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I. Introduction
An analytic solution based on a series expansion of the collision probability of two spheres under the assumption of

short-term encounters has recently been proposed in [1]. Relying on the analycity of the Gaussian distribution of the

relative positions and its Taylor expansion, this approach yields a series expansion for the classical 2D formulation of

the collision probability, where the terms are obtained as a product of Hermite polynomials. Unfortunately, this work

cannot be considered as a new contribution to the field since the method itself is nothing but a crude variety of the

method published shortly before in [2] (see also the early conference version [3]) and referenced in [1]. Indeed, this note

shows that the series expansion formulation of the probability collision given in [1] is exactly the one exposed in [2]

without a preconditionner and therefore suffers from numerical issues clearly identified in this article and due to the

so-called cancellation phenomenon. Classic and real-case numerical examples further demonstrate that the results of [1]

are of limited interest.

II. Theoretical analysis
The short-term encounter model (whose relevant assumptions are recalled in detail in [4] or [2]) for the computation

of the probability of collision between two objects considered as spheres mainly consists in combining objects’

uncertainty and projecting it onto the encounter plane defined to be perpendicular to the relative velocity when assuming

linear relative motion. Let (x, y, z) denote the mean coordinates of the relative position of the secondary object with

respect to the primary in the encounter frame (see [2] for its definition), the relative position uncertainty in the encounter

plane is described by the following bivariate Gaussian density function:
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where it is assumed without loss of generality that the standard deviations of the relative coordinates in the encounter

plane, σx, σy ∈ R
+
∗ are such that σx ≥ σy and (xm, ym) are the coordinates of the position of the secondary object

relative to the primary object in the covariance frame.

Under the assumptions of the short-term encounter model, the probability of collision involving two spherical

objects is given as a two-dimensional integral on a disk B(0, 0, R), parameterized by the radius R of the combined

spherical object in the encounter plane:
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dxdy =

∫
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G(x, y)dxdy. (2)

Several approaches have been developed for the accurate and fast computation of this two-dimensional integral. Recently,

a fully analytic method based on the power series expansion of (2) and involving Hermite polynomials has been proposed

in [1]:
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G(0, 0)R2(k+1), (3)

where Hj is the jth probabilists’ Hermite polynomials. The Authors of [1] claim that the computational algorithm based

on this expansion is original and the fastest to compute the probability of collision and that only two terms of the series

expansion are necessary for all practical cases. In this note it is firstly shown below that the proposed series expansion

may be regarded as the one proposed in [2], but without a preconditionner which is necessary for an efficient and

accurate numerical evaluation of the series. Secondly, it is shown based on [2], that the terms of the unpreconditioned

series can be more efficiently evaluated than the method proposed in [1]. However, as already discussed in [2], these

terms are alternating in sign and the series cannot be accurately evaluated without the preconditionner, as finally shown

on practical cases.

Along the lines of the derivations presented in [2], the series expansion (3) may be obtained as follows:

- Compute the closed-form of the Laplace transform h(λ) = Lg(λ), of the function g of the variable R2, for all λ,

Re(λ) ≥ κ for any κ ∈ R+∗;

- Derive the Linear Ordinary Differential Equation (LODE) with polynomial coefficients satisfied by h and the

associated initial condition (h is a so-called differentially finite function);

- After analyzing the singularities of h(λ), consider its Laurent series expansion h(λ) =
∞∑
k=0

αkλ
−(k+2);

- From the previous LODE, deduce the recurrence satisfied by the coefficients αk ;

- The term by term inverse Laplace transform of the expansion of h(λ) provides the power series expansion (4) of g;

g(R2) =

+∞∑
k=0

rkR2(k+1). (4)

The advantage of the above derivation is that the recurrence for the coefficients rk of the power series expansion may be
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readily obtained as

(k + 5)(k + 4)2(k + 3)(k + 2)rk+4 = [n3 − kd4]rk + [n2 − (k + 1)d3](k + 2)rk+1
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In the reference [2] (see also [5, Propositions 1.1.10 and 1.6.3]), it is shown that the function g is an entire function (or a

real analytic function on R) and therefore its power series expansion at R2 is unique and we have that
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Remark 1 The equality between the power series expansion (3) and (4) may also be checked after simple but lengthy

computations by showing that the coefficients of (3) satisfy the recurrence (5) and its initial conditions (6).

The linear recurrence (5) obtained for the computation of the coefficients of the power series of (2) is interesting in

itself since it simply leads to a computational algorithm linear in the number of terms of the truncated sum, while the
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formulation (3) induces a quadratic algorithm. In addition, it allows to readily check that not all the coefficients rk of the

series (3) are positive, preventing to get a lower bound for the exact probability of collision by computing any arbitrary

partial sum of order N . This, as a matter of fact, implies that the formulation (3) may suffer from numerical instability

due to the fact that the computation in finite precision arithmetic of such a partial sum is prone to cancellation [6].

This means that for consecutive terms that are close in magnitude, but of different signs, their sum in finite precision

arithmetic contains very few correct significant digits. This makes the power series evaluation impractical for large

values of R2. Instead of directly expanding (2), it has been therefore proposed in the reference [2] to expand the

function ψ · g where ψ : R2 7→ exp[pR2] is a so-called preconditionner, in order to remedy these observed numerical

shortcomings. Some insights about the right choice for the parameter p are given in [7]. The function (2) is finally

obtained as a simple product between an exponential term and a convergent power series with positive coefficients. As a

very interesting by-product, it is worth mentioning that analytic bounds on the truncation error may also be derived

(only for the preconditionned series, whose terms are positive).

Finally, we disagree with the claim of the Authors about formulation (3) that "its first two terms alone are sufficient

for the computation of the probability of collision". Well-known numerical examples borrowed from the literature [8]

and practical cases extracted from the database of CNES (French spade agency) illustrate this particular point in the

next section.

III. Numerical analysis
In this section, it is shown on four examples that formulation (3) may fail to compute accurately the probability of

collision when the parameters of the collision meet a specific configuration (R2/2σ2
y >> 1. The chosen numerical

examples are the test cases 3 and 5 from the reference [8] and CNES database cases 1,2 which are related to Smos

(ocean ans surface soil monitoring, Sun-synchronous orbit) and Jason (altimetry satellite, circular orbit) respectively.

Case label σx σy R xm ym σx/σy R/σy

Alfano case 3 114.25852 1.41018 15 0.15916 -3.88721 81.02407 10.63694
Alfano case 5 177.81090 0.03733 10 2.12301 -1.22179 4763.21725 267.88107
Database case 1 218.27304 3.58024 20 164.4 30.19 56.69083 5.19449
Database case 2 129.79788 3.50240 20 25.61622 -0.15315 37.05967 5.71037

Table 1 Inputs for test cases from [8] and CNES database.

The complete numerical results are given in Table 2, where the first column presents the probability of collision

computed with a Monte Carlo approach applied to the 2D integral (2). To this end, a random sampling of Nm.c. relative

position vectors in the encounter is generated according to the projected covariance matrix. For each sample i, one

defines δi = 1 if (x, y) ∈ B(0, R) and δi = 0 otherwise. The collision probability is then computed as
Nm.c .∑
i=1

δI/Nm.c..

The sampling is chosen according to a confidence level of 95% and a relative accuracy of 0.1. Columns 2 and 3 of Table
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2 show the results obtained by the recurrence proposed by [2] (with preconditionning) and the number of terms needed

to have 5 correct significant digits. The results when applying (4) with two terms and finally the results of the recurrence

(5) with the same number of terms as the one with the preconditionner are given in columns 4, 5 respectively. The last

column gives the minimum number of terms needed to have 5 correct significant digits with the non preconditionned

recurrence (5).

Case label Monte Carlo Rec. from [2] Rec. from [1] (N = 2) Rec. from [1]
Alfano case 3 1.005E-01 1.004E-01 54 1.47436 1.355E+19 -
Alfano case 5 4.450E-02 4.451E-02 18530 1.76821E-225 - -
Database case 1 6.578E-05 6.768E-05 30 1.63823E-12 6.7686E-05 30
Database case 2 1.181E-01 1.1823E-01 23 -1.32378 3.6063E+02 46

Table 2 Results for test cases from [8] and CNES database obtained by algorithms from [2] and from [1].

The first two examples of Alfano were originally chosen to compare the efficiency of several methods of the literature

and are quite challenging. Indeed, the number of terms to be considered in the series expansion from [2] is important, in

particular for case 5. Meaningless results are obtained in both Alfano’s cases when using only the first two terms of the

series expansion proposed in [1], contradicting the claim in the conclusion of the mentioned paper. Interestingly enough,

the situation gets worse if an increasing number of terms is used in the series expansion to compute the probability

as shown in the last column of Table 2. The same trend is noted for the two other numerical examples for the results

obtained with the first two terms of the series expansion given in [1], providing evidence contrary to what is stated in [1]

on real-case scenarios. Finally, if the same number of terms is required for the two recurrences in the first database case,

the second shows clearly the defect of the non preconditionned series with twice the required number of terms to reach

the same precision.

IV. Conclusion
The series expansion of the collision probability under the assumptions of short-term space encounters, presented in

[1] is not genuinely new since an improved version has been already published in [3] and [2]. Moreover, the refinement

used in these references appears to be mandatory to get a safe computation of the probability of collision for hard cases

as illustrated on several examples. Finally, the claim that only two terms of the series expansion are sufficient from a

practical point of view is contradicted by numerical real cases.

Acknowledgement
The Authors would like to thank Sophie Laurens from CNES for having provided them with the two real-case

scenarios.

5



References
[1] García-Pelayo, R., and Hernando-Ayuso, J., “Series for Collision Probability in Short-Encounter Model,” Journal of Guidance

Control and Dynamics, Vol. 39, No. 8, 2016, pp. 1908–1916. doi:10.2514/1.G001754.

[2] Serra, R., Arzelier, D., Joldes, M., Lasserre, J., Rondepierre, A., and Salvy, B., “Fast and accurate computation of orbital collision

probability for short-term encounters,” Journal of Guidance Control and Dynamics, Vol. 39, No. 9, 2016, pp. 1009–1021.

doi:10.2514/1.G001353.

[3] Serra, R., Arzelier, D., Joldes, M., Lasserre, J., Rondepierre, A., and Salvy, B., “A New Method To Compute the Probability of

collision for short-term space encounters,” Proceedings of the AAS-AIAA Astrodynamics Specialist Conference, AAS 2014-4366,

San Diego, California, USA, 2014. doi:10.2514/6.2014-4366.

[4] Chan, F., Spacecraft Collision Probability, American Institute of Aeronautics and Astronautics, Reston, Virginia, USA, 2008.

[5] Krantz, S., and Parks, H., A Primer of Real Analytic Functions, Advanced Textbooks in Mathematics, Vol. 4, Birkhäuser Verlag,

Basel, Switzerland, 1992.

[6] Gawronski, W., Müller, J., and Reinhard, M., “Reduced cancellation in the evaluation of entire functions and applications to the

error function,” SIAM J. Numerical Analysis, Vol. 45, No. 6, 2007, pp. 2564–2576.

[7] Serra, R., Arzelier, D., Joldes, M., Lasserre, J.-B., Rondepierre, A., and Salvy, B., “A Power Series Expansion based Method

to compute the Probability of Collision for Short-term Space Encounters,” Research report, LAAS-CNRS, Mar. 2015. URL

https://hal.archives-ouvertes.fr/hal-01131384, rapport LAAS n° 15072.

[8] Alfano, S., “Satellite conjunction Monte Carlo analysis,” Advances in the Astronautical Sciences, Vol. 134, 2009, pp. 2007–2024.

6

https://hal.archives-ouvertes.fr/hal-01131384

	Introduction
	Theoretical analysis
	Numerical analysis
	Conclusion

