liver treated RFA zone could
induce adverse effects. We should consider another TLR ago-
nist to replace BCG in the immunomodulatory gel. The
microenvironment is different according to the tumor
implantation site.57 It could be interesting to evaluate RFA
associated with local immunomodulation on a liver metas-
tases mice model.

Our data provided a strong rational for a clinical assay
evaluating the combination of RFA with in situ immunother-
apy and PDL1/PD1 blockade therapy in patients with meta-
static colorectal carcinoma, regardless of micro-satellites
stability. The predictive biomarker for response to the pro-
posed immunotherapy should be analyzed on patients. After
the liver treatment, this strategy could allow the control of
a distant residual macroscopic disease on liver, lung, lymph
nodes metastasis or untreated primitive lesion in reverse
strategy.

Materials and methods

Study patient

In the digestive surgery department of Ambroise Paré hospital,
between 2002 and 2012, 250 patients had a liver metastases
resection for colorectal carcinomas. We retrospectively studied
cancer tissue specimen from matched 53 patients. Among them
13 patients who received initial hepatic RFA followed by local
tumor resection were included in the ’RFA (+)’ group whereas
other paired 40 patients who received initial local tumor resec-
tion were identified as ’RFA (-)’ group. One patient from ‘RFA
(+)’ group was coupled with 3 or 4 patients from ’RFA (-)’ group

according to the criteria described in Table. S1. Paraffin-
embedded samples were obtained from the Pathology
Department and the tissue bank of Ambroise Paré Hospital,
which has been registered with the French Ministry of Research
(# DC 2009–933). Immunohistochemistry was performed with
a Bond autostainer (Leica, Biosystems Newcastle Ltd) as
described by Allard MA et al.28 The primary antibodies were
mouse monoclonal anti-CD3 (1/50 dilution, rabbit polyclonal,
Dakocytomation.), (anti-CD4 (1/30 dilution, clone 4 B12,
Novocastra); anti-CD8 (1/25 dilution, clone C8/144B,
Dakocytomation) and anti-FoxP3 (1:100 dilution; 623801,
Biolegend, France) antibodies. Virtual tumor slides were
obtained by scanning with Mirax Desk (Zeiss, Germany).
Images were analyzed with Visilog 9.0 software (Noesis, Saclay,
France); the area of quantification included both tumor tissue
and the surrounding non tumor tissue.

Patients included in this retrospective study provided
informed consent for translational research. This study was
conducted in accordance with the Declaration of Helsinki and
with local ethical rules.

Mice

Six to 8 week old female BALB/c mice were obtained from
Janvier laboratories (Le Genest de l’ile, France). Studies were
conducted following the recommendations of the European
Convention for the protection of vertebrates Animals use for
Experimentation and the local Ethic Committee on Animal
care and Experimentation (APAFIS #11352).

Local and distant tumors graft

The CT26 colon adenocarcinoma cell line was purchased
from American Type Culture Collection (ATCC, CRL-2638,
LGC Standards, Molsheim, France). The CT26-Luc cell line
was generated by transfection of wt-CT26 cell line with luci-
ferase gene as reporter and cultured in Dulbecco’s Modified
Eagle Medium (DMEM, Gibco Life Technologies) containing
10 % fetal bovine serum (FBS, Gibco Life Technologies), 100
μM of streptomycin, 100 U/mL of penicillin and 0,4 mg/ml of
Geneticin (G418 sulfate, Gibco Life Technologies at 37°C in
a 5 % CO2-humidified atmosphere. A subcutaneous CT26-
Luc tumor was resected, placed into sterile Phosphate buffer
(Dulbecco’s phosphate buffer, Sigma), cut into fragments of
30 mm3 and inserted subcutaneously using a 12-gauge trocar
(38 mm) into the mouse flank, as local tumor. The mice were
treated in 2 separate protocols. Protocol I was designed as
a model of a clinical adjuvant situation with distant tumors
established by 2.5.104 CT26-Luc cells injected into the other
flank of mice, forming a microscopic tumor, at the time of the
RFA. In the protocol II, the local and distant tumors were
simultaneously grafted in the opposite flanks, as synchronous
macroscopic distant lesions at the time of RFA.

Treatments and RFA procedure

Three weeks earlier, the mice were vaccinated by subcuta-
neous injection of BCG (BCG SSI, Sanofi Pasteur, France).
Treatments were initiated when the tumor volume reached
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about 500 mm3. Indeed, animals were anesthetized by i.p
injection of Ketamin (100 mg/ml) and Xylazin (10 mg/ml).
The ablation was performed using a radiofrequency probe
(Cool-tip, Covidien, USA) inserted into the center of the
tumor. The probe was removed when temperature reached
60°C within the tumor to ensure complete ablation of the
target lesion.

Anti-PD-1 (200 μg, clone: J43, BioXCell) was administered
through i.p. injection to mice every 3 days for a total of four
times. CD8+ T cell depletion was realized by i.p. injection of
250 μg of anti-CD8 (clone 2.43; Bio-XCell) four times every
3 days, starting from 1 day before RFA.

Hydrogel injection

A 21 % solution of poloxamer 407 (Kolliphor, BASF
Germany) containing 0.1 % of Satiaxane UCX930 mucoad-
herent gum (Kolliphor, BASF Germany) was prepared with
deionized water. The solution was kept at 4°C until use.
Concentrations of the components are expressed as weight/
volume percentage (% w/v). The physicochemical properties
of the hydrogel have been defined (unpublished data). 60 µl
of hydrogel containing 5 µg of recombinant GM-CSF (gran-
ulocyte macrophage colony stimulating factor, Miltenyi
Biotec, France) and 5 × 105 CFU of BCG (Sanofi Pasteur,
France) was injected in the treated tumor zone using a 23-
gauge needle, five minutes after RFA. In all experiments,
tumors were measured with a digital caliper every 3 days.
Tumor volumes were calculated in cubic millimeter using
the following formula: length x width x width/2. Data shown
are mean ±SD.

Tumor growth monitoring by optical imaging

Luciferin potassium salt (D-luciferin, K+ salt Fluoprobes,
Interchim) diluted in PBS was injected through i.p route at
2 mg per mouse which is in large excess relative to the
luciferase amount. Optical imaging was performed with
a cooled intensified charge-coupled device (CCDi) camera
(Biospace, PhotonImager Paris, France). Luminescence acqui-
sition was initiated 20 min after the injection of the substrate
with duration of 10 min. The luminescence level was evalu-
ated by an ROI applied to the tumor zone (software M3
Vision+ from Biospace Mesure, Paris, France). The results
are expressed according to the equation:

BLI (AU) = ROI value of tumor (ph/s/sr/cm2)/ROI value
of control (ph/s/sr/cm2). Where ROI is an international LED
positive control.

Flow cytometry analysis

To study tumor infiltrating lymphocytes (TILs), tumors were
cut into small pieces, incubated in tumor dissociation kit
mouse (Miltenyi Biotec, France) and then dissociated using
the Gentlemacs dissociator (Miltenyi Biotec, France). The cell
suspension was filtered through a cell mesh of 70 µm and
resuspended in Phosphate buffer with 0.5 % BSA (Bovin
Serum Albumin, ID Bio, France) for further analysis. All

antibodies were purchased from BD Bioscience. TILs were
analyzed with rat anti-mouse CD45 V500 (clone 30-F11), rat
anti-mouse PE-Cy7 CD3 (clone 17A2), rat anti-mouse APC
CD4 (clone RM4-5), rat anti-mouse APC-Cy7 CD8 (clone
53–6.7).

Tumor infiltration by dendritic cells, macrophages and
myeloid-derived suppressor cells (MDSC) was analyzed with
rat anti-mouse PE CD11c (clone HL3), and rat anti-mouse
APC CD86 (clone GL1), rat anti-mouse BV421 F4/80 (clone
T45-2342), rat anti-mouse Alexa fluor488 CD11b (clone M1/
70), rat anti-mouse APC-H7 Ly-6G (clone 1A8).

Analysis of spleen lymphocytes was also performed. The
spleens were dissociated in a potter and filtered through
a cell mesh 70 µm. The red blood cells were lysed with
PharmLyse (559759, BD Bioscience) and cells were sus-
pended in RPMI media 1640 (11875093, Invitrogen) con-
taining 10 % of FBS. Freshly spleen cells were incubated at
2.105 cells per well plates in presence of heated CT26 cells
(10 µg/mL), medium, or PMA (10 ng/mL), Ionomycin
(1 µg/mL) and Brefeldin A (10 µg/mL) overnight at 37°C.
The intracellular cytokines were analyzed as described by
BD Bioscience protocol. Briefly, cells were stained with rat
anti-mouse CD45 V500 (clone 30-F11), rat anti-mouse CD3
PE-Cy7 (clone 17A2), rat anti-mouse CD4 APC (clone
RM4-5), rat anti-mouse CD8 APC-Cy7 (clone 53–6.7),
fixed and permeabilized with Fixation/Permeabilization
Solution Kit (554714, BD Bioscience) and stained with rat
anti-mouse Alexa Fluor 488 IFN-γ (clone XMG1.2), rat
anti-mouse Alexa Fluor 488 TNF-α (clone MP6-XT22)
and rat anti-mouse Alexa Fluor 488 IL-2 (clone JES6-
5H4).Flow cytometry analysis was performed using a flow
cytometer (FACS CANTO II, Becton Dickinson, France).

Immunohistochemical staining

Freshly collected tumors were placed in Zinc fixative (0.5 g
Calcium Acetate, 5.0 g Zinc Acetate, 5.0 g Zinc Chloride, 0.1 M
Tris buffer, pH 7.4) 24 hours at room temperature. After
fixation, dehydrate tissues were embedded in paraffin and sec-
tions (4 μm) were stained with hematoxylin eosin and safran.
Paraffin sections were processed for heat-induced antigen
retrieval, incubated with rabbit anti-mouse CD3 antibody
(Dako) and rabbit anti-mouse Fox P3 antibody (Abcam,
1:1000). Staining was visualized by using the peroxidase/diami-
nobenzidine Rabbit PowerVision kit (ImmunoVision
Technologies). For CD8 immunohistochemistry, paraffin sec-
tions were incubated with a rat monoclonal anti-CD8 antibody
(1:100) (Neomarkers; LabVision). The membrane signal was
revealed with the Polink 2 plus HRP detection kit (GBI Labs).

All slides were immunostained in cover plates the same day,
guaranteeing a perfectly standardized intensity of staining. Each
slide was examined using a microscope. A single representative
whole tumor tissue section from each animal was digitized
using a slide scanner. Five tumors/group were analyzed. For
one tumor, the lymphocyte density was quantified on 10 images
extracted from the virtual slice at x20 magnification, with the
help of image J software.58 The lymphocyte density was quanti-
fied with image J as described in SI1
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Statistical analysis

Graph Pad Software was used to analyze data and determine
statistical significance between groups. Data are shown as the
means ±SD. Mann-Whitney test was used to compare the
difference between two groups. Anova test with Bonferroni
posttest was used for multiple comparisons P values < 0.05
were considered significant.
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