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ARTICLE

Network Walking charts transcriptional dynamics
of nitrogen signaling by integrating validated and
predicted genome-wide interactions
Matthew D. Brooks1, Jacopo Cirrone2, Angelo V. Pasquino 1, Jose M. Alvarez1, Joseph Swift1, Shipra Mittal1,

Che-Lun Juang 1, Kranthi Varala3, Rodrigo A. Gutiérrez 4, Gabriel Krouk 5, Dennis Shasha2 &

Gloria M. Coruzzi 1

Charting a temporal path in gene networks requires linking early transcription factor (TF)-

triggered events to downstream effects. We scale-up a cell-based TF-perturbation assay to

identify direct regulated targets of 33 nitrogen (N)-early response TFs encompassing 88% of

N-responsive Arabidopsis genes. We uncover a duality where each TF is an inducer and

repressor, and in vitro cis-motifs are typically specific to regulation directionality. Validated

TF-targets (71,836) are used to refine precision of a time-inferred root network, connecting

145 N-responsive TFs and 311 targets. These data are used to chart network paths from direct

TF1-regulated targets identified in cells to indirect targets responding only in planta via

Network Walking. We uncover network paths from TGA1 and CRF4 to direct TF2 targets,

which in turn regulate 76% and 87% of TF1 indirect targets in planta, respectively. These

results have implications for N-use and the approach can reveal temporal networks for any

biological system.
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Temporal control of transcriptional networks enables
organisms to adapt to a changing environment. Thus, a
primary goal of systems biology is to reconstruct the

order of transcription factor (TF)–target interactions for the
underlying gene regulatory networks (GRNs). To this end,
researchers have used de novo network inference to learn GRNs
in many organisms spanning microbes, plants, and animals1–3.
However, a major challenge, especially in higher eukaryotes, is
genome-wide validation of the accuracy and predictive power of
the resulting GRNs. This is largely due to the lack of methods
for rapidly validating the inferred TF–target interactions
in vivo1,4.

Despite advances in the identification of physical interactions
of TFs and targets, there is still relatively little known about which
genes are transcriptionally regulated in vivo by a majority of TFs.
A recent proliferation of TF–target binding data has emerged
from high-throughput in vitro approaches such as DNA affinity
purification sequencing (DAP-seq)5, protein binding microarrays
(PBM)6, and yeast-one-hybrid (Y1H)7. However, cis-binding
motifs and target genes identified by these methods fail to
account for features present in vivo, such as protein–protein
interactions, TF combinations, and chromatin structure. Most
importantly, TF–target binding data obtained by in vitro methods
or by chromatin immunoprecipitation (ChIP) in vivo do not
indicate whether the physical TF–target interaction leads to
changes in gene expression. Indeed, ChIP is often a poor pre-
dictor of TF regulation8–10, and is only a snapshot of the most
stable TF-binding events under the conditions and time-point
assayed11–14.

To complement the TF-DNA binding datasets, there is a need
for methods to validate TF–target interactions based on a func-
tional assay that takes into account in vivo context. Perturbation
of TFs using knockout or overexpressing transgenic lines to
identify regulated targets is standard across microbes and higher
eukaryotes15–17. However, these in vivo approaches are prohibi-
tively time consuming to scale for most eukaryotes. Additionally,
it is not possible to distinguish direct from indirect targets in
these systems without additional in vivo TF–target binding
information, such as ChIP. Moreover, studies across eukaryotes
reveal a poor overlap of TF-bound and TF-regulated targets
in vivo8–10.

To address the need for TF–target assays based on gene
expression, we scale-up the throughput of a cell-based temporal
TF perturbation system called TARGET (Transient Assay
Reporting Genome-wide Effects of Transcription factors)18. This
TARGET assay can validate direct TF–target interactions based
solely on TF-induced changes in gene expression18–22 which
overcomes many of the limitations described above. Specifically,
the TARGET assay can identify candidate direct TF targets based
on gene regulation, is a rapid transient assay, and can be per-
formed on isolated cells from any tissue of interest. Importantly,
the TF targets identified by this cell-based assay have also been
shown to have in planta relevenace18–21. Because cell-based
transient expression systems have been developed for many
multicellular organisms as a quicker alternative to the creation of
stable transgenics and mutants23–25, the TARGET approach is
broadly applicable. To complement existing genome-wide
methods, we apply the TARGET system as a medium-
throughput tool to characterize mechanisms of TF action and
improve the available gold standards of functional TF–target
interactions for use in network inference.

In this study, we introduce several innovations to scale-up the
throughput of the cell-based TARGET system for TF perturba-
tion to 24 TF assays/day (e.g., 8 TFs × 3 replicates). These
innovations have allowed us within ~2 months to identify the
candidate direct regulated genome-wide targets of 33 TFs that

collectively target ~88% of the genes in the early nitrogen (N)
response in Arabidopsis. We use this validated TF–target dataset
to define a network path that connects the direct targets of these
N-early response TFs in root cells to indirect targets identified
only in planta. To do this, we present a Network Walking
approach that combines functionally validated (85,144 edges) and
time-inferred TF–target edges to connect TF targets validated in
root cells, with indirect targets regulated in planta, as shown in
Fig. 1a. In our proof-of-concept Network Walking examples, we
determine the network path for two known TFs in the N
response, TGA126–28 and CRF429. Using this approach, we
connect 77% and 87% of the indirect targets detected only in
planta, back to TGA1 and CRF4, respectively, through inter-
mediate TF2s. The Network Walking approach has general
application across biological systems. Our proof-of-concept
examples have implications for manipulation of networks that
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Fig. 1 Network Walking connects validated direct transcription factor (TF)
targets to in planta responses. a Schematic overview: the Network Walking
approach charts a network path from direct targets of a TF identified in cells
to its indirect targets, which only respond in planta. This is achieved using
data for 33 TF perturbations in root cells using TARGET (Transient Assay
Reporting Genome-wide Effects of Transcription factors)18 scaled-up in this
study, and a time-series transcriptome of nitrogen (N) response in whole
roots29. TF–target edges for 145 TFs were inferred using this time-series
data in a machine-learning method called dynamic factor graphs (DFG)48

(blue arrow). The inferred edges were pruned for high-confidence edges
(purple arrow) using 71,836 validated edges (red arrow) for 33 TFs in a
precision/recall analysis (area under precision recall (AUPR)). The
validated edges and high-confidence inferred edges are used to link a TF to
its indirect targets in planta via the Network Walk. b The 33 TFs were
selected based on their response to N in shoots and roots (black TFs) or
roots only (orange TFs) from the N-treatment time-series data of Varala
et al.29. TFs were placed into groups based on their Just-in-Time
classification, in which genes were binned based on the first time-point N
treatment caused a fold change of 1.5 relative to the control29. TFs in bold
have been previously described in the nitrogen response (CRF4 and
CDF129, NAC430, TGA1 and TGA426,27, LBD37 and LBD3831, HHO2 and
HHO332). Asterisk indicates TFs not included in the DFG network as they
did not meet the false discovery rate (FDR) threshold
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control plant N-use efficiency, a process that impacts agriculture,
the environment, and human health.

Results
Direct regulated targets of 33 N-early response TFs. We sought
to identify which of the ~2000 TFs in Arabidopsis facilitate the
rapid response to N signaling in plant roots, as well as the tem-
poral regulatory paths they employ. To do this, we targeted a set
of 33 N-early response TFs for functional testing (Fig. 1b),
selected based on their rapid transcriptional response to N
treatment in a fine-scale time-course study conducted by Varala
et al.29. In that study, genes responding to N treatment as func-
tion of time (N × Time) were identified by fitting a cubic spline
model29. These N × Time-responsive genes include 145 TFs in
roots and 162 TFs in shoots, with an overlap of 49 TFs (Fig. 1b).
We selected a subset of 33 TFs that respond across N × Time in
both shoots and roots, or specific to roots, to validate their N-
early response network. This set of 33 TFs includes 9 TFs pre-
viously validated in the N response (e.g., CRF4 and CDF129,
NAC430, TGA1 and TGA426–28, LBD37 and LBD3831, HHO2,
and HHO332) and 24 TFs with an as yet unknown role in N
signaling. We note that this selection approach misses TFs that
only respond post-translationally to the N signal, such as
NLP79,33, a well-known master regulator of the N response in
Arabidopsis.

To determine the genome-wide targets regulated by these 33
N-early response TFs, we used the cell-based TARGET system for
inducible TF perturbation in root cells18 with our modifications
to increase throughput. In the TARGET system, TF nuclear entry
is controlled using a subdomain of the glucocorticoid receptor
(GR) fused to the TF of interest, an approach that has also been
used in planta34,35. The GR–TF fusion protein is held in the
cytoplasm by HSP90-GR binding, and dexamethasone (DEX)
treatment disrupts this interaction, allowing temporal control of
TF entry into the nucleus35. As has been shown in planta35 and in
isolated roots cells18, pre-treatment with cycloheximide (CHX)
blocks downstream regulation of secondary TF targets. Thus,
candidate direct TF targets can be identified as those that respond
transcriptionally to DEX-induced TF nuclear import in the
presence of CHX18,35.

In our study, we made two innovations that increased the
throughput of the TARGET assay for TF perturbation: (i) the use
of an empty vector (EV) control, and (ii) pooling of cells
separately transfected with vectors containing either red fluor-
escent protein (RFP) or green fluorescent protein (GFP), prior to
fluorescence-activated cell sorting (FACS) selection of positively
transfected cells (see Methods and Supplementary Fig. 1a). Both
changes enabled us to increase the throughput of TF perturba-
tions screened via TARGET up to 24 TF assays/day (e.g. 8 TFs × 3
replicates). Additionally, in this design, because all samples are
treated with CHX (e.g., TFs and EV), it circumvents the need to
compare ±CHX samples, which may impact gene expression and
the ability to identify TF-regulated genes (also see Supplementary
Fig. 2, Supplementary Data 1, and Supplementary Methods).
Using this enhanced medium-throughput TARGET approach, we
could identify direct regulated targets of 33 TFs within ~2 months
(Fig. 2). To obtain a list of genes differentially expressed (DE) in
response to TF perturbation, we performed RNA-seq on root cells
collected 3 h after DEX-induced nuclear entry of the GR–TF
fusion. We then compared the transcriptome for each of the 33
TF samples (performed in triplicate) to the EV-negative control
using the bioinformatics analysis pipeline shown in Supplemen-
tary Fig. 1b. The TF targets identified as DE between each of the
33 TFs and EV control (false discovery rate (FDR) < 0.05) are
reported in Supplementary Data 2 and represent 85,144 TF-target

interactions. Further details on the treatments can be found in
Supplementary Figs. 3 and 4.

The number of candidate direct regulated targets for each of
the 33 N-early response TFs identified in our enhanced TARGET
approach ranged between a low of 417 DE genes (VRN1) to a
high of 6028 DE genes (HSFB2A) (Fig. 2). This range in the
number of TF targets was not related to differences in TF
overexpression level, as there was no correlation between the level
of TF expression (compared to EV baseline) and the number of
TF-regulated targets (Supplementary Fig. 5). Additionally, we
found that there are typically fewer direct regulated targets for a
TF detected using TARGET, an in vivo assay, compared to the
number of TF-bound targets identified in vitro by DAP-seq5

(Supplementary Fig. 6). Indeed, we show that our TARGET data
can be used to refine in vitro TF-DNA binding edges to identify
which TF–target interactions are likely to result in gene regulation
within a plant cell. We found that only a fraction of TF-bound
targets from DAP-seq5 are regulated by the TF in our root
protoplast TARGET assay (Supplementary Fig. 6). However, we
did uncover a significant enrichment of direct TF-regulated
targets that are also TF-bound in vitro for 13/17 TFs with DAP-
seq data5 (Supplementary Data 3).

To assess how direct regulated TF targets identified compare
with TF targets identified in planta, we examined available in
planta ChIP binding data for three TFs, WRKY1836, HB6, and
HAT2237, and found large and significant overlap in each case,
despite different experimental growth and treatment conditions
(Table 1). Lastly, for TGA1, a well-studied TF in N signaling26–28,
we observed a large and highly significant overlap (600 genes,
p value= 1.78E−19, Fisher’s exact test) of direct regulated targets
identified in root cells using the TARGET system, compared to
DE genes resulting from TGA1 overexpression in roots of whole
plants (Supplementary Data 4 and Supplementary Fig. 7) (see
Methods). These results collectively support that the candidate
direct TF targets identified using the TARGET assay in root cells
are enriched in bona fide targets with in planta relevance.

N × Time genes enriched in direct regulated targets of 33 TFs.
The 33 N-early response TFs were selected based on their N ×
Time response in shoots and roots, or roots only, from the study
by Varala et al.29 (Fig. 1b). We therefore examined whether the
direct regulated targets of each TF identified in TARGET over-
lapped with N × Time-responsive genes in shoots or roots of
whole plants. To do this, we calculated the N-response specificity
for each TF by determining the percent of the target genes for a
TF that are also N × Time-responsive genes in roots or shoots of
whole plants (Fig. 2, see Methods). We also determined the
influence of each TF on the N × Time genes (i.e., the percent of
N × Time genes regulated by a particular TF) for each organ
(Fig. 2, see Methods). The 33 TFs in Fig. 2 were ranked based on
the N specificity Index29 of their validated targets (shown by color
shading), a measure of the significance of the influence a TF has
on the N × Time genes in each organ (see Methods). Overall, the
targets of each of the 33 TFs significantly overlapped with the
N × Time genes in shoots and/or roots of whole plants (Fig. 2).
However, the ranking of TFs was organ specific. For instance,
CRF4, a known TF in the N response in shoots29, and ERF5
(Fig. 2, green arrows) are examples of TFs whose direct regulated
targets showed organ specificity for the shoot N × Time genes.
Conversely, the targets of NAP and the known N-response reg-
ulator LBD3731 (Fig. 2, orange arrows) showed specificity for root
N × Time genes (Fig. 2, brown arrows). Finally, TFs that our
study now implicates in the N response, e.g., bZIP3 and RAV1,
controlled a significant number of genes that respond to N
treatment in both shoots and roots (Fig. 2, black arrows).
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TF–target edges validate a network regulating N processes. The
above TARGET results ranked the 33 N-early response TFs
according to their individual roles in regulating genes in the N
responses in planta (Fig. 2). We next asked how this set of TFs

work together in mediating the N response. Collectively, these
33 TFs regulate 88% of the N × Time geneset in roots (1288/
1458 genes; p value= 1.55E−67, Fisher’s exact test), and 88% of
the N × Time geneset in shoots (1785/2020; p value= 5.65E−45

N-Specificity index
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Fig. 2 Validated direct targets of the 33 nitrogen (N)-early response transcription factors (TFs) are enriched in N × Time genes. The intersection of direct
regulated targets for the 33 N-early response TFs identified in root cells using the TARGET (Transient Assay Reporting Genome-wide Effects of
Transcription factors) system with N × Time genes from Varala et al.29. This allowed identification of TFs regulating a significant portion of the N response
in both roots and shoots (e.g., bZIP3/RAV1, black arrows). The direct regulated targets of other TFs are enriched in organ-specific N × Time response
genes. These include CRF4/ERF5, which are specifically enriched for the shoot N × Time response genes (green arrows), and NAP/LBD37, which are
specifically enriched for the root N × Time response genes (orange arrows). Green and orange shading represents the N specificity Index29, the p value
calculated using the one proportion z-test (see Methods)

Table 1 Direct regulated TF targets from cells significantly overlap with in planta TF binding

TF Direct regulated targets in root
cells (TARGET, this study)

In planta-bound targets
(ChIP36,37)

No. of genes
in overlap

% of genes
in overlap

p value (Fisher’s
exact test)

HAT22 2432 5902 1035/2432 43% 5.6e−56
HB6 2623 7503 1270/2623 48% 3.1e−42
WRKY18 698 805 159/698 23% 3.8e−78

TF transcription factor, TARGET Transient Assay Reporting Genome-wide Effects of Transcription factors, ChIP chromatin immunoprecipitation
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Fisher’s exact test) (Supplementary Table 1). To gain further
insight into their collective influence, we explored the network
topology for the 33 TFs and their genome-wide targets. To do
this, we compared the distribution of TF–target edges within
the validated TARGET network for the 33 TFs (Fig. 3a, orange
bars), to a network that contains the same TFs and targets but
with randomized edges (Fig. 3a, gray bars). The distribution of
edges in the validated TARGET network differs significantly
from the randomized network. Specifically, compared to the
random network, the validated TF–target network contains
significantly (p value < 0.001, permutation test) more targets
that were unique (targeted by only one or two of the TFs) as
well as shared (targeted by ≥10 TFs) (Fig. 3a).

We next asked whether the shared targets of the 33 N-early
response TFs are enriched for N-related processes. To test this, we
calculated the enrichment for Gene Ontology (GO) terms (see
Methods). This analysis showed that the collective targets of the
33 TFs were enriched in GO terms such as: N compound
metabolic process, cellular amino acid biosynthesis, lateral root
formation, and response to hormone (Supplementary Data 5).
Additionally, enrichment of N-related GO terms increased as the
number of TFs with edges to a set of common targets increased
(Fig. 3b). To test whether this increased enrichment is significant,
we devised a figure of merit, which we call Focus (see Methods).
The Focus for a TF–target network is greater with respect to set of

genes (e.g., GO term) when TFs have more edges to that set of
genes. This test determines the probability that the Focus
calculated from the edges in the TARGET validated network is
higher than we would expect to see by chance. For the network of
all validated targets of the N-early response TFs, the Focus for
each of the GO terms was significantly greater than for the
randomized networks (p value < 0.001, permutation test)
(Fig. 3b).

We also examined how each of these 33 TFs influence the
expression of genes involved in N use, including N uptake and
assimilation, by plotting a heatmap of the effect each TF had on
the expression of these genes (Supplementary Fig. 8). Overall,
this set of 33 TFs regulated genes involved in N use more at the
level of N reduction and assimilation, compared to N uptake/
transport (Supplementary Fig. 8). This finding is consistent
with the high enrichment of the cellular amino acid biosynth-
esis GO term in the shared targets of the 33 TFs (Fig. 3b). These
TARGET results can also help define which edges detected from
in vitro TF-DNA binding experiments may lead to functional
gene regulation. Specifically, our results suggest that TF target
binding studies may underestimate (Y1H28), or overestimate
(DAP-Seq5), TF–target interactions within the N-metabolism
network, in comparison to the functionally regulated TF targets
we identified in root cells using the TARGET assay (Supple-
mentary Fig. 9).
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Fig. 3 Nitrogen (N)-early response transcription factors (TFs) coordinate a connected network of N-related genes. a TF–target edges identified by TARGET
(Transient Assay Reporting Genome-wide Effects of Transcription factors) in root cells for the 33 N-early response TFs were used to construct a validated
network (orange bars). This validated TF–target network resembles a scale-free distribution, with significantly more unique targets (edges to 1 or 2 TFs) or
shared targets (edges to 10 or more TFs), compared to a network which contains the same TFs and targets but with randomized edges (gray bars) (n=
1000). b Enrichment of gene ontology (GO) terms for N-related processes increases as the number of TFs regulating the set of target genes increases.
Significance was tested by calculating a figure of merit, called Focus, for the validated TF–target network and comparing it to the Focus values
of randomized networks (n= 1000) in which the edges within the validated network were shuffled. (***p value < 0.001, permutation test) (see Methods).
Source data of Figs. 3a and 3b are provided as a Source Data file
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Cis-motifs for a TF are linked to induction or repression. We
next used our TARGET data on the direct regulated targets of the
33 N-early response TFs to filter the in vitro TF-DNA binding
data for functional regulation in vivo. Notably, each of the 33 TFs
acted as both an inducer or as a repressor of distinct sets of target
genes (Fig. 4 and Supplementary Data 2). Because of this duality
of TF function, we were able to classify known cis-binding motifs
based on their association with the direction of gene regulation,
e.g., induction or repression. We performed this analysis for the
21/33 TFs that have cis-binding motif data from DAP-seq5 (34
cis-motifs), Cis-BP38 (16 cis-motifs), PBM39 (3 cis-motifs), or
in vivo ChIP37 (4 cis-motifs). We searched for enrichment of
these known cis-motifs for each TF in distinct gene regions of
induced or repressed direct regulated targets for each TF (Fig. 4,
see Methods). For 19/21 TFs and 50/57 cis-motifs, we found a
significant enrichment (FDR < 0.05, Fisher’s exact test) of at least
one cis-motif in at least one gene region in the direct TF-regulated
targets. When we used all regulated TF targets combined (e.g.,
induced and repressed), only 15/21 TFs in our study and 40/57
unique cis-motifs showed cis-motif enrichment (Supplementary
Data 6).

Typically, we detected enrichment of known cis-motifs for each
TF in the proximal promoter or 5’ untranslated region (UTR)
(Fig. 4). However, for some cis-motifs, we also found enrichment
in other gene regions such as the coding sequence (CDS), introns,

or 3’UTR (Fig. 4), which has been previously reported5,40.
Unexpectedly, for 11/21 TFs, their known cis-motif was enriched
exclusively in either induced TF targets (group I) or repressed TF
targets (group II) (Fig. 4). Another unexpected finding was that a
set of 5 TFs (group III) showed enrichment of their cis-binding
motif in the promoter and 5’UTR for induced targets; however,
for repressed targets, the cis-motif was enriched only in the CDS
(Fig. 4). Lastly, three transcription factors, RAV1, WRKY18, and
ERF5 (Group IV), displayed enrichment of their cis-binding
motifs in the same overlapping region for both induced and
repressed targets (Fig. 4). We note that the results of our cis-
binding motif enrichment analysis were similar when we first
filtered for accessible chromatin in the 500 bp promoter, as
determined in Arabidopsis roots by DNase I hypersensitivity40

(Supplementary Data 7). Additionally, the above cis-motif
enrichment results were also supported when in vitro TF binding
(DAP-seq5) are intersected with the induced and repressed direct
regulated TF targets (Supplementary Data 3).

We next addressed whether the direct regulated TF targets that
are not enriched in a known cis-binding motif for that TF
physically associate with the TF in vivo. To do this, we intersected
the induced and repressed regulated targets with in planta-bound
targets identified using available ChIP-seq data for HB6
and HAT2237 (Supplementary Table 2). For both of these TFs,
the induced and repressed direct regulated TF targets overlapped
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exact test. Results for all cis-motifs can be found in Supplementary Data 6
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significantly with the in planta TF-bound targets (Supplementary
Table 2). This result suggests that either there is an as yet
unidentified secondary cis-motif or that the TF binds to the target
via TF–TF interactions. The latter interpretation is supported by
the identification of TF partner elements described below.

Partner TF cis-motif clusters are enriched in TF targets. We
next sought to identify putative TFs partners that may work
together with the 33 N-early response TFs to coordinate gene
regulation in the dynamic N × Time response network. To do this,
we looked for enrichment of cis-motifs for any TF in direct
regulated targets of the 33 TFs. Given the large number of plant
TF-binding cis-motifs from high-throughput methods such as
DAP-seq5 and PBM38,39, and the fact that TFs from the same
family often have similar cis-motifs, searching for each of the 1282
available cis-motifs is impractical. Therefore, we used the RSAT
matrix-clustering tool41 on all of these known cis-motifs and
identified 80 cis-motifs clusters (Supplementary Fig. 10). Cis-
motifs from TFs belonging to the same family generally fell into
the same cis-motif cluster, as seen previously for smaller sets of
motifs5,42. For each cis-motif cluster, we obtained a consensus cis-
motif (CCM) and corresponding position weight matrix (PWM)41

(Supplementary Data 8 and 9).
Using the PWM for each of the 80 cis-motif clusters, we looked

for enrichment of each CCM in the 500 bp promoter (Fig. 5) and
gene body (Supplementary Fig. 11) of the induced vs. repressed
direct regulated targets of the 33 TFs. This analysis uncovered
cis-motif enrichment in at least one of these regions for 30/33

TFs. Often, an enriched CCM represented a cluster for a TF
family different from the TF tested in TARGET itself, pointing to
the involvement of putative TF–TF interactions in gene
regulation. This hypothesis is supported by validated
protein–protein TF interactions43–47 between several of the 33
TFs assayed in TARGET and TF family members from the other
cis-motif groups revealed by CCM enrichment analysis (Fig. 5
and Supplementary Fig. 11, black circles).

Functional validation of a time-inferred N-response network.
We next sought to expand our GRN of the N × Time response in
roots beyond the direct regulated targets of the 33 N-early
response TFs validated using TARGET (Fig. 2). To do this, we
used our validated TF–target data to refine the precision of a
GRN predicted from fine-scale time-series transcriptome data of
N treatment in roots29 using dynamic factor graphs (DFG)48.
DFG is a machine-learning method that can use time-series data
to estimate the quantitative influence of TFs at time t on target
genes at time t+ 148. This DFG approach has been used to learn
network models that can predict gene expression states at future
time points, even when few time points are tested29,49. In our
application, the resulting DFG predictions provided an edge
score, or measure of influence, for 145 TFs on every target gene in
the root N × Time network, totaling 211,410 TF–target edges.

To refine these time-based TF–target predictions, we used
71,836 validated TF–target edges for 29/33 TFs to calculate a
precision threshold for the DFG predicted edges. This enabled us
to set an edge score to prune the DFG network1 and retain only
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Fig. 5 Direct regulated transcription factor (TF) targets are enriched for cis-motif clusters of partner TFs. Heatmap of enriched consensus cis-motifs for the
80 cis-motif clusters (columns) in the 500 bp promoter of the a induced and b repressed direct regulated targets of the 33 nitrogen (N)-early response
TFs. The consensus cis-motif (CCM) logo, cluster number, and family representation for each CCM is shown above. Instances where there is a validated
interaction between the TF under study and another TF within a family represented by the enriched CCM cluster are marked by a black circle. Of the 33 TFs
validated in TARGET, only TFs with enrichment of any of the 80 CCMs in the 500 bp promoter are shown. Cis-binding motif clusters were
determined using cis-motifs for Arabidopsis transcription factors collected from DNA affinity purification sequencing (DAP-seq)5, Cis-BP38, and protein
binding microarrays (PBM)39. Blue shading represents p values calculated using Fisher’s exact test and false discovery rate (FDR) corrected. Source data of
Fig. 5a, b are provided as a Source Data file
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high-confidence TF–target edges involved in the root N response.
Four of our 33 TFs—ZFP4, HSFB2A, TCP23, and HB6—were
excluded from this analysis, as they did not meet the stringent
threshold (FDR < 0.01) used to select the N × Time genes for DFG
predictions29. The results of this precision/recall (PR) analysis
showed that the area under precision recall (AUPR) for the
TF–target predictions in the DFG predicted GRN (0.2372) was
significantly greater than for 1000 random PR curves (mean=
0.1948) (Fig. 6 and Table 2). From the PR curve generated using
the validated edges of 29 TFs, we chose a precision threshold cut-
off of 0.32—the point at which the curve begins to flatten out—to
filter the GRN for high-confidence TF–target edges. Our
precision cut-off score of 0.32 (i.e., ~1/3rd of predicted edges
are validated) is of comparable scale to the 0.50 precision
achieved using an ensemble approach of multiple network
inference methods in simpler microbial systems1. At this
precision cut-off, the resulting pruned GRN was comprised of
6863 total high-confidence edges between 145 TFs and 311 targets
in the root N × Time response network (Table 2, Supplementary
Fig. 12 and Supplementary Data 10).

To evaluate the individual contribution of each TF to the edge
pruning in the GRN, we calculated precision, recall, and F-score
(harmonic mean of precision and recall50) for each of the 29 TFs
within the pruned DFG network individually (Supplementary
Table 3). While there was variation in all three metrics for each of
the 29 TFs, the mean precision, recall, and F-score among all 29
TFs was 0.393, 0.149, and 0.17, respectively (Supplementary
Table 3). These values are close to weighted values for the
precision, recall, and F-score calculated from the TARGET edges
for all 29 TFs combined (Supplementary Table 3). This result
indicates that the collective PR measures are not biased towards a
few TFs with many edges. Importantly, the 95% confidence
intervals for precision (0.320–0.465), recall (0.064–0.204), and
F-score (0.14–0.20) indicate that the TF–target edges predicted by
DFG for the remaining 116 TFs in the N × Time network and
their 311 targets are also likely to be true for ~1/3rd of the high-
confidence TF–target edge predictions.

Network Walking charts paths from direct to indirect targets.
Finally, we performed an analysis that integrates the validated
TF–targets edges for 33 N-early response TFs from TARGET with
the high-confidence edges for the 116 untested TFs in the pruned
GRN and in planta TF perturbation data. In an approach called
Network Walking (Fig. 7a), we used these combined datasets to
chart a path for a TF1 from its direct regulated targets in root cells,
to its indirect regulated targets in planta via intermediate TF2s. As
proof of concept, we demonstrated how Network Walking
revealed the network paths and mode of action for two important
regulators of the N response in planta—TGA126–28 and CRF429

(Fig. 7b, c). The TF perturbation data used in this Network
Walking analysis included direct targets that respond to the TF in
cells (e.g., in TARGET) (Supplementary Data 2), and those that
respond to TGA1 (this study, Supplementary Data 4) or CRF4
overexpression in planta (Varala et al.29, Supplementary Data 11).

In Network Walking, the first step is to use the direct regulated
targets of TF1 (e.g., TGA1 or CRF4) identified using the TARGET
assay to identify which DE genes from in planta perturbation are
direct vs. indirect TF1 targets. In the TGA1 example, the
TARGET assay showed that TGA1 directly regulated 580 root
N × Time genes (Fig. 7b, yellow box), including 104 direct target
genes that also respond to TGA1 overexpression in planta. The
second step is to connect a path from TF1—via a TF2—to the TF1
indirect targets which only respond in planta. To connect TGA1
to its indirect targets, we used validated TF2 direct target edges
from TARGET assays (Fig. 2), as well as the high-confidence

TF2target edges for 116 TFs from the pruned DFG network
(Supplementary Fig. 12 and Supplementary Data 10). Using this
approach, we could link 76% of indirect TGA1 targets in planta
(101/133) back to TGA1 through 49/63 direct TF2 targets of
TGA1. The set of 63 direct TF2 targets of TGA1 includes 13 TF2s
whose direct regulated targets have been validated in TARGET
(Fig. 2 and Supplementary Data 2), and 36 TF2s with high-
confidence DFG predicted edges to indirect targets of TGA1. To
further determine which of these intermediate TF2s are most
important in relaying the N signal downstream of TGA1, we used
the 80 cis-motif clusters (Supplementary Fig. 10 and Supplemen-
tary Data 8 and 9) to perform analysis of CCM enrichment in
TGA1 indirect targets. This analysis showed that the most
enriched CCM in the TGA1 indirect targets corresponds
to cluster 15 (NAC family) which is enriched in the gene body
(FDR= 7.9E-5, Fisher’s exact test) of TGA1 indirect targets.

We also performed a similar Network Walk for CRF4, and
found that—by contrast to TGA1—relatively few N × Time
genes are directly controlled by CRF4 (65 genes), yet the
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Fig. 6 Validation of a time-inferred network using area under precision recall
analysis. Genome-wide regulated targets of 29 transcription factors (TFs)
captured in root cells using the TARGET (Transient Assay Reporting
Genome-wide Effects of Transcription factors) system (Fig. 2, Supplementary
Data 2) were used to calculate the precision and recall of the dynamic factor
graph (DFG) inferred gene regulatory network (GRN) based on N × Time
response genes in roots. Area under precision recall (AUPR) analysis
demonstrates that the ranking of edges in the DFG time-inferred network
(orange line) is significantly better (p value < 0.001, permutation test) than
randomizing the order of edge rankings (n= 1000) (gray lines represent
random networks with highest and lowest AUPR). From this plot a 0.32
precision cut-off was chosen as the highest value before the curve flattens.
TP true positives, FP false positives, FN false negatives. Source data are
provided as a Source Data file

Table 2 Precision and recall pruning of a time-inferred
network using TF–target validation

Validated network measures Value

Area under precision recall (validated network) 0.2372
Area under precision recall (random network average) 0.1948
Validated AUPR p value (permutation test) <0.001
Precision threshold for network pruning 0.32
Edge score threshold for pruned network 0.88242
Number of edges (pruned/total) 6836/211,410
Number of TFs (pruned/total) 145/145
Number of targets (pruned/total) 311/1458

TF transcription factor, AUPR area under precision recall
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number of N × Time root genes that respond to CRF4
overexpression in planta (247 genes) is similar to the number
responding to TGA1 overexpression in planta (208 genes)
(Fig. 7b, c). In the CRF4 Network Walk, we identified direct
connections of CRF4 to only 5 intermediate TF2s (GATA17,
NAP, HYH, MYB34, bHLH112), which in turn accounted for
the regulation of 87% of CRF4 indirect targets in planta. Thus, a
Network Walk not only identifies the network path for each TF1
via its downstream TF2s, but can also help classify TF modes of
action, as discussed below.

Discussion
An ultimate goal of systems biology is to learn GRNs and infer
TF–target models that can accurately predict future gene

expression states under untested conditions. A key step to
accomplish this is the experimental validation of edges between
TF regulators and their target genes to use in refinement or as
priors in network inference. Our study addresses the challenge
of identifying functional in vivo targets of a TF genome-wide in
a rapid and medium-throughput manner. We also demonstrate
that the direct regulated targets of a TF identified using TAR-
GET can enhance our understanding of TF-DNA binding data.
For example, we found that in vitro high-throughput methods
for identifying TF binding can overestimate (DAP-seq5) or
underestimate (Y1H28) the number of functional TF–target
interactions identified using the TARGET assay (Supplemen-
tary Fig. 9 and Supplementary Data 3). Similarly, in vivo ChIP
assays are a poor predictor of TF-mediated gene regulation8–10.
We demonstrate how direct regulated TF–target edges can be
used to filter network predictions. Specifically, we used
71,836 validated targets for 29/33 N-early response TFs to
prune a GRN predicted using DFG48 to obtain a refined N ×
Time GRN, where ~1/3rd of the edge predictions are likely true
(Supplementary Fig. 12 and Supplementary Data 10). This
approach enabled us extend our TARGET results beyond the 33
TFs to the remaining 116 N × Time TFs for which we do not yet
have validated edges, and identify which TFs to target for fur-
ther study based on their relative influence on the N × Time
network.

To integrate our TARGET results with in planta data, we
derived an approach called Network Walking (Fig. 7). The key
feature of the Network Walking strategy is to connect the direct
regulated TF1 edges identified in plant cells using TARGET
to the indirect TF1 targets validated only in planta. This
approach enabled us to identify the intermediate TF2s impor-
tant for mediating the signal between the initial TF1 and
downstream in planta indirect targets. The results can guide
combinatorial experiments (e.g., TF stacking) and validation
experiments on important TF2s that are identified in a systems
biology cycle.

As proof of concept, we demonstrated the Network Walking
approach for two TFs, TGA1 (Fig. 7b) and CRF4 (Fig. 7c),
which are validated in planta regulators of the N response in
Arabidopsis26–29. Our Network Walking approach showed that
TGA1 directly regulates 40% (508/1458) of the N × Time genes
in roots, including 63/145 N-responsive TF2s, amplifying the
effect of TGA1 on the N response gene network. Moreover, our

Fig. 7 Network Walking charts a path from direct to indirect transcription
factor (TF) targets. a A schematic representation of the Network Walking
approach used to connect direct TF targets identified in cells to the indirect
targets identified only in planta. Example of Network Walks from direct
targets identified in cells (yellow shaded region), to indirect targets
identified only in planta (orange shaded region) for b TGA1 and c CRF4.
Edges connecting the indirect targets back to TGA1/CRF4 through their
direct TF2 targets come from validated TARGET (Transient Assay
Reporting Genome-wide Effects of Transcription factors) edges as well as
from high-confidence edges from the pruned time-inferred dynamic factor
graph (DFG) network. Enrichment of the consensus cis-motif for the 80
clusters (Supplementary Fig. 10 and Supplementary Data 8) in the 500 bp
promoters and gene body of the indirect targets of TGA1 and CRF4 was
assessed. The most significant cluster onsensus cis-motif (CCM) in indirect
targets of TGA1 was for cis-motif cluster 15 (NAC family) in the gene body.
For CRF4, the CCM for cluster 8 (AP2EREBP) was enriched in the gene
body of CRF4 indirect targets. The network shown is limited to TFs and
targets that respond to N × Time in Varala et al.29. For clarity, edges to
target genes include only the top three validated edges based on fold
change, and top ten predicted DFG edges based on edge score
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finding that CCM for the NAC family cluster is enriched in
TGA1 indirect targets suggests that NAC TFs are particularly
important TF2s for propagating the N signal downstream of
TGA1.

The second example of Network Walking was for CRF4
(Fig. 7c), a TF which was recently shown to be involved in N
signaling in shoots and roots in planta29. The TARGET data
showed that direct regulated CRF4 targets are specifically enri-
ched for the shoot N × Time-responsive genes (Fig. 2). Our
Network Walk now resolves how CRF4 can have a significant
influence on root N-responsive genes in planta (Supplementary
Data 11), despite directly regulating only a small number of root
N × Time genes itself (Fig. 2). This is because CRF4 directly
regulates 5 TF2s which collectively have edges validated by
TARGET and/or high-confidence predicted DFG edges to 50% of
the root N × Time genes. Thus, the effect of CRF4 on roots in
planta is mediated through these intermediate TF2s.

Overall, the 85,144 validated targets of 33 N-early response
TFs revealed a connected GRN regulating 88% of the genes that
respond to N treatment as a function of time in whole roots and
shoots29, and the TFs collectively regulated a set of genes
enriched in N-related processes (Fig. 3b, Supplementary
Data 5). We also observed that the distribution of edges in the
validated TF–target network (Fig. 3a) resembles a scale-free
network51, a feature of biological networks that provides
robustness52. Signal integration, an emergent property of bio-
logical systems53, could explain the large number of N-
responsive TFs in shoots and roots (258 TFs), roughly 10% of
all the predicted Arabidopsis TFs29. Indeed, many of the 33 TFs
functionally validated in our study have defined roles in other
pathways (Supplementary Data 12), linking the N response to
other biological processes, including hormone signaling54 and
biotic stress55. These types of complex combinatorial interac-
tions between TFs, which integrate or fine-tune a response to
signal inputs56, have been described in many organisms57–59.

Because TARGET is a cell-based TF perturbation system,
direct regulated targets identified in vivo can provide biological
context to TF-binding data. Somewhat surprisingly, our ana-
lysis revealed that all 33 of the TFs we assayed acted as both an
inducer and repressor of direct regulated targets, and that cis-
binding motifs for a TF are often specific to a particular
direction of regulation (Fig. 4). Particularly interesting are
group III TFs, where the pattern of enrichment of the known
cis-motifs suggests that direct TF binding in the promoter leads
to induction while direct binding to the gene body leads to
repression. We also found that the direct regulated targets of
TFs that could not be explained by TF binding to the known
cis-motif for that TF (based on in vitro TF-DNA binding data)
may involve partner TFs which are not present in in vitro
binding assays. Indeed, our cis-motif cluster analysis (Fig. 5 and
Supplementary Fig. 11) addressed the duality of TF function
(e.g., inducer and repressor) observed in the regulatory action
of each of the 33 TFs. We noted several instances where the
direct TF targets were enriched in CCMs for TF families other
than the TF under investigation (Fig. 5 and Supplementary
Fig. 11). This finding could explain how the same TF could
mediate repression of direct targets (via a partner TF-binding
site) vs. induction when the TF binds directly to DNA. As one
example, the cis-binding motif for NAP is enriched only in its
induced targets (Fig. 4), while the repressed NAP targets are
instead enriched in bHLH sites (clusters 6 and 36) in the 500 bp
promoter. Moreover, the experimentally validated interaction
between NAP and a bHLH family TF—bHLH9643—could
explain how NAP is able to repress its direct target genes via its
interaction with bHLH96. This model is also supported by the
finding that protein–protein interactions between TFs have

been shown to alter the effect of a TF on target gene expres-
sion60–62.

The development of tools for validating the TF–target edges
within inferred networks is crucial to obtaining high-quality
predictive GRNs. In this study, we demonstrate that the TARGET
system for cell-based TF perturbation complements existing
TF–target binding approaches and in planta perturbation by
providing direct TF–target edges based on TF-mediated gene
regulation in cells isolated from the tissue of interest. Importantly,
this system does not require the creation of stable transgenics and
scales easily. We have also introduced an approach, Network
Walking, which connects the early and direct regulated TF targets
identified in cells using TARGET to downstream responses
observed only in planta. While our proof-of-concept studies
focused on rapid N signaling in Arabidopsis, both of these
approaches are generally applicable to study of GRNs involved in
transducing signals in any eukaryotic system in agriculture,
biology, or medicine.

Methods
A scaled-up TARGET assay for TF perturbation in cells. To make the TF-
plasmid constructs, the 33 N-early response TFs were TOPO cloned into pENTR
(Invitrogen) from complementary DNA or isolated from the Arabidopsis TF col-
lection63. TFs were then transferred to the pBeaconRFP_GR plasmid18 or a GFP
version of the same plasmid (pBeaconGFP_GR) by Gateway (Invitrogen) cloning.

For protoplasting and transfections, Arabidopsis Col-0 plants were grown in 1%
w/v sucrose, 0.5 g per L MES, 1× MS basal salts (-CN), 1 mM KNO3, 2% agar, pH
5.7 for 10 days prior to the TARGET experiment. Light conditions were 120 μmol
m−2 s−1 at constant temperature at 22 °C, 16 h light, 8 h dark (long day). Roots of
10-day-old seedling were harvested and the cell wall removed using cellulase and
macerozyme (Yakult, Japan) for 3 h. Cells were filtered sequentially through 70 µm
and 40 µm cell strainers (BD Falcon, USA) and pelleted at 500 × g. Filtered cells
were washed with 15 mL MMg solution (400 mM mannitol, 10 mM MgCl2, 4 mM
MES pH 5.7), resuspended to approximately 2–3 × 106 cells per mL. For each
transfection, in a 50 mL conical tube, 1 mL of cell suspension was mixed with 120
μg of plasmid DNA, 1 mL of PEG solution (40% polyethylene glycol 4000
(Millipore Sigma, USA), 400 mM mannitol, and 50 mM CaCl2) and vortexed gently
for 5 s. After mixing, 50 mL of W5 buffer (154 mM NaCl, 125 mM CaCl2, 5 mM
KCl, 5 mM MES, 5 mM glucose, pH 5.7) was slowly added to the tube. Cells were
pelleted at 1200 × g, and washed 3 times with W5 buffer. For each TF and the EV
construct, 4–6 million cells were transfected and after washing, a single TF in the
RFP vector and a single TF in the GFP vector were aliquoted into 3 replicate wells
of a 24-well plate. After overnight incubation, each pool of transfected root
protoplasts was treated with the N dose present in standard MS media64 (20 mM
KNO3+ 20 mM NH4 NO3) for 2 h. Next, 35 µM CHX was added 20 min before a
10 µM DEX treatment. Transfected cells were sorted by FACS into GFP- and RFP-
expressing populations 3 h after DEX treatment.

For transcriptome analysis, cells expressing the candidate TF or EV were
collected in triplicate and RNA-Seq libraries were prepared from their mRNA
using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina®. The RNA-Seq
libraries were pooled (up to 27 libraries per run) and sequenced on the Illumina
NextSeq 500 platform. The RNA-Seq reads were aligned to the TAIR10 genome
assembly using TopHat265 and gene expression estimated using the
GenomicFeatures/GenomicAlignments packages66. The gene counts for every
sample were combined and DE genes in the TF transfected samples vs the EV
samples were identified using the DESeq2 package67 with a TF+Batch model and
an FDR adjusted p value < 0.05. We filtered out genes that respond more than 5-
fold to CHX treatment in transfected protoplasts from the lists of TF targets
(Supplementary Data 1 and Supplementary Methods). Genes that are expressed in
any of the protoplast experiments (excluding the CHX-responsive genes in
Supplementary Data 1) were used as the background for subsequent enrichment
analyses.

Calculating nitrogen specificity and influence of TF targets. The specificity of
each TF to target genes in the N × Time-responsive dataset of Varala et al.29 was
calculated by dividing the N × Time-responsive targets of a TF by the total number
of targets regulated by that TF. The influence of a TF on the N × Time-responsive
genes is the number of N × Time-responsive genes targeted by a TF divided by the
total number of N × Time-responsive targets. The N-specificity index p value29 was
calculated using the one proportion z-test to compare the proportion of targets for
a TF in the genome to the proportion of targets for that TF in the root N × Time-
responsive genes29, under the null hypothesis that they are equal.

GO enrichment in TF–target networks. The web application agriGO v2.068 was
used to identify GO terms enriched in the cumulative direct regulated targets of the
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33 TFs. To calculate the GO term enrichment in the sets of targets regulated by
increasing number of TFs (Fig. 3b), let G be a list of genes associated with a GO
term and Tk be a list of targets that are targeted by at least k TFs. We can calculate
the enrichment of G (Eg) in Tk by simply comparing the frequency of G in Tk (i.e.,
the fraction of genes in Tk that intersect G), represented as Fk, to the frequency of G
in the background (all 20,662 genes expressed in protoplast experiments), repre-
sented as Fb.

Eg ¼
Fk
Fb

: ð1Þ

To test for the significance of this enrichment, we used the figure of merit Focus.
For each gene list (G) we calculate Focus (Fg) by simply adding the Eg for all k up to
n TFs:

Fg ¼
Xn

k¼1

Fk
Fb

: ð2Þ

To test if the Focus of the validated network is significant for a given GO term, a
permutation test was used to determine an empirical p value by comparing the
Focus of the validated network to the Focus of 1000 iterations of a randomized
network, generated by shuffling the edges within the experimentally validated
TF–target network.

Cis-motif enrichment and clustering. Enrichment of the cis-binding for motifs in
TF target genes was calculated using the AME tool within the MEME package69.
The background used corresponded to the same gene region for all genes expressed
in any of the cell-based TARGET experiments and the frequency of bases to the
base frequency within the background.

For cis-motif clustering, cis-binding motifs for Arabidopsis transcription factors
were collected from DAP-seq5, Cis-BP38, PBM of Franco-Zorrilla et al.39 and
ChIP-seq from Song et al.37. PWMs were converted to the MEME motif format70

and the RSAT matrix-clustering tool41 was used with the following parameters:
hclust_method= average, calc= sum, metric_build_tree=Ncor, lth w 5 lth cor=
0.6, lth Ncor=0.45, quick=true. To search for the enrichment of each cis-motif in
the TF targets, the consensus PWM for each of the 80 cis-motif clusters was
converted to the MEME format and the FIMO tool within the MEME package69

was used to identify every occurrence of each of the 80 consensus cis-motifs in the
500 bp promoters and gene body of all 20,662 protoplast expressed genes at a p
value < 0.0001. Overlapping cis-motifs were removed, retaining only the cis-motif
with the lowest p value. For each set of TF targets, enrichment of a cis-motif in the
target set relative to their occurrence in all annotated genes was calculated using
Fisher’s exact test. The resulting p values were FDR corrected. Heatmaps and
hierarchical clustering were generated with Euclidean distance and the ward.D
agglomeration method using the gplots heatmap.2 function in R.

Identification of direct and indirect TGA1 targets in planta. The in planta TGA1
overexpression construct was made by Gibson assembly (NEB) with a three‐part
construct. The CaMV‐35s promoter was fused to the TGA1 CDS using in the
pGreen vector backbone. Primers used in the assembly are in Supplementary
Table 4.

Arabidopsis Col-0 plants with the 35S:TGA1 transgene were generated using
Agrobacterium-mediated floral-dip method. Approximately 100 seeds were sown
in Phytatrays (Sigma-Aldrich) in liquid media that was identical to what was used
in the TARGET assay: 1% w/v sucrose, 0.5 g per L MES, 1× MS basal salts (−CN),
1 mM KNO3, pH 5.7. Light conditions were 120 μmol m−2 s−1 at constant
temperature at 22 °C, 16 h light, 8 h dark (long day).

When 35S:TGA1 seedlings were 13 days old, they were transferred to N-
starvation media (1% w/v sucrose, 0.5 g per L MES, 1× MS basal salts (−CN), pH
5.7). After 24 h, at 2 h after subjective dawn, seedlings were transferred to
Phytatrays containing identical media with the addition of the N dose in standard
MS media64 20 mM KNO3+20 mM NH4NO3 or 20 mM KCl control. Plants were
incubated within treatment media for 2 h after which root tissue was immediately
harvested and flash frozen in liquid nitrogen.

RNA was extracted from root tissue using the QIAGEN RNeasy kit (Qiagen).
mRNA was purified with oligo-dT beads (Invitrogen), and RNA-seq libraries made
using the NEBNext Ultra Library Prep Kit (NEB). Libraries were sequenced the
Illumina HiSeq 2500 v4 platform using 1 × 50 or 1 × 75 single end chemistry. RNA-
seq reads were aligned as described for the protoplast samples and DE genes were
identified using DESeq267.

Time-based network inference and AUPR validation. The time-based DFG
network inference48 predicted GRN was generated using the N-treatment time-
series data as described in Supplementary Methods. We used a pruning approach
to filter this network for high-confidence edges1. The validated TF–target edges
from TARGET were used to perform an AUPR analysis and identify a precision
threshold of 0.32 (Fig. 6 and Table 2). This TF–target edge cut-off was chosen to
minimize false positives, while recovering as many true positives as possible. The
resulting pruned DFG inferred network was visualized (Supplementary Fig. 12)
using Cytoscape71. Precision, recall, and F-score were calculated for the edges in

the pruned network to generate Supplementary Data 10.

Precision ¼ True Positives= True Positivesþ False Positivesð Þ: ð3Þ

Recall ¼ True Positives= True Positivesþ False Negativesð Þ: ð4Þ

F� score ¼ 2 � Precision � Recallð Þ= Precision þ Recallð Þ: ð5Þ

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw sequencing data from this project have been deposited in the Gene Expression
Omnibus (GEO) database accession GSE117857 and GSE128209. Data supporting the
findings of this work are available within the paper and its Supplementary Information
files. A reporting summary for this Article is available as a Supplementary Information
file. The datasets generated and analyzed during the current study are available from the
corresponding author on reasonable request. The source data underlying Figs. 3a, 3b, 5a,
5b, and 6, as well as Supplementary Figs. 2, 4b-d, 5, 6, 8, 9, 11a, and 11b are provided as a
Source Data file.

Code availability
The previously published dynamic factor graphs (DFG) network inference machine-
learning code is available at [https://github.com/piotrmirowski/DFG4GRN]49. Python
scripts used for calculation of motif enrichment and randomization the networks for
calculating p values are available from the corresponding author upon reasonable
request.
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