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Abstract The Lagrangian two-dimensional approach of scalar gradient kinemat-
ics is revisited accounting for molecular diffusion. Numerical simulations are per-
formed in an analytic, parameterized model flow, which enables considering dif-
ferent regimes of scalar gradient dynamics. Attention is especially focused on the
influence of molecular diffusion on Lagrangian statistical orientations and on the
dynamics of scalar gradient alignment.
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1 Introduction

A number of basic and practical questions in fluid dynamics are connected to the
transport of vectors [1,2], an issue therefore relevant to many fields – process engi-
neering, reacting flows, mixing, astrophysical flows, etc. Vectors defining material
lines or surfaces, vorticity, the vorticity gradient in two-dimensional flows, gradi-
ents of scalar quantities such as concentration or temperature, the magnetic field
vector in magnetohydrodynamics, are transported vectors.

Most often, analyses are with regard the growth – or decay – of the magnitude
of the transported vector. The growth of the scalar gradient, for example, indicates
the production of small scales in the scalar field; addressing the dynamo effect
needs to determine the physical conditions in which the magnetic field vector is
amplified. The bare kinematics of vector amplification – in non-diffusive tracer
advection, kinematic dynamo, or inviscid vortex stretching – is a matter of strain
level and orientation within the strain eigenframe. Just like strain intensity, vector
orientation is essential to the process and was investigated in many studies [3–7]
(see [2] for more references).
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A general approach of vector kinematics is especially difficult when an active
vector such as vorticity, the magnetic field in the dynamic regime, or the gradient
of a non-passive scalar is considered [6,8,9]. Lapeyre et al. [5] showed that the
analytic approach is tractable for a passive, non-diffusive vector – the gradient of
a tracer in their specific case – transported by a two-dimensional flow, provided
that an adiabatic hypothesis is made (Lagrangian variations of strain persistence
are slow enough for the vector to respond to the velocity gradient tensor). An
extension to three-dimensional flows was proposed [10,11], and the relaxation of
the adiabatic hypothesis was examined [12,13].

By breaking the universal nature of the inviscid vector kinematics strictly de-
termined by the velocity gradient tensor, molecular diffusion makes general anal-
yses much harder. However, viscous and diffusive effects deserve special attention.
The purely inertial view indeed does not account for the full process, for there
is a range of scales where the mechanics of vectors is itself affected by viscous
and diffusive effects. This point is especially crucial in the study of cascade and
small-scale phenomena. Modelling vector and tensor fields [14,15,11] also needs
addressing the influence of molecular processes.

Some previous works specifically addressed the effects of viscosity or molecu-
lar diffusion on vector alignment. In particular, viscosity was shown to influence
vorticity alignment [16] and vortex lines geometry [17,18]. In two-dimensional
turbulence, Lapeyre et al. [19] analyzed the role of molecular diffusion on the ori-
entation dynamics of scalar gradient and vorticity gradient, and Protas et al. [20]
studied the Reynolds-number dependence of the vorticity gradient alignment. In
three-dimensional turbulence, the effects of both the Reynolds and Schmidt num-
bers on the alignment of the scalar gradient were examined by Vedula et al. [21].
Brandenburg et al. [22] addressed the influence of the magnetic diffusivity on the
alignment of flux lines of the magnetic field. Recently, a Eulerian numerical study
[23] confirmed the basic analysis of Constantin et al. [18] regarding the alignment
and structure of a diffusive vector field.

The present study is based on a Lagrangian approach. The latter enables the
simulation of the kinematics of a scalar gradient at infinite Péclet number which
is considered as the reference case. Accounting for molecular diffusion in the La-
grangian procedure is performed by simultaneously solving the Eulerian equations
for the scalar gradient components. The influence of molecular diffusion upon align-
ment properties is checked for decreasing Péclet number. The analysis is specifi-
cally focused on the way in which the inviscid alignment and dynamics of scalar
gradient orientation are altered as the Péclet number is decreased. The analytic,
two-dimensional, model flowfield was already shown to include the essential fea-
tures of flow structure for investigating the kinematics of transported vectors [23].
By simply changing the value of a flow parameter, different regimes are considered
as regards the degree of adiabaticity of scalar gradient dynamics. In this respect,
the analysis is more general than the previous, Eulerian one [23].

The equations for the gradient of a scalar are given in Section 2. The model
flowfield is defined in Section 3. Section 4 is devoted to the description of the nu-
merical method. The numerical results are discussed in Section 5, and conclusions
are drawn in Section 6.
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2 Equations for the gradient of a scalar

In an incompressible flow, the Lagrangian equation for the gradient, G = ∇Θ, of
a scalar Θ is:

DG

Dt
= −A

T .G+D∆G, (1)

where A is the velocity gradient tensor, and D is the diffusion coefficient of the
scalar.

With θ the orientation of G in the fixed frame of reference, the equations for
the norm and the orientation of vector G = G(cos θ, sin θ) are [5]:

DG

Dt
= −σ

2
sin[2(θ+ Φ)]G+D∆G−D|∇θ|2G, (2)

Dθ

Dt
=

1

2
{ω − σ cos[2(θ + Φ)]}+D∆θ + 2D

∇G.∇θ
G

, (3)

where σ = (σ2

n + σ2

s)
1/2

is the strain intensity, with σn = ∂u/∂x − ∂v/∂y and
σs = ∂u/∂y + ∂v/∂x, the normal and shear strain components, respectively; ω =
∂v/∂x−∂u/∂y is the vorticity and Φ, given by tan(2Φ) = σn/σs, is the orientation
of the strain principal axes in the fixed frame of reference, (x, y).

Special alignments of the scalar gradient are θd = −Φ + π/4 (extensional
strain direction), for which the norm growth rate reaches its minimum value,
−σ/2, and θc = −Φ− π/4 (compressional strain direction), for which it takes the
maximum value, σ/2. At infinite Péclet number, an additional special alignment,
the equilibrium direction, can be defined when strain prevails (Section 5.1.1).

Equations (2) and (3) show the effects of the flow and of molecular diffusion on
the vector norm and orientation. The action of the flow consists of the straining
of the vector norm – first term on the right-hand side of Eq. (2) –, and changes in
angle θ due to strain and rotation – first term on the right-hand side of Eq. (3).

Diffusive terms split up into linear, Laplacian terms, and non-linear terms.
The former,D∆G and D∆θ, express diffusive smoothing; the latter, −D|∇θ|2G =
Dnl(G) and 2D(∇G.∇θ)/G = Dnl(θ), express dissipation caused by angle gradi-
ents, and diffusive tilting resulting from the interaction between norm gradient
and orientation gradient. Detailed analyses of these terms were made in previous
studies [18,23].

3 Model flow

As was done in a previous, Eulerian study [23], the flow is specialized to a two-
component velocity field, namely (u, v, w) = (∂ψ/∂y,−∂ψ/∂x,0), with the general
form of the streamfunction, ψ, given by:

ψ = α{cos[y + cos(t)] + sin[x+ sin(t)]}+ δ[cos(y)− sin(x)], (4)

where α =
√

3/2− δ2. This family of flows was defined by Tanner and Hughes [24]
by combining the Galloway-Proctor, circularly polarized, unsteady flow [25], with
a steady, two-dimensional, cat’s-eye-type flow [26]. Making δ spanning the range
[0,

√

3/2] continuously shifts the flow characteristics from those of the unsteady
flow to those of the steady flow.
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Strain intensity, vorticity, and orientation of strain principal axes are easily
obtained from the velocity field resulting from the streamfunction defined by Eq.
(4). In particular, the orientation of strain principal axes is a piecewise function:

Φ =

{

0 for σs > 0,
π/2 for σs < 0.

(5)

The scalar gradient, G, thus undergoes an unsteady forcing through its orientation
with respect to the strain principal axes; when it is aligned with the compressional
direction, a sudden π/2-step in Φ reverses this alignment by rushing the extensional
axis against G. This special alignment dynamics was already analyzed for the
passive vector [27].

The study was made for the pure unsteady flow (δ = 0), the pure steady flow
(δ =

√

3/2), and a combination of both (δ = 0.7). The velocity field is composed

of alternating vortices and straining regions [23]; unless δ =
√

3/2, this spatial
structure is unsteady. In this simple flow, the Okubo-Weiss parameter,Q = σ2−ω2,
reliably distinguishes prevailing strain (Q > 0) from prevailing rotation (Q < 0).
As Φ essentially takes constant values separated by sudden steps, a Lagrangian
criterion including DΦ/Dt [5] does not bring further information in the case under
study.

4 Numerical solution

4.1 Non-diffusive scalar

When neglecting molecular diffusion, the Lagrangian dynamics of the scalar gra-
dient orientation was derived from the non-diffusive form of Eq. (3),

Dθ

Dt
=

1

2
{ω − σ cos[2(θ + Φ)]}, (6)

together with the tracking of particles, solvingDx/Dt = u with x being the position
vector, and u the analytic velocity field. In Eq. (5), σ, ω, and Φ were known
analytically at each position of a particle. The numerical method was a fourth-
order, explicit Runge-Kutta scheme. The Lagrangian particles were initially set on
a 200× 200 uniform mesh over the spatial domain (0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π), and
Lagrangian statistics were achieved over the instantaneous values obtained along
all the Lagrangian paths. The numerical procedure was run until the statistics –
essentially, the probability density functions (p.d.f’s) – converged.

4.2 Diffusive scalar

The Lagrangian approach is less straightforward in the diffusive case. The numer-
ical procedure included a Eulerian and a Lagrangian steps.

– Eulerian step: the Eulerian equation for G,

∂G

∂t
+ u.∇G = −A

T .G+D∆G, (7)
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was solved at each time step for the components of G,G1 andG2. The numerical
domain was a 2π × 2π square with periodic boundary conditions. The finite
difference scheme was fourth-order in space [28], and the resolution was explicit
in time. The gridding was uniform, with ∆x = ∆y.
The initial conditions for G were:

G1(x, y, 0) = 0.5 sinx ; G2(x, y, 0) = 1 + 0.5 cos y. (8)

With these conditions, the mean scalar gradient has a non-zero component
along the y direction that keeps up the scalar gradient field;

– Lagrangian step: Equation (1) was solved for the components of G along the
Lagrangian trajectories. As in the non-diffusive case, a fourth-order, explicit
Runge-Kutta scheme was used. The components of AT were known analytically
at each point.
At each particle position, the diffusive terms were computed with a five-point
approximation.When computing the second-order spatial derivative in x (resp.
y) direction, the central point was given by the particle position. The values
of G1 and G2 at the other four points in x (resp. y) were interpolated over the
Eulerian field.
Components G1 and G2 were subsequently used to derive the Lagrangian ori-
entation and norm of vector G.

The main parameter of the analysis is the Péclet number, Pe = UL/D, where
U and L are a velocity- and a lengthscale, respectively. In this study, L = 2π and
U =

√
3 – the value around which the maximum velocity within the field oscillates.

All quantities are nondimensional.
In the diffusive case, two values of Pe, namely 10 and 80, were considered. The

mesh size was 150× 150 and 400× 400, respectively.

5 Results and discussion

5.1 Infinite Péclet number

5.1.1 Prevailing strain

When strain prevails, and if strain persistence – the ratio of effective rotation to
strain – is constant, the non-diffusive orientation equation [Eq. (6)] has a stable
fixed point that defines an equilibrium orientation resulting from the competing
actions of strain and rotation [5]. If strain persistence varies along Lagrangian
trajectories, this direction expresses local equilibrium; it may be seen as the orien-
tation the scalar gradient would take if its response was infinitely fast as compared
to strain persistence variations. In the present case, the local equilibrium orienta-
tion within the strain eigenframe is given by ζeq = − arccos(ω/σ) – with σ2 > ω2;
variable ζ is defined as ζ = 2(θ + Φ). Note that ζeq is distinct from the compres-
sional direction (ζc = −π/2); it is only for σ2 ≫ ω2 that ζeq ≃ ζc. The equilibrium
direction lies within the ‘compression area’, for |θeq − θc| = π/4 at most.

Figure 1 shows the p.d.f of (ζc − ζeq)/π for δ = 0, 0.7, and
√

3/2. The mean
angular gap, 〈(ζc− ζeq)〉/π, between the compressional and equilibrium directions
is 0.12 for δ = 0 and

√

3/2, but is larger (0.18) for δ = 0.7.
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Fig. 1 P.d.f of angular gap between the compressional and the equilibrium directions, condi-
tioned on prevailing strain; a δ = 0; b δ = 0.7; c δ =

√

3/2

Incidentally, Fig. 2 clearly shows that it is the equilibrium direction that draws
the scalar gradient; the negative values of Seq = sign(θ−θeq).Dθ/Dt are definitely
more frequent than those of Sc = sign(θ − θc).Dθ/Dt, as measured by A−

eq =
∫

0

−1
SeqdSeq and A−

c =
∫

0

−1
ScdSc; as all Lagrangian angle derivatives, Dθ/Dt

is normalized by [0.5 (ω2 + σ2)]
1/2

. Moreover, the negative values of Sc, in fact,
result from the attraction of the scalar gradient toward the equilibrium direction
when G is aligned outside the range [θc, θeq] – or [θeq, θc]; when conditioning by
θ being inside this range – i.e. (θ − θc)(θ − θeq) < 0 –, Sc is essentially positive,
which plainly shows that the attracting direction is not the compressional, but the
equilibrium orientation.
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Fig. 2 a P.d.f’s of Seq (solid line) and Sc (dashed line); b P.d.f of Sc conditioned on (θ −

θc)(θ − θeq) < 0; the p.d.f’s are plotted for δ = 0 and prevailing strain

Alignment of the scalar gradient with the equilibrium direction indicates how
far the orientation dynamics is adiabatic [12,13,29]. Adiabaticity of orientation
dynamics has a physical ground. As suggested by alignment statistics, there is
indeed some indication that the orientation dynamics of scalar gradient is adi-
abatic in turbulent flows. Preferential alignment with the equilibrium direction
was attested in numerical simulations of two-dimensional turbulence [5] as well as
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in three-dimensional turbulence by using stochastic modelling [11]. Non-adiabatic
regimes, on the other hand, may be achieved by monitoring non-turbulent flows,
for example through any unsteady forcing device [29].

Consistently with the findings for the passive vector [27], the alignment dy-
namics is close to adiabaticity for δ = 0.7 and, to a lesser extent, for δ = 0. By
contrast, it is non-adiabatic for δ =

√

3/2. This feature is suggested by Fig. 3
displaying the p.d.f of ζo = (ζ − ζeq)/π; note that 〈ζo〉 = 0.45, 0.31, and 0.65 for
δ = 0, 0.7, and

√

3/2, respectively. The degree of adiabaticity is even more clear

from the p.d.f of the Lagrangian angle derivative plotted for δ = 0, 0.7, and
√

3/2
(Fig. 4).
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Fig. 3 P.d.f of angular gap between scalar gradient orientation and equilibrium direction,
conditioned on prevailing strain; a δ = 0; b δ = 0.7; c δ =

√

3/2
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Fig. 4 P.d.f of the Lagrangian angle derivative, conditioned on prevailing strain; a δ = 0; b
δ = 0.7; c δ =

√

3/2

The p.d.f of the gap between ζ and the compressional direction, ζ⋆ = (ζ −
ζc)/π, is plotted in Fig. 5. The scalar gradient experiences compressional strain
within the range −0.5 ≤ ζ⋆ ≤ 0.5, and extensional strain outside. Interchanging
the compressional strain and the extensional one, the scalar gradient dynamics is
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similar to the passive vector dynamics already analyzed in this model flow [27].
For δ =

√

3/2, the scalar gradient spends half of the time under the influence
of compression; the p.d.f peaks at ζ⋆ = 0 and ±1 respectively correspond to
alignment with compression and extension, and result from the bimodal regime
caused by the alternating tilting of strain principal axes [27]. The double peak in
the p.d.f of ζ⋆ for δ = 0.7 is due to alignment with the equilibrium direction; the
best alignment with the equilibrium direction occurs for δ = 0.7 (Fig. 3), and it
is for the latter that the mean angular gap between the compressional and the
equilibrium directions is the largest (Fig. 1).
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Fig. 5 P.d.f of angular gap between scalar gradient orientation and compressional direction,
conditioned on prevailing strain; a δ = 0; b δ = 0.7; c δ =

√

3/2

5.1.2 Prevailing rotation

As expected, the scalar gradient experiences a weaker influence of compression
when rotation prevails, except in the case δ =

√

3/2 for which the p.d.f of ζ⋆ is,
again, bimodal (Fig. 6).

ζ * 

P
(ζ

 *
|Q

 <
 0

)

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

ζ * 

P
(ζ

 *
|Q

 <
 0

)

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

(b)

ζ * 

P
(ζ

 *
|Q

 <
 0

)

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

(c)

Fig. 6 P.d.f of angular gap between scalar gradient orientation and compressional direction,
conditioned on prevailing rotation; a δ = 0; b δ = 0.7; c δ =
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3/2
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The orientation equation has no fixed point when rotation prevails [5], and
the scalar gradient orientation never reaches equilibrium, as shown by the p.d.f
of the Lagrangian angle derivative (Fig. 7). The p.d.f peaks near Dθ/Dt = ±0.7
are easily explained by the fact that the normalized Lagrangian angle derivative,

(ω − σ cos ζ)/2.[(ω2 + σ2)/2]
−1/2

, is close to ±
√
2/2 for ω2 >> σ2.
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Fig. 7 P.d.f of the Lagrangian angle derivative, conditioned on prevailing rotation; a δ = 0;
b δ = 0.7; c δ =

√

3/2

5.2 Finite Péclet number

5.2.1 Prevailing strain

In the diffusive case, θeq is not the fixed point of the orientation equation anymore,
but is used as a reference direction to check the effect of molecular diffusion upon
the scalar gradient orientation. Figure 8 displays the p.d.f’s of Seq, and Sm =
sign(θ − θeq).(Dθ/Dt)m, for δ = 0, at Pe = 80 and Pe = 10; (Dθ/Dt)m is the
mechanical part of the Lagrangian derivative of orientation, as expressed by the
first term of Eq. 3. The p.d.f of Sm clearly shows the attraction of the equilibrium
direction upon the scalar gradient; A−

m =
∫

0

−1
SmdSm = 0.87 for Pe = 80, and

0.98 for Pe = 10 – to be compared to 0.84 at infinite Péclet number (Fig. 3). The
influence of molecular diffusion is accounted for by Seq – which is computed with
the full Lagrangian derivative,Dθ/Dt. As shown by the p.d.f of Seq, the attraction
exerted by the equilibrium direction is offset by molecular diffusion. However, it
is still significant at Pe = 10 for which A−

eq = 0.70 (A−
eq = 0.75 at Pe = 80).

The p.d.f’s of the angular gaps, ζo – with respect to the equilibrium direction
–, and ζ〈〉 – with respect to the direction of the mean scalar gradient –, are plotted
in Fig. 9, at Pe = 80 and 10, for δ = 0, 0.7, and

√

3/2. Except for δ =
√

3/2, the
p.d.f.’s of ζo at Pe = 80 are not much different from those computed at infinite
Péclet number (Fig. 3).

If the scalar gradient dynamics is adiabatic (or at least nearly adiabatic) at
infinite Péclet number (δ = 0 and δ = 0.7), decreasing the latter makes the scalar
gradient shifts away from the equilibrium direction as it is drawn towards the
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Fig. 8 a P.d.f of Sm; b p.d.f of Seq ; δ = 0; dashed line: Pe = 80; solid line: Pe = 10

mean scalar gradient. This is especially clear for δ = 0.7; the p.d.f of ζo peaks
at zero for Pe = 80 and then gets double-peaked, while the p.d.f of ζ〈〉 shows
the opposite. This trend is confirmed at Pe = 5 (not shown). These results are
consistent with the numerical simulations by Lapeyre et al. [19] who showed that
molecular diffusion weakens alignment with the equilibrium direction.

In the non-adiabatic case (δ =
√

3/2) the scenario is different. At infinite Péclet
number, the alternating tilting of strain principal axes makes the scalar gradient
align either with the compressional, or the extensional direction (Fig. 5). Decreas-
ing the Péclet number alters these aligments by promoting alignment with the
mean scalar gradient direction. Alignment with respect to the equilibrium direc-
tion gets even weaker as a result of misalignment with respect to the compressional
direction. These results thus show molecular diffusion overcoming the mechanisms
that rule the scalar gradient alignment at infinite Péclet number (Section 5.1.1),
namely the competing actions of strain and rotation in the adiabatic regime, and
the unsteady orientation of strain axes in the non-adiabatic one.

The p.d.f’s of alignment with respect to the compressional direction are plot-
ted in Fig. 10. They show a growing misalignment for the three values of δ as the
Péclet number is decreased. For δ = 0 and δ = 0.7, the latter is of course caused
by deviation from the equilibrium direction. The numerical simulations of three-
dimensional turbulence by Vedula et al. [21], too, show that misaligment with the
compressional direction slightly increases when the Péclet number is decreased.
One can also mention the simulations of Protas et al. [20] in two-dimensional tur-
bulence, showing a growing misalignment of the vorticity gradient with decreasing
Reynolds number.

The effect of molecular diffusion on the orientation dynamics is displayed by
the p.d.f’s of the Lagrangian angle derivatives, Dθ/Dt, (Dθ/Dt)m, and (Dθ/Dt)d
– the diffusive part of Dθ/Dt – at Pe = 10 (Fig. 11). Note that (Dθ/Dt)m is
bounded, but that (Dθ/Dt)d – and thus Dθ/Dt – are not; plots are however re-
stricted to derivative values ranging within [-1,1]. Comparison with p.d.f’s plotted
at infinite Péclet number (Fig. 4) shows that molecular diffusion strongly alters the
response of the scalar gradient to flow mechanical actions. For δ = 0, (Dθ/Dt)m
seriously departs from equilibrium; and this is even more obvious for δ =

√

3/2.
Equilibrium of (Dθ/Dt)m is affected to a lesser extent for δ = 0.7, the value of
δ ensuring quasi-adiabaticity of orientation dynamics at infinite Péclet number.
The diffusive part of the Lagrangian derivative, (Dθ/Dt)d, is far from equilibrium
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Fig. 9 P.d.f’s of angular gaps, ζo (dashed line) and ζ〈〉 (solid line), for Pe = 80 and Pe = 10,

conditioned on prevailing strain; a and d δ = 0; b and e δ = 0.7; c and f δ =
√

3/2

as well, no matter the value of δ. However, the combination of (Dθ/Dt)m and
(Dθ/Dt)d brings about equilibrium of the total derivative. The p.d.f of Dθ/Dt
strongly peaks at zero for δ =

√

3/2; the degree of equilibrium is lesser for δ = 0
and δ = 0.7.

5.2.2 Prevailing rotation

The effect of molecular diffusion on alignment p.d.f’s is qualitatively similar when
rotation prevails. The scenario is different, for at infinite Péclet number prevailing
rotation precludes any equilibrium direction. As the Péclet number is decreased
(Fig. 12), molecular diffusion tends to offset the rotation of the scalar gradient
while promoting alignment with the direction of the mean scalar gradient. As a
result, the moderate alignment with the compressional direction (Fig. 6) is weak-
ened further.

Figure 13 shows that the mechanical part of the Lagrangian angle derivative
is off equilibrium, as already observed at infinite Péclet number (Fig. 7). As in
the case of prevailing strain, equilibrium of the total derivative is ensured by the
combination of the mechanical and the diffusive parts.
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Fig. 10 P.d.f’s of angular gap between scalar gradient orientation and compressional direction,
for Pe = 80 and Pe = 10, conditioned on prevailing strain; a and d δ = 0; b and e δ = 0.7; c
and f δ =

√

3/2
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Fig. 11 P.d.f’s of (Dθ/Dt)m (dashed line), (Dθ/Dt)d (thin solid line), and Dθ/Dt (bold solid

line), for Pe = 10, conditioned on prevailing strain; a δ = 0; b δ = 0.7; c δ =
√

3/2

6 Conclusion

The effect of molecular diffusion on the orientation dynamics of a scalar gradient
was studied from a Lagrangian view in an analytic, parameterized, model flowfield.
With regard to the degree of adiabaticity of the orientation dynamics at infinite
Péclet number, three types of flow were considered: a steady flow (δ =

√

3/2), an
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Fig. 12 P.d.f’s of angular gaps, ζ∗ (dashed line) and ζ〈〉 (solid line), for Pe = 80 and Pe = 5,

conditioned on prevailing rotation; a and d δ = 0; b and e δ = 0.7; c and f δ =
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Fig. 13 P.d.f’s of (Dθ/Dt)m (dashed line), (Dθ/Dt)d (thin solid line), and Dθ/Dt (bold solid

line), for Pe = 10, conditioned on prevailing rotation; a δ = 0; b δ = 0.7; c δ =
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3/2

unsteady flow (δ = 0), and a combination of both (δ = 0.7). From the former to
the latter, adiabaticity of the orientation dynamics was increasing.

In the non-diffusive case, the numerical solution of the Lagrangian equation for
the scalar gradient orientation was straightforward.When accounting for molecular
diffusion, the Lagrangian orientation was derived from the Lagrangian equations
for the scalar gradient components. Computing diffusive terms in these equations
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needed to simultaneously solve the Eulerian equations. Statistics were performed
along the trajectories of Lagrangian particles. The scalar field was sustained by a
mean gradient. Two values of the Péclet number were considered, namely Pe = 80
and Pe = 10.

At infinite Péclet number, Lagrangian statistics revealed the bare mechanical
action of the flow upon the orientation dynamics of the scalar gradient:

– for prevailing strain, attraction of the scalar gradient towards the equilibrium
direction – distinct from the compressional direction – is obvious. Orientation
dynamics is close to equilibrium for δ = 0 and δ = 0.7 – near-adiabatic regime;
it is off equilibrium for δ =

√

3/2 – non-adiabatic regime. In the adiabatic
case, the degree of alignment with the compressional direction is explained by
the angular gap between the latter and the equilibrium direction;

– for prevailing rotation, orientation dynamics is off equilibrium no matter the
value of δ, and alignment with the compressional direction is poor, as expected.

These results were used as reference data to check the influence of molecular
diffusion.

For finite Péclet number, the following results were derived:

– for prevailing strain, one has to distinguish whether the orientation dynamics
at infinite Péclet number is adiabatic or not.
In the adiabatic case, the mechanical action of the flow still draws the scalar
gradient towards the equilibrium direction, while molecular diffusion promotes
alignment with the direction of the mean scalar gradient. At low Péclet num-
ber, the diffusive effect overcomes the mechanical action and draws the scalar
gradient away from the equilibrium direction. As a result, the scalar gradient
shifts away from the compressional direction as well. This scenario may take
place in strain regions of turbulent flows.
In the non-adiabatic case, molecular diffusion tends to offset the effect of un-
steadiness of strain principal axes orientation – that leads to a bimodal align-
ment of the scalar gradient in the present case. This kind of situation may
occur in non-turbulent flows undergoing external unsteady forcing;

– for prevailing rotation, molecular diffusion competes with the unceasing rota-
tion of the scalar gradient within the strain eigenframe, and promotes align-
ment with the direction of the mean scalar gradient; as a result, alignment
with the compressional direction gets even weaker than it is at infinite Péclet
number.

In this analytic model flowfield, the study clearly shows the influence of molec-
ular diffusion on alignments as well as on the orientation dynamics resulting from
the mechanical action of the flow. In particular, even at moderate Péclet number,
the adiabatic response of the scalar field to the flow is deeply weakened. Misalign-
ment with respect to the compressional direction is consistent with the findings of
previous studies, but is precisely explained. Similar detailed Lagrangian statistics
would deserve to be performed in more general flows, in particular, in isotropic
and in forced turbulence.
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13. Garcia, A., Gonzalez, M., Paranthoën, P.: Nonstationary aspects of passive scalar gradient
behaviour. Eur. J. Mech. B 27, 433-443 (2008)

14. Jeong, E., Girimaji, S.S.: Velocity-gradient dynamics in turbulence: Effect of viscosity and
forcing. Theor. Comput. Fluid Dyn. 16, 421-432 (2003)

15. Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent
flows. Annu. Rev. Fluid Mech. 43, 219-245 (2011)
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