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Abstract

When databases are constructed from heterogeneous sources, it is not unusual
that different encodings are used for the same outcome. In such case, it is necessary
to recode the outcome variable before merging two databases. The method proposed
for the recoding is an application of optimal transportation where we search for a
bijective mapping between the distributions of such variable in two databases. In
this article, we build upon the work by Garès et al. [9], where they transport the
distributions of categorical outcomes assuming that they are distributed equally
in the two databases. Here, we extend the scope of the model to treat all the
situations where the covariates explain the outcomes similarly in the two databases.
In particular, we do not require that the outcomes be distributed equally. For
this, we propose a model where joint distributions of outcomes and covariates are
transported. We also propose to enrich the model by relaxing the constraints on
marginal distributions and adding an L1 regularization term. The performances
of the models are evaluated in a simulation study, and they are applied to a real
dataset.

Keywords. Merging databases; Variable recoding; Linkage; Optimal Transportation;
Statistical matching; Heterogeneous sources; Domain adaptation; Epidemiology.

1 Introduction
Sharing and producing information from heterogeneous sources becomes a major issue. An
objective when merging databases is to associate, mix and include databases from different
sources in order to provide a strong knowledge database. This allows us to extract more
information from merged data than we would obtain from using the databases separately
[3, 10]. Here we focus on a specific issue related to data merging, the recoding problem:
an issue that occurs when merging two databases where a variable is not coded in the
same scale in both databases. For instance, recoding variables may be necessary before
merging databases collected during the same study. Indeed, the survey questionnaire
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may be modified when collecting the same information in two waves of recruitment with
different subjects or in two waves with the same subjects at different ages. It can also be
useful to merge two databases collected during different studies that focus on the same
information. As an illustration, a previous work on data recoding [9] is applied on a
French cohort study, the ELFE study, where the variable of interest is the answer to
the question :"how would you rate your overall health?". During the first baseline data
collection wave (January to April 2011), the different possible answers were proposed in
a five points ordinal scale: "excellent", "very well", "well", "fair", "bad" and during the
second baseline data collection wave (May to December 2011), another five points ordinal
scale was used: "very well", "well", "medium", "bad" and "very bad".

As illustrated in Figure 1, the problem can be formalized in terms of two databases A
and B: A contains the observations of a vector X of P covariates and of one outcome Y
measured on nA units; B contains the observations ofX and of one outcome Z for nB other
subjects. In particular, Z is not observed for the subjects of A, and neither is Y for the
subjects of B. More generally, there is no subject for whom Y and Z are simultaneaously
observed. What is more, we assume that Y and Z are categorical variables that refer
to the same latent variable. Hence Y and Z can be seen as two different encodings of
the same variable that can have different numbers of modalities (or categories). The
problem can then be enunciated as a recoding problem where we would like to predict Z
in database A (which, symmetrically, is equivalent to the prediction of Y in database B).
More precisely, since the subjects of A are only characterized by the values of X and Y ,
we wish to estimate the distribution of Z given the values of X and Y in base A.

Variable recoding can be seen as a missing data problem. In this context, the missing
value depends only on the database to which the subject belongs and not on the variable
itself. The missingness mechanism can then be considered as missing at random. This
problem has been widely studied in the literature ([15]) and many existing methods for
treating missing data could be used. Moreover, Y and Z refer to the same information,
which can be interpreted as a latent variable. Methods of prediction of this latent class
could also be applied (e.g. class latent analysis or trait latent analysis [1, 17]). Finally,
methods for classification learning first estimate the distribution of Z from covariates
using database B and predict Z in A in a second step ([19]). The major drawback of such
approaches is that the resulting methods use the information contained in each database
in two independent steps that cannot capture the interrelations between them.

Recently, Garès et al. [9] have proposed a method based on optimal transportation
(OT). Assuming that the distributions of Y and Z are the same in the two databases,
the OT theory ([20]) provides a map that pushes the distribution of Y forward to the
distribution of Z. This approach has shown better performance when compared to clas-
sical methods such as multiple imputation [9] and machine learning methods [21], but it
still exhibits two limits. First, there are several contexts where it will not be true that Y
has the same distributions in the two databases. For instance, this has already been ob-
served when comparing North American NHANES study and the French National Health
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Survey. The "self-rated overall health" outcome is not distributed identically in the two
databases, where the rates of functional limitations and education level are different [6].
The second limit is that their OT model does not actually solve the recoding problem.
The authors use OT to derive only the joint distribution of Y and Z. To actually predict
Z in A, they have to execute a greedy nearest neighbor algorithm, which makes some
arbitrary decisions.

Our aim is to build upon the work of Garès et al. [9] to develop a recoding method
that requires less restrictive assumptions and directly targets the solution of the recoding
problem. In particular, we consider that Y and Z may be distributed differently in A
and B, but we still focus on databases where covariates explain the outcomes Y and
Z similarly in the two databases. This restriction remains necessary, because the only
information we have to characterize the subjects is the set of common covariates. In
particular, if outcomes are independent from covariates, recoding is doomed to failure
unless additional information is provided.

Our main contribution is in the development of an OT model where the joint distri-
bution of X and Y is pushed forward to that of X and Z. This allows to derive the
distribution of Y given the values of X and Z directly from the optimal solution of the
model. Moreover, since the observations in the two databases can only give us access to
estimators of the marginal distributions and of a particular cost function, the solution of
the OT model is itself only an estimator of the optimal distribution of (X, Y,X, Z). From
the observation that all the estimators used in the OT model are strongly consistent, we
show that the estimator of the distribution of (X, Y,X, Z) is also strongly consistent. As
an extension of the OT model, we then propose to relax the constraints on marginals,
because they may be too restrictive in the presence of errors in the estimations of their
right-hand side. We also add a regularization term to the objective function to smooth
the variations of outcomes with respect to covariates. Such regularization has already
been employed by [8] with success in similar models.

The remainder of the article is organized as follows. The data recoding problem we
focus on is formalized in Section 2. We then recall some elements about OT theory and
describe the OT model introduced by Garès et al. [9] in Section 3. In Section 4, we
introduce the OT model where the joint distribution of X and Y is transported to that
of X and Z. Since the model we solve is defined from empirical estimators, we then
study the convergence of its solutions. In Section 5, we develop an extension of the OT
model where constraints on marginals are relaxed and a regularization term is considered.
Finally, in Section 6, the performances of the models are assessed on a benchmark of
simulated databases, and they are applied on a real example extracted from the National
Child Development (NCDS) data collection [18] in Section 7.
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Table 1: Problem formulation

2 Definition of the problem and notations

2.1 Formal statement of the data recoding problem
Let A and B be two independent databases corresponding to two sets of subjects. For
more concise notations, we assume without loss of generality that the two databases have
equal sizes, so that they can be written as A = {i1, . . . , in} and B = {j1, . . . , jn}. Let
((Xi, Yi, Zi))i∈A and ((Xj, Yj, Zj))j∈B be two sequences of i.i.d. discrete random variables
with outcomes in X×Y×Z, where X is a finite subset of RP , and Y and Z are finite subsets
of R. Variables (Xi, Yi, Zi), i ∈ A, are i.i.d copies of (XA, Y A, ZA) and (Xj, Yj, Zj), j ∈ B,
are i.i.d copies of (XB, Y B, ZB). By independence of the databases, we moreover assume
that (XA, Y A, ZA) and (XB, Y B, ZB) are independent. Every random variable is defined
on the same probability space (Ω,F ,P). Finally, we assume that for all x ∈ X the
probability distributions of Y A and ZA given that XA = x are respectively equal to those
of Y B and ZB given that XB = x, i.e.,

P(Y A = y | XA = x) = P(Y B = y | XB = x), ∀x ∈ X , ∀y ∈ Y , and
P(ZA = z | XA = x) = P(ZB = z | XB = x), ∀x ∈ X ,∀z ∈ Z.

(1)

In particular, assumption (1) implicitly states that P(Y A = y | XA = x) is defined if and
only if P(Y B = y | XB = x) is defined, i.e., P(XA = x) = 0 if and only if P(XB = x) = 0.
Without loss of generality, we thus restrict the domain of the covariates X to the values,
x, such that P(XA = x) 6= 0 and P(XB = x) 6= 0.

The data recoding problem consists in the prediction of (Zi)i∈A from independent
observations of ((Xi, Yi))i∈A and ((Xj, Zj))j∈B. To be more specific, the problem is to
propose an estimator of the distribution of ZA conditional to XA = x and Y A = y,{
P(ZA = z|XA = x, Y A = y), z ∈ Z

}
, x ∈ X , y ∈ Y , from the observations of X and Y

in A, {(xi, yi)}i∈A, and of X and Z in B, {(xj, zj)}j∈B.
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Observe that since Y and Z are never jointly observed for the same subject, the
assumption on conditional distributions (1) cannot be tested from the data.

2.2 Distributions and estimators
In the remainder of the article, the discrete probability distribution of a discrete random
variable V with possible outcomes in V is given by

µV =
∑
v∈V

µVv δv,

where δv is the Dirac delta measure centered at v. If V is finite with cardinal |V |, µV will
also refer to the vector of weights (µVv )v∈V .

Vectors ((xi, yi))i∈A and ((xj, zj))j∈B are realizations of two n samples of random
variables ((Xi, Yi))i∈A and ((Xj, Yj))j∈B with unknown joint distribution µ(XA,Y A) and
µ(XB ,ZB). As a consequence, we will consider their unbiased empirical estimators given by

µ̂(XA,Y A)
n,x,y = 1

n

∑
i∈A

1{Xi=x,Yi=y}, ∀x ∈ X , y ∈ Y , (2)

µ̂(XB ,ZB)
n,x,z = 1

n

∑
j∈B

1{Xj=x,Zj=z}, ∀x ∈ X , z ∈ Z. (3)

The strong law of large numbers applied to the sequences of i.i.d. random variables
((Xi, Yi))i∈A and ((Xj, Zj))j∈B directly yields that

µ̂(XA,Y A)
n,x,y

a.s.−−−−→
n→+∞

µ(XA,Y A)
x,y , ∀x ∈ X , ∀y ∈ Y

µ̂(XB ,ZB)
n,x,z

a.s.−−−−→
n→+∞

µ(XB ,ZB)
x,z ,∀x ∈ X ,∀z ∈ Z

In what follows, we will also need an estimator of µ(XA,ZA). Let x ∈ X (P(XB = x) 6=
0) and z ∈ Z, then

P(XA = x, ZA = z) = P(ZA = z | XA = x)P(XA = x)
= P(ZB = z | XB = x)P(XA = x)

= P(XB = x, ZB = z)P(XA = x)
P(XB = x) ,

where the second equality is a direct application of the assumption (1). Denoting as
µ̂X

A

n and µ̂X
B

n the unbiased empirical estimators of µXA and µX
B , we then consider the

estimator of µ(XA,ZA) given by

µ̂(XA,ZA)
n,x,z µ̂X

B

n,x = µ̂(XB ,ZB)
n,x,z µ̂X

A

n,x , ∀x ∈ X , ∀z ∈ Z. (4)

The almost sure convergence of all the estimators in the expression of µ̂(XA,ZA)
n,x,z yields

µ̂(XA,ZA)
n,x,z

a.s.−−−−→
n→+∞

µ(XA,ZA)
x,z ,∀x ∈ X ,∀z ∈ Z.
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Remark 1 (Estimators for comparable populations). Observe that if we add the assump-
tion that XA and XB are copies of the same random variable X, we fall back in the
framework of [9] where Z is distributed equally in bases A and B. We immediately see
that in such case, we can use the unbiased estimator µ̂(XA,ZA)

n = µ̂(XB ,ZB)
n .

3 State of the art on optimal transportation models
for data recoding

3.1 Abstract statement of the optimal transportation problem
Consider a pile of sand distributed with density f , that has to be moved to fill a hole
(with the same volume) according to a new distribution, with a prescribed density g.
Consider a map T describing this movement: T (x) represents the destination of the sand
originally located at x. The OT problem consists in finding a map T such that the average
displacement is minimal, where the displacement between two points x and y is measured
by a given cost function c. This is the original statement of the transportation problem
due to Gaspard Monge [16].

Consider X and Y two Radon spaces. Let µX be a probability measure on X, µY
a probability measure on Y and c : X × Y −→ [0,∞] a Borel-measurable function.
Let two random variables, X and Y , which respectively follow distributions µX and µY .
Kantorovich’s formulation of the OT problem consists in finding a measure γ ∈ Γ(µX , µY )
that realizes the infimum:

inf
{
E[c(X, Y )] =

∫
X×Y

c(x, y) dγ(x, y)
∣∣∣∣ γ ∈ Γ(µ, ν)

}
, (5)

where Γ(µX , µY ) is the set of measures on X × Y with marginals µX on X and µY on
Y [14]. Kantorovich’s formulation plugs the problem in a linear setting and the solution
is achievable thanks to compacity argument. It can be shown [20] that a minimizer for
this problem always exists as soon as the cost function c is lower semi-continuous.
In this work, we will consider the Kantovorich’s formulation adapted to the discrete case,
known as Hitchcock’s problem [12].

3.2 Optimal transportation of outcomes
The first OT approach for data recoding is described in [9]. The authors of [9] consider
a problem similar to that stated in Section 2. The only difference is that they make the
additional assumption that Y A and ZA respectively follow the same distributions as Y B

and ZB.
In this setting, they aim at solving the OT problem (5) that pushes µY A forward to

µZ
A . As a consequence, variable γ of (5) is a discrete measure with marginals µY A and
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µZ
A , represented by a |Y| × |Z| matrix. The cost, denoted as c is a |Y| × |Z| matrix,

(cy,z)y∈Y,z∈Z . To be specific, their goal is in the identification of

γ∗ ∈ argmin
γ∈R|Y|×|Z|+

{
〈γ|c〉 : γ1|Z| = µY

A

, γT1|Y| = µZ
A
}
, (6)

where 〈·|·〉 is the dot product, 1 is a vector of ones with appropriate dimension and MT is
the transpose of matrix M . In the cost function considered by Garès et al., cy,z measures
the average distance between the covariates of subjects of A satisfying Y = y and subjects
of B satisfying Z = z, that is

cy,z = E
[
d(XA, XB) | Y A = y, ZB = z

]
, (7)

where d can be any distance function defined on X × X . The significance of their choice
is that it allows for a clear connection between the structures observed in databases A
and B.

Remark 2. d(XA, XB) is the distance between vectors of categorical covariates. Here
a Hamming distance from the associated complete disjunctive tables is used but other
distances are adapted to ordinal categorical variables: Spearman, Chebyshev, Kendall or
Cayley distances.

The above model cannot be solved in reality, since the distributions of XA, XB, Y A

and ZA are not known. As a consequence, they use the unbiased empirical estimators
µ̂X

A

n of µXA

n and µ̂X
B

n of µXB

n . Observations Y and Z are only available in A and B
(respectively), so they define the two empirical estimators

µ̂Y
A

n,y = 1
n

∑
i∈A

1{Yi=y}, ∀y ∈ Y

µ̂Z
A

n,z = 1
n

∑
j∈B

1{Zj=z}, ∀z ∈ Z,
(8)

where they use their assumption that µZA = µZ
B . Finally, denoting as

κn,y,z ≡
∑
i∈A

∑
j∈B

1{Yi=y,Zj=z}

the number of pairs (i, j) ∈ A × B such that Yi = y and Zj = z, the cost matrix c is
estimated by

ĉn,y,z =


1

κn,y,z

∑
i∈A

∑
j∈B 1{Yi=y,Zj=z} × d(Xi, Xj), ∀y ∈ Y , z ∈ Z : κn,y,z 6= 0,

0, ∀y ∈ Y , z ∈ Z : κn,y,z = 0.
(9)
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Plugging the values observed for these estimators in (6) yield a linear programming
model denoted as P̂0

n. The solution γ̂n can then be interpreted as an estimator µ̂(Y A,ZA)
n

of the joint distribution of Y A and ZA, µ(Y A,ZA).
One specificity of this approach is that it does not directly identify an estimator of the

distributions that are searched for, µZA|XA=x,Y A=y,∀x ∈ X ,∀y ∈ Y . As a consequence,
the authors of [9] predict ZA in a second step where they execute a nearest neighbor
algorithm. For this, they partition A and B according to the observations by defining

Oy = {i ∈ A | yi = y},∀y ∈ Y and Oz = {j ∈ B | zj = z},∀z ∈ Z.

They also define Ny,z as the (rounded) expected number of subjects with modalities
(Y A, ZA) = (y, z) if (Y A, ZA) follows µ̂(Y A,ZA)

n . Algorithm 1 details how the prediction is
then made. For a subject i ∈ A, the nearest modality z ∈ Z is then computed according to
the average Euclidean distance between its covariate xi and the covariates of the subjects
of B with modality zj = z. One issue worth noticing is that the predictions ẑ returned by
the algorithm depend on the order in which the pairs (ỹ, z̃) are picked. Here, the arbitrary
choice is to take them by descending values of Ny,z, but other orders might be just as
worthy.

1 for y ∈ Y , z ∈ Z do
2 Ny,z ← round(n× µ̂(Y A,ZA)

n,y,z );
3 while maxy,z Ny,z ≥ 0 do
4 Let (ỹ, z̃) ∈ argmaxy,z{Ny,z};
5 for i ∈ Oỹ do
6 di ← 1

|Oz̃ |
∑
j∈Oz̃

d(xi, xj)// distance used to get nearest neighbors
7 for k = 1, . . . , Nỹ,z̃ do
8 Let imin ∈ argmini∈Oỹ

{di};
9 ẑimin ← z̃;

10 Oỹ ← Oỹ \ {imin};
11 Nỹ,z̃ ← 0;
12 Return ẑi,∀i ∈ A;

Algorithm 1: Nearest neighbor algorithm for the prediction of Zi, i ∈ A

Algorithm 1 returns individual predictions for each subject. This is only relevant if
there is a real need to distinguish subjects even though their observations of X and Y are
equal. To compare with the solutions of our models, we can recover an estimation of the
probability of ZA given the values of XA and Y A by

µ̂Z
A=z|XA=x,Y A=y

n,x,y = 1
|Ox,y|

∑
i∈Ox,y

1ẑi=z, ∀x ∈ X , y ∈ Y , z ∈ Z, (10)
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where, similarly to Oy, Ox,y is defined as Ox,y = {i ∈ A | xi = x, yi = y}.
In the remainder, the overall method described in this section will be referred to as

outcome.

4 Optimal transportation of the joint distribution of
outcomes and covariates

The method developed in [9], outcome, has two main drawbacks. First, it relies on the
strong assumption that Y A and ZA follow the same distribution as Y B and ZB. Second,
it requires an independent post-treatment step where the predictions are computed with
a nearest neighbor algorithm. In particular, this means that the choice made in the
second step are not explicitly taken into account in the OT model. Moreover, the nearest
neighbor algorithm has a greedy behavior where the quality of the predictions may depend
on arbitrary choices in its execution.

In this section, we describe a second OT approach that tackles the above two issues.

4.1 Kantovorich’s formulation
In the framework presented in Section 2, we propose to search for an optimal trans-
portation between the two joint distributions of (XA, Y A) and (XA, ZA) with marginals
µ(XA,Y A) and µ(XA,ZA) repectively. Under Kantorovich’s formulation in a discrete setting,
we will then search for

γ∗ ∈ argminγ∈D < c, γ >,

where c is a given cost matrix and D is the set of joint distributions with marginals
µ(XA,Y A) and µ(XA,ZA). It is natural to see any element γ ∈ D as the vector of joint
probabilities P((XA = x, Y A = y), (XA = x′, ZA = z)) for all x, x′ ∈ X , y ∈ Y and z ∈ Z.
Since this probability nullifies for all x 6= x′, we will define γ ∈ D as a vector of R|X |×|Y|×|Z|,
where γx,y,z stands for an estimation of the joint probability P(XA = x, Y A = y, ZA = z).
These notations lead to the more detailed OT model

P :



v∗ = min < c, γ >

s.t.
∑
z∈Z

γx,y,z = µ(XA,Y A)
x,y , ∀x ∈ X ,∀y ∈ Y

∑
y∈Y

γx,y,z = µ(XA,ZA)
x,z , ∀x ∈ X ,∀z ∈ Z

γx,y,z ≥ 0, ∀x ∈ X ,∀y ∈ Y ,∀z ∈ Z

(11)

The above model can be solved only if the marginals µ(XA,Y A) and µ(XA,ZA) are known.
As discussed in Section 2, this is not the case, but we can build unbiased estimators µ̂XA,Y A

n

9



and µ̂XA,ZA

n as in (2) and (4). As for the cost matrix, we keep the one used in outcome,
meaning that it does not depend on the value of x. More formally,

cx,y,z = E
[
d(XA, XB) | Y A = y, ZB = z

]
, ∀x ∈ X ,∀y ∈ Y ,∀z ∈ Z. (12)

In the remainder, we drop x in the list of indices of c. As a consequence, we also use the
estimator ĉn as defined in (9).
Proposition 1. For all y ∈ Y, z ∈ Z, ĉn,y,z a.s.−−−−→

n→+∞
cy,z, or, stated otherwise:

‖ĉn − c‖∞
a.s.−−−−→

n→+∞
0

Proof. Let y ∈ Y , z ∈ Z. Given that XA and XB have finite probability distributions,
the expression of c can be formulated as

cy,z =
∑

(xA,xB)∈X 2

d(xA, xB)µX
A,XB |Y A=y,ZB=z

(xA,xB) ,

=
∑

(xA,xB)∈X 2

d(xA, xB)µX
A|Y A=y

xA µ
XB |ZB=z
xB ,

=
∑

(xA,xB)∈X 2

d(xA, xB)
µ

(XA,Y A)
xA,y

µY A

y

µ
(XB ,ZB)
xB ,z

µZB

z

,

where the second equality is by independence of (XA, Y A, ZA) and (XB, Y B, ZB).
The estimator given in (9) can be rewritten as

ĉn,y,z = 1∑
i∈A 1{Yi=y}

∑
j∈B 1{Zj=z}

×
∑

(xA,xB)∈X 2

∑
i∈A

∑
j∈B

1{Yi=y,Xi=xA}1{Zj=z,Xj=xB} × d(xA, xB),

=
∑

(xA,xB)∈X 2

∑
i∈A 1{Yi=y,Xi=xA}∑

i∈A 1{Yi=y}

∑
j∈B 1{Zj=z,Xj=xB}∑

j∈B 1{Zj=z}
× d(xA, xB),

=
∑

(xA,xB)∈X 2

µ̂
(XA,Y A)
n,xA,y

µ̂Y A

n,y

×
µ̂

(XB ,ZB)
n,xB ,z

µ̂ZB

n,z

× d(xA, xB),

where the third equality is by (2).
To conclude, observe that we expressed cy,z and ĉn,y,z as two finite sums such that the

terms of ĉn,y,z are strongly consistent estimators of those of cy,z.

The resulting model is

P̂n :



v̂n = min < ĉn, γ >

s.t.
∑
z∈Z

γx,y,z = µ̂(XA,Y A)
n,x,y , ∀x ∈ X ,∀y ∈ Y

∑
y∈Y

γx,y,z = µ̂(XA,ZA)
n,x,z , ∀x ∈ X ,∀z ∈ Z

γx,y,z ≥ 0, ∀x ∈ X ,∀y ∈ Y ,∀z ∈ Z

(13)
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The optimal solution, γ̂n, of P̂n then corresponds to an estimation of the distribution of
(XA, Y A, ZA). We thus deduce an estimation of the distribution of ZA given the values
of XA and Y A as

µ̂Z
A|XA=x,Y A=y

n,z = γ̂n,x,y,z

µ̂
(XA,Y A)
n,x,y

, ∀x ∈ X , y ∈ Y , z ∈ Z. (14)

In contrast to outcome, the method that consists in solving P̂n to solve the recoding
problem is referred to as joint in what follows.

4.2 Consistency of the optimal transport estimator
In this section we study the asymptotic behavior of the estimator, v̂n, of v∗, and of the
optimal solutions of P̂n with respect to those of P . To do this we rewrite P and P̂n as
generic linear programs in standard form

P : v∗ = min {〈c|γ〉 : Aγ = b, γ ≥ 0} and P̂n : v̂n = min
{
〈ĉn|γ〉 : Aγ = b̂n, γ ≥ 0

}
,

where c, ĉn ∈ Rp, b, b̂n ∈ Rm and A ∈ Rm×p. For γ ∈ Rp and S ⊂ Rp, we also define the
point-to-set distance as

d(γ, S) = inf
γ′∈S
‖γ − γ′‖ ,

where ‖·‖ is some norm of Rp. We then introduce the deviation measure of set S ⊂ Rp

from set S ′ ⊂ Rp as
D(S, S ′) = sup

γ∈S
inf
γ′∈S′
‖γ − γ′‖ .

Theorem 1. Let S∗ be the set of optimal solutions of P and Ŝn the set of optimal solutions
of P̂n. Then

v̂n
a.s.−−−−→

n→+∞
v∗, and D(Ŝn, S∗) a.s.−−−−→

n→+∞
0.

Proof. It is known (see e.g. [22]) that the value function of a linear program

(b̂n, ĉn) 7→ min{〈ĉn|x〉 : Ax = b̂n, x ≥ 0}

is continuous for any constraint matrix A, hence the a.s. convergence of ĉn to c and of b̂n
to b yields v̂n a.s.−−−−→

n→+∞
v∗.

From Hoffman error bound lemma [13], there is a constant K1 = K1(c) > 0 such that
∀γ ∈ Ŝn,

d(γ, S∗) ≤ K1(|〈c|γ〉 − v∗|+ ‖Aγ − b‖)
≤ K1(|〈c|γ〉 − 〈ĉn(ω)|γ〉+ 〈ĉn(ω)|γ〉 − v∗|+

∥∥∥b̂n(ω)− b
∥∥∥)

≤ K1(K2 ‖ĉn(ω)− c‖+ |v̂n(ω)− v∗|+
∥∥∥b̂n(ω)− b

∥∥∥)

11



where K2 is such that ‖γ‖ < K2. Using the a.s. convergence of ĉn, b̂n, and v̂n, we show
that, ∀ε > 0, ∃Ω1 ∈ F with P(Ω1) = 1, ∀ω ∈ Ω1, ∃N ∈ N,∀n ≥ N , such that

∀γ ∈ Ŝn(ω), d(γ, S∗) ≤ ε,

which yields the result.

The convergence of D(Ŝn, S∗) justifies that we estimate a solution of P with one of P̂n.
However it cannot justify the overall approach that consists in searching for a solution of
P to derive the conditional distributions µZA|XA=x,Y A=Y , x ∈ X , y ∈ Y . The quality of
our estimation of these distributions will depend on how the cost function reflects some
unobserved properties of the distributions. In the choice of our cost function, we follow
the intuition that subjects with outomes Yi = y and Zi = z should be frequent when
y and z are close to each other in the space of the covariates. If for instance, there is
some prior distribution µ̄(XA,Y A,ZA), the result would certainly be improved by minimizing∥∥∥γ − µ̄XA,Y A,ZA

∥∥∥
1
instead.

5 Improving the models with relaxation and regular-
ization

In this section, we study how P̂n can be enriched by including a term of error in the
constraints on the marginals of γ. We then add a regularization term expressing that the
transportation map should not vary too quickly with respect to X.

5.1 Relaxation of the constraints on marginals
Due to the possible errors in the estimations of the terms of P , the constraints of P̂n may
drive its optimal solution away from the true values of the marginals of µ(XA,Y A,ZA). As a
consequence, it might be more meaningful to allow for small violations of the constraints
of P̂n. This is done by adding slack variables in the constraints such that they sum to
zero and the norm 1 of the vector of slack variables is bounded by some value αn. The

12



equality constraints of P̂n are then relaxed as follows.∑
z∈Z

γx,y,z = µ̂(XA,Y A)
n,x,y + eX,Yx,y , ∀x ∈ X ,∀y ∈ Y (15)

∑
y∈Y

γx,y,z = µ̂(XA,ZA)
n,x,z + eX,Zx,z , ∀x ∈ X ,∀z ∈ Z (16)

∑
x∈X ,y∈Y

eX,Yx,y = 0,
∑

x∈X ,z∈Z
eX,Zx,z = 0 (17)

− eX,Y,+x,y ≤ eX,Yx,y ≤ eX,Y,+x,y , ∀x ∈ X ,∀y ∈ Y (18)
− eX,Z,+x,z ≤ eX,Zx,z ≤ eX,Z,+x,z , ∀x ∈ X ,∀z ∈ Z (19)∑
x∈X ,y∈Y

eX,Y,+x,y ≤ αn,
∑

x∈X ,z∈Z
eX,Z,+x,z ≤ αn (20)

Constraints (17) guarantee that γ remains a distribution of probability despite the
relaxation, and constraints (18)–(20) are the linearization of the constraints that bound
the norm 1 of the two vectors of error eX,Y and eX,Z . The linearization requires the
introduction of extra variables eX,Y,+ and eX,Z,+ that are constrained to be larger than the
absolute value of eX,Y and eX,Z by (18)–(19). Observe that the application of the central
limit theorem to the right member shows that the standard deviation of the estimation
error is in O( 1√

n
). As a consequence, we will set αn := α√

n
, where α is a parameter to be

calibrated by simulations.

5.2 Regularization of the objective function
The introduction of regularization terms is not unusual in the applications of OT. For
instance, Cuturi [5] considers an entropy term that encourages sparser joint distributions.
This allows for faster computation of the solution and improves the results of classic
transport on classification problems. In domain adaptation, Courty et al. [4] also argue
that sparsity should be promoted in the OT map. In addition to an entropy term, they
minimize some `p−`q mixed norm term that encourages the affectation of each individual
to only one class. Another class of regularization techniques aim at minimizing the varia-
tions of the transportation map. In discrete OT, one issue is the lack of definition of the
gradient. Ferradans et al. [8] impose a graph structure in the discrete distributions they
wish to transport to use a classic graph gradient operator. Transposed to our setting, their
approach comes down to building an undirected graph, G = (X , EX , w), where w ∈ REX

is a vector of weights on the edges of G. The edges of G link the pairs of elements of X
defined as neighbors. Typically, an edge {xi, xj} is created if xj is among the k nearest
neighbors of xi for some distance, d, defined on X and some parameter k ≥ 1. It is then
classic to define wi,j := d(xi, xj)−1 for all {i, j} ∈ EX . Denoting Γ ∈ R|X |×D (D ∈ Z+)
the term they wish to regularize, the gradient of G at Γ is defined as

∆Γ = (wi,j(Γi,· − Γj,·)){i,j}∈EX .
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Finally, the regularity of a transport map is defined by some norm, Jp,q, of the graph
gradient:

Jp,q(∆Γ) =
∑

{i,j}∈EX

(
‖wi,j (Γi,· − Γj,·))‖q

)p
,

where ‖·‖p is the `p norm in RD.
In data recoding, it is not clear that sparsity should be sought. However, we expect

some regularity in the variations of the conditional distribution µY A,ZA|XA=x with respect
to x if the covariates are correlated to the outcomes. As a consequence, we add a regular-
ization term similar to that considered by Ferradans et al. [8], where the term we wish to
regularize is directly (γx,y,z

µ̂XA
n,x

)x∈X ,y∈Y,z∈Z . In this work, we favor the norm that will have the
smallest impact on the model. In particular, with the graph anisotropic total variation
(p = 1, q = 1), the regularization term can be linearized so that the optimization model
remains a linear program. Other typical values have been tested during preliminary tests
(p = 1, 2 and q = 1, 2) without significant impact in the numerical results. Consequently,
the regularization term is given by:

∑
{xi,xj}∈EX

wi,j ∑
y∈Y,z∈Z

∣∣∣∣∣γxi,y,z

µ̂XA

n,xi

−
γxj ,y,z

µ̂XA

n,xj

∣∣∣∣∣
 .

After linearization of this term and relaxation of the constraints on marginals, we
obtain the following regularized linear program.

P̂Rn :



v̂n = min < ĉn, γ > +λ
∑

(xi,xj)∈EX

wi,j
∑

y∈Y,z∈Z
r+
i,j,y,z

s.t. constraints (15)–(20)
γxi,y,z/µ̂

XA

n,xi
− γxj ,y,z/µ̂

XA

n,xj
≤ r+

i,j,y,z, ∀{xi, xj} ∈ EX , y ∈ Y , z ∈ Z

γxi,y,z/µ̂
XA

n,xi
− γxj ,y,z/µ̂

XA

n,xj
≥ −r+

i,j,y,z, ∀{xi, xj} ∈ EX , y ∈ Y , z ∈ Z
γx,y,z ≥ 0, ∀x ∈ X ,∀y ∈ Y ,∀z ∈ Z

(21)
The constant λ ∈ R+ is a regularization parameter to be calibrated numerically.

Remark 3. Observing that the OT model remains a linear program, there is no real
difficulty in extending the consistency results of Theorem 1 to the regularized model. The
only significant difference is that the constraint matrix of P̂Rn is an estimation, An, of the
true constraint matrix A. The extension of Theorem 1 is a consequence of the almost sure
convergence of An to A.

The method that computes a solution of the recoding problem from that of P̂Rn is
called r-joint in the remainder of the article.
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5.3 Improvement of the transport of outcomes
The validation of joint and r-joint will be mostly based on comparisons with outcome.
Since several improvements have been proposed in the above sections, we propose to adapt
outcome in order to include as many of these features as possible.

First and foremost, it can be incorrect to use the estimator µ̂ZA given in (8) if Y and Z
do not follow the same distributions in the two bases. Instead, we use similar arguments
as in Section 2.2 to derive the strongly consistent estimators

µ̂Z
A

n,z =
∑
x∈X

µ̂(XB ,ZB)
n,x,z µ̂X

A

n,x

µ̂XB

n,x

, ∀z ∈ Z. (22)

The second improvement is in the relaxation of the constraints on the marginals.
Following the same steps as in Section 5.1, we obtain the following relaxed linear program.

P̂0−R
n :



v̂n = min < ĉn, γ >∑
z∈Z

γy,z = µ̂Y
A

n,y + eYy , ∀y ∈ Y∑
y∈Y

γy,z = µ̂Z
A

n,z + eZz , ∀z ∈ Z∑
y∈Y

eYy = 0,
∑
z∈Z

eZz = 0

− eY,+y ≤ eYy ≤ eY,+y , ∀y ∈ Y
− eZ,+z ≤ eZz ≤ eZ,+z , ∀z ∈ Z
γy,z ≥ 0, ∀y ∈ Y ,∀z ∈ Z

(23)

However, we do not include any regularization term in P̂0
n, because, the one that we used

in Section 5.2 can only be defined if the decision variables are also indexed by the elements
of X .

In outcome, the solution of the linear program is then completed with the exe-
cution of the nearest neighbor procedure described in Algorithm 1. For each i ∈ A,
this algorithm tries to affect to subject i the outcome ẑi that minimizes the distance
d(i, z) := 1

|Oz |
∑
j∈Oz

d(xi, xj) among all z ∈ Z, while satisfying the marginal distributions
given by the solution of P̂0

n. The limit of this approach is that there cannot be any general
characterization of the predictions returned by Algorithm 1. Instead, it seems natural to
search for the predictions (ẑi)i∈A that minimize the total distance ∑i∈A d(i, z). This can
be formalized with the following linear program, where γ̂n is an optimal solution of P̂0−R

n
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and {nγ̂n,y,z}y∈Y,z∈Z are rounded so that they sum to n.

min
δ

∑
i∈A

d(i, z)δi,z∑
z∈Z

δi,z = 1, ∀i ∈ A∑
i∈Oy

δi,z = round(n× γ̂n,y,z), ∀y ∈ Y ,∀z ∈ Z

δi,z ≥ 0, ∀i ∈ A,∀z ∈ Z

(24)

From an optimal solution δ̂ of the above model, we then predict outcome z ∈ Z for i ∈ A
if δ̂i,z = 1. Since there is no integrality constraint in the model, δ̂ can be fractional. But
one can notice that the constraint matrix is totally unimodular with integer right-hand
side, hence every extreme solution is integer. As a consequence, we can get an integer
optimal solution δ̂ by solving the linear program with, e.g., the simplex algorithm. We
finally deduce the solution to the recoding problem by adapting (10)

µ̂Z|X
A=x,Y=y

n,z = 1
|Ox,y|

∑
i∈Ox,y

δ̂i,z, ∀x ∈ X , y ∈ Y , z ∈ Z. (25)

The overall method described in this section is called r-outcome in the remainder
of the article.

6 Experimental validation
In this section, the relevance of the models we developed is assessed by means of simulation
studies. Each database is constructed by generating n independent samples of (X, Y, Z)
according to predefined distributions that may vary between A and B. In Section 6.1, we
first describe a default simulation scenario and we introduce variations from this scenario
to study the marginal impacts of the parameters of the simulations. We then solve
every simulation of each scenario with the four methods described above: outcome,
r-outcome, joint and r-joint. The results are discussed in Section 6.3.

6.1 Simulation design
In all our simulations, (Xi, Yi, Zi)i∈A and (Xj, Yj, Zj)j∈B are obtained by discretization of
continuous random variables as follows. Let {Ui}i∈A be a family of i.i.d. 3-dimensional
random vectors with multi-variate normal distribution N (mA,ΣA). Likewise, {Uj}j∈B is
a family of i.i.d. random vectors with distribution N (mB,ΣB). For simplicity, we take
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ΣA = ΣB = Σ, where

Σ =


1 0.2 0.2

0.2 1 0.2

0.2 0.2 1

 .
In contrast, we may have mA 6= mB when the distributions of XA and XB are different.
For the discretization, for some i ∈ A, we denote as t1 the median of Ui,1, t2,1 and t2,2
the tertiles of Ui,2, and t3,1, t3,2 and t3,3 the quartiles of Ui,3. For all i ∈ A ∪ B, we then
discretize Ui,1 into two modalities by setting

Xi,1 = 1{Ui,1>t1}.

Covariate Xi,2 is the discretization of Ui,2 into three modalities defined by

Xi,2 = 1{t21<Ui,2≤t22} + 2× 1{Ui,2>t22}.

Finally, we set

Xi,3 = 1{t31<Ui,3≤t32} + 2× 1{t32<Ui,3≤t33} + 3× 1{Ui,3>t33}.

Observe that the values of t1, . . . , t33 are defined once from the quantiles of U in base A,
so that if Ui, i ∈ A, and Uj, j ∈ B, have different means, XA and XB will have different
distributions.

For all i ∈ A ∪ B, we then construct Yi and Zi by two different discretizations of a
single latent variable Vi. In the default scenario, Vi depends linearly on Ui as follows.

Vi = a1Ui,1 + a2Ui,2 + a3Ui,3 + σWi, (26)

where a ∈ R3 is a given parameter of the scenario andWi follows a standard normal distri-
bution (with {Wi}i∈A∪B i.i.d. random variables). As above, we build Yi by discretization
of Vi into three modalities using the tertiles of Vj for some j ∈ A. In contrast, Zi is
obtained by discretization of Vi into four modalities using the quartiles of Vk for some
k ∈ B.

A scenario following the above definition is completely defined by the values of mA,
mB, a, σ and n. In the remainder, σ will be set so that, R2, the coefficient of determination
of V from U reaches a given value. The default scenario, denoted as Sref , is characterized
by mA = (0, 0, 0), mB = (1, 0, 0), a = (1, 1, 1), R2 = 0.5 and n = 1000. Taking the results
obtained for Sref as reference, the impact of the elements characterizing the simulations
will be studied through the following scenarios.

Sample size. Keeping mA,mB, a and σ unchanged, we allow n to vary in

{50, 100, 250, 500, 1000, 2500, 5000, 10000}.

The resulting scenarios are denoted as Sn-50,. . . , Sn-10000, where Sn-1000≡ Sref . In every
other scenario, we set n = 1000.
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Measure of association between outcomes and covariates. We investigate the im-
pact of R2 by letting the parameter vary in {0.01, 0.05, 0.1, 0.9} while keepingmA,mB and
a unchanged. The corresponding scenarios are denoted as SR-0.01, . . . , SR-0.9 (Sref≡SR-
0.5).

Distribution of the covariates. Keeping R2 and a as in Sref , we investigate the im-
pact of differences in the distributions of XA and XB by considering the following four
scenarios:

• SX-1: mA = mB = (0, 0, 0),

• SX-2: mA = (0, 0, 0), mB = (0.5, 0, 0),

• SX-3: mA = (0, 0, 0), mB = (1, 1, 0),

• SX-4: mA = (0, 0, 0), mB = (1, 2, 0).

Non-linearity in the association between V and U . Here, we investigate the impact
of the association between V and U as expressed in (26). Keeping the values of σ, a,mA

and mB as in Sref , we modify the expression of V with nonlinear expressions as follows.

• SNL-1: Vi = a1(Ui,1)2 + a2(Ui,2)2 + a3(Ui,3)2 + σWi,∀i ∈ A ∪B,

• SNL-2: Vi = exp(a1Ui,1 + a2Ui,2 + a3Ui,3) + σWi,∀i ∈ A ∪B.

Heterogeneous groups. The expression of V as a continuous function of U involves
that the groups of subjects with same outcomes will be grossly homogeneous in the space of
the covariates. We investigate, the impact of a more heterogeneous structure by modifying
only the discretization of V . Scenario SHG is then obtained as Sref until the discretization
of V . At this stage, we also use the tertiles of V in base A, tA1 and tA2 , and the quartiles of V
in base B, tB1 , tB2 and tB3 . In contrast to the default scenario, we keep only two modalities
for Y and three modalities for Z by merging the extreme two groups as follows.

• Yi = 1{tA1 ≤Vi<tA2 }.

• Zi = 1{tB1 ≤Vi<tB2 } + 2× 1{tB2 ≤Vi<tB3 }.

Robustness to different conditional distributions. Finally, we wish to evaluate
the importance of satisfying the assumption that the distributions of Y and Z given X
are the same in the two databases. For this, we allow vector a to be different in the two
databases when computing V (see (26)). More formally,Vi = aA1 Ui,1 + aA2 Ui,2 + aA3 Ui,3 + σWi, ∀i ∈ A,

Vi = aB1 Uj,1 + aB2 Uj,2 + aB3 Uj,3 + σWj, ∀j ∈ B,
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with aA, aB ∈ R3. Keeping R2, mA and mB as in Sref , we consider the following three
scenarios.

• Sa-1: aA = (1, 1, 1) and aB = (1, 1, 2)

• Sa-2: aA = (1, 1, 1) and aB = (1, 1.5, 2)

• Sa-3: aA = (1, 1, 1) and aB = (3, 1.5, 2)

6.2 Experimental setup
Every method has been implemented using the Julia language [2], and we used the JuMP
library [7] to model linear programs. Every model is then solved with the simplex algo-
rithm of CLP solver1 on a single thread of an Intel(R) Core(TM)i7-3770 CPU @ 3.40GHz
processor.

We wish to compare the performance of the four methods, outcome, r-outcome,
joint and r-joint, on all the scenarios defined in the previous section. To evaluate the
performance of the methods, we compute the rate of error, ρ, made in the distribution
µ̂X

A|Y A,ZA

n returned by each method as

1
2EXA,Y A

(∥∥∥µ̂ZA|XA,Y A

n − µZA|XA,Y A
∥∥∥

1

)
= 1

2
∑

x∈X ,y∈Y

∥∥∥µ̂ZA|XA=x,Y A=y
n − µZA|XA=x,Y A=y

∥∥∥
1
× µXA,Y A

x,y .
(27)

where the 1
2 factor ensures that the error lies in [0, 1]. Due to the discretization per-

formed in the simulations, there is no simple analytical expression of the true distributions
µX

A|Y A,ZA and µXA,Y A . We replace them with the empirical distributions observed in a
simulation with n = 105 subjects.

As already observed, the relaxation and the regularization both involve one parameter,
respectively denoted as α and λ. Since the models should be robust to differences in the
simulations, we wish to keep the same parameter values in every scenario. To calibrate the
parameters, we run each method on ten simulations of each scenario using a wide range
of parameter values. We set the parameters to values that consistently produced small
rates of error for every scenario. More precisely, α = 0.4 in r-outcome and α = 0.4,
λ = 0.1 in r-joint.

6.3 Simulation results
Since outcome has been shown to produce better results than multiple imputation and
several machine learning methods [21], we compare our OT methods only to outcome.

1See the COIN-OR webpage of CLP for more details: https://projects.coin-or.org/Clp/wiki
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For each scenario, we execute the four OT methods to solve 100 simulations. For each
simulation, we compute an estimation of the distribution of ZA given XA and Y A, and we
also solve the symmetric problem where we search for an estimation of the distribution
of Y B given XB and ZB. The results we display for each simulation correspond to the
average of the errors made in these two distributions. For a more synthetic presentation of
the results, we draw boxplots for each scenario and each method where similar scenarios
are grouped in the same figure. Those boxplots are given in Figures 1–5. In each one
of these boxplots, the rate of error (27) appears on the ordinate axis and the scenario
appears in abscissa.

First and foremost, a global look at the results shows that the regularized transport
of joint distributions, r-joint, brings an impressive improvement when compared to the
previously developed transport of outcomes, outcome. In particular, it allows to re-
duce the average error by a factor 4.5 for Sref , and for most scenarios, r-joint estimates
µX

A|Y A,ZA with an average rate of error below 10%. The only scenarios where the im-
provement factor is less than 2 are the most nonlinear scenario, SNL-2, and that farthest
from the hypotheses of Section 2, Sa-3. The comparison of r-joint with joint and r-
outcome indicates that this improvement is due to both the initial choice of transporting
joint distributions and to the relaxation and regularization of the transport model.

For a more precise analysis, we draw our attention to the impact of the size of the
databases, n. In Figure 1, we clearly observe that n must reach a critical value before
the mean and variance of the rate of error stabilize. With the choice we made in our
simulations, the graphs indicate that there is no much hope for good estimations if n ≤
250. We also observe that the performances of r-joint and r-outcome stabilize faster
when n increases than those of joint and outcome. Such behavior was expected given
that the relaxation of the constraints on marginal distributions (see Section 5.1) is designed
to reduce the impact of errors in their empirical estimators.

As already stated in the previous sections, our method is motivated by the assumption
that covariates somehow explain the outcomes. It is thus expected that small values of R2

will yield poor results. The boxplots in Figure 2 provide more insight with this respect.
In particular, we see that the mean and variance of the rate of error are both very high
with every method when R2 = 0.01. We still observe a negative impact on the results of
r-outcome, joint and r-joint when R2 = 0.05, but they do not appear to be highly
sensitive to the coefficient of determination when it is larger than 0.1. This is a valuable
finding, since it extends the range of databases where OT methods could be relevant for
data recoding. Another observation is that the rate of error of outcome displays rather
small variations with the value of R2 as soon as R2 ≥ 0.05. Our interpretation is that the
constraint on marginal distributions of the other methods rely more on the association
between covariates and outcomes. Nonetheless, the average rate of error remains higher
with outcome than with r-joint for every value of R2.

Figure 3 allows to measure the impact of differences in the distributions of XA and
XB. More specifically, µXA and µX

B are equal in SX-1 and they are more and more
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different from SX-2 to SX-4. Contrary to the other three methods, outcome relies on
the hypothesis that these two distributions are equal. The corresponding boxplots clearly
indicate that the violation of this hypothesis has a dramatic impact on the results of this
method. In particular, the average rate of error of outcome reaches 62% in scenario
SX-4. The other methods are much less sensitive to differences between µX

A and µX
B

even though errors tend to be larger in SX-4.
In contrast, every method relies on the hypothesis that the distributions of Y and Z

given X are the same in both databases. Scenarios Sa-1 to Sa-3 measure how deviations
from this assumption impact the results. From the boxplots displayed in Figure 4, we get
that rather small deviations do not severely impact the rate of errors (see Sa-1 and Sa-2).
On the other hand, the errors observed for Sa-3 show that the methods developed in this
article may not be appropriate for large deviations from this assumption.

Finally, we investigate how the four methods behave when the simulation of V differs
from the procedure described for the default scenario. In Figure 5, we draw the boxplots
of the errors encountered for scenarios SNL-1, SNL-2 and SHG. It is interesting that
outcome seems to be less sensitive to nonlinearity in the association between U and
V than the other methods – even though it still makes more error. In particular, when
solving simulations of SNL-2, r-joint has the largest variance in the rate of error, and
it only reduces the average rate of error of outcome by less than 10%. Also, it appears
that relaxation and regularization do not bring a significant improvement when solving
simulations of SNL-2 and SHG. Indeed, the average rates of errors are very similar with
joint and r-joint for these scenarios, but the variance is smaller with joint. Overall,
the results observed for SNL-1 and SHG indicate that small deviations from the linear
association between U and V will not have a dramatic impact on the errors made by
the methods we develop in this article. In contrast, Scenario SNL-2 has been built as an
extreme case to challenge the OT methods. It is our opinion that specific methods should
be developed for such highly nonlinear association between outcomes and covariates.

7 Application on a real dataset: NCDS study
Method outcome is applied to the ELFE study in [9] to recode a self-rated overall health
outcome that is coded in different scales in two databases. As the two scales are never
simultaneously observed on the same individual, it is not possible to compare the different
methods on this study. Instead, we choose to apply the four methods on the National
Child Development Study (NCDS) study where one identical outcome has been observed
in two different scales for all individuals.

The NCDS project is a continuing survey which follows the lives of over 17,000 people
born in England, Scotland and Wales in the same week of the year 1958. It is a well-known
study, because its results have greatly contributed to the improvement of maternity ser-
vices in the United Kingdom. This survey collects specific information in many distinct
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Figure 1: Evolution of the error with the size of the databases
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Figure 2: Error in the distribution for SR scenarios
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Figure 3: Error in the distribution for SX scenarios
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Figure 4: Error in the distribution for Sa scenarios
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Figure 5: Error in the distribution for SNL scenarios
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fields like physical and educational development, economic circumstances, employment,
family life, health behaviour, well-being, social participation and attitudes. In particu-
lar, the NCDS Activity Histories 1974-2013 [18] merges all data on work and non-work
activities in successive waves into one longitudinal dataset. In this dataset, two measure-
ments scales of the social class of the participants built from profession were collected: the
Goldthorp social class 1990 scale (GSS90) and the RGs social Class 1991 scale (RGS91).
GSS90 is an ordered scale with 11 categories, whereas RGS91 is an ordered scale with
only 6 categories (see [11] for a detailed description of these two scales).

In our numerical tests, we split the dataset in two databases A and B with equal
lengths, n = 4015. We assume that the social class outcome is known only in the GSS90
scale in base A, whereas it is known only in the RGS91 scale in base B. Moreover, we
select the following four covariates for their ability to predict the outcome coded in each
of the two respective scales:

• the gender of the participant coded in 2 obviously not ordered modalities,

• the health status (4 ordered modalities),

• the employment status at wave 5 (7 not ordered modalities),

• the study level at wave 4 (assessed in 2 not ordered modalities).

In order to study the benefit of our models compared to outcome, we consider two
scenarios. In the first scenario, we arbitrarily store the first half of the NCDS subjects
in base A, and the second half in base B. As a consequence, we can assume that the
outcomes are distributed identically in the two databases. In the second scenario, we
artificially create two unbalanced databases by introducing differences in the distribution
of covariates between the two database. For this, we sample the 4015 subjects of database
A so that 80% subjects have made long studies against 20% who have made short studies.
The remaining subjects are then stored in database B.

In the fist scenario, where the two database are balanced, the average error with
outcome and r-outcome is 15.3% against 10.6% with joint and r-joint. We ob-
serve that relaxation and regularization do not improve the results. Actually, relaxation
alone even deteriorates the results, but regularization allows to compensate this deterio-
ration. This shows that using r-joint remains a good compromise in the more restricted
framework explored by [9].

In the second scenario where databases are unbalanced, the average error is 30.5%
with outcome, 18.1% with r-outcome while it is 16.2% with joint and 14.9% with
r-joint. These results highlight the importance of the choice of the estimators of marginal
distributions (see (10) and (25)) to reduce the negative impact of differences in the distri-
butions of covariates. The transport of the joint distribution of covariates and outcomes
provides an additional reduction in the recoding error. r-joint then stands out as the
best performing method.
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8 Conclusions and perspectives
This research consists in the development of a new OT method for data recoding, r-joint.
The originality is that the transport considers the joint distribution of covariates and
outcomes whereas a previous method [9], outcome, was based on the transport of the
distribution of outcomes. In r-joint, we also improve the OT model by relaxing the
constraints on marginal distributions and by adding a regularization term that smooths
the variations of the transportation map in the space of the covariates. Based on this
insight, we propose several improvements in outcome. Experimental tests on simulated
databases validate the relevance of the method by exhibiting a reduction of the data
recoding error by a factor 3 to 4 in most scenarios. What is more, r-joint is by design
less sensitive to differences in the distributions of the covariates between the two databases.
Several tests indicate that our method should be able to recode outcomes with small rates
of errors for a large range of databases.

In future research, there would be value in extending this OT method to support
covariates with continuous distributions. We have focused on discrete random variables
for simplicity, but the motivation of our method is unchanged with continuous or mixed
covariates. It is important that the OT model takes the joint distribution of outcomes
and covariates into consideration. The key challenge in such extension will be to focus on
well chosen subsets of covariates’ values so that the OT model remains tractable.

Another lead would be to design methods that are more adapted to large differences
in the distributions of outcomes given the covariates values. One could also look into data
recoding when the association between outcomes and covariates is highly nonlinear.

This work could also be extended to record linkage when the objective is to link
de-identified research datasets at the patient level and no common individual identifier is
available. Indeed, Y and Z do not need to refer to the same information in our theoretical
framework. However, in this application, the two databases A and B will have common
individuals, so the assumption that databases are independent databases is not respected.
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