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Abstract

The Kalray MPPA2-256 processor integrates 256 processing cores and
32 management cores on a chip. Theses cores are grouped into clusters,
and clusters are connected by a high-performance network on chip (NoC).
This NoC provides hardware mechanisms (ingress traffic limiters) that
can be configured to offer service guarantees.

This paper introduces a network calculus formulation for configuring
the NoC traffic limiters, in order to guarantee upper bounds on the NoC
traversal latencies. This network calculus formulation accounts for the
traffic shaping performed by the NoC links, and can be solved using lin-
ear programming. This paper then shows how existing network calculus
approaches (the Separated Flow Analysis – SFA ; the Total Flow Analysis
– TFA ; the Linear Programming approach – LP) can be adapted to ana-
lyze this NoC. The latency bounds obtained are then compared on three
case studies: two small configurations coming from previous studies, and
one realistic configuration with 128 or 256 flows.

From theses cases studies, it appears that modeling the shaping in-
troduced by NoC links is of major importance to get accurate bounds.
And when packets are of constant size, the Total Flow Analysis gives, on
average, bounds 20%-25% smaller than all other methods, since its is the
only able, up to now, to accurately and efficiently model these aspects.
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1 Introduction

As embedded systems require ever increasing computing performance while op-
erating at low power, multicore-based systems appear as a solution. Moreover,
in order to host time-critical functions, such platforms must provide some re-
sponse time guarantees. And as in any distributed platform, bounding the
communication latency is a key point of real-time performances.

The Kalray MPPA2 processor has been designed to offer high computing
performances and energy efficiency on time-constrained applications. In partic-
ular, its network on chip (NoC) provides hardware mechanisms (ingress traffic
limiters) that can be configured to offer service guarantees such as flow mini-
mum bandwidth, flow maximum latency, and congestion-free operations. But
since the computation of the exact worst latencies can be too complex, as shown
in Bouillard et al. (2010), one has to rely on latency bounds.

Getting the best capabilities from such a platform requires efficient methods
to compute communication latency bounds. This paper presents and compare
several of them, all based on deterministic network calculus. Whereas there
exists a large literature on the computation on latency bounds for NoCs, not
many deal with real implemented architectures (Section 4). The MPPA NoC
is an interesting target for analysis, as its architecture is designed to minimize
implementation complexity while ensuring service guarantees.

This paper presents the Kalray MPPA NoC architecture in Section 2, whose
key elements are the ingress flow limiters (the traffic shapers) and the router
switches. Section 3 provides the necessary background on deterministic network
calculus. Section 5 introduces notations commons to all the methods presented
in this article. Section 6 introduces a new “explicit linear” method for com-
puting the latency bounds, which maps the network calculus equations to a
Mixed-Integer Linear Problem (MILP) formulation solvable in polynomial time.
Then, Section 7 shows how existing network calculus approaches for computing
latencies (Total Flow Analysis – TFA, Separated Flow Analysis – SFA) can be
adapted to analyze this NoC, and how the common case where all packets have
the same size can be modeled. Finally, all these methods are compared in Sec-
tion 8 on three case studies. The two first cases have been already presented in
the previous studies Dupont de Dinechin and Graillat (2017), Ayed et al. (2016).
It allows to compare the new methods to already published results. Moreover,
they are small enough to allow a in-depth interpretation of the results. The last
case study is more realistic: each of the 16 clusters sends 4 or 8 independent
data flows. Section 8.4 gives some insight on the mathematical reasons for the
observed upper bound differences.

2 Description of the NoC

The MPPA2-256 processor integrates 256 processing cores and 32 management
cores on a chip, all implementing the same VLIW core architecture. The
MPPA2-256 architecture is clustered with 16 compute clusters and 2 I/O clus-
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Figure 1: MPPA2 NoC topology unfolded (I/O nodes are labeled N0..N3,
E0..E3, S0..S3, W0..W3).

ters, where each cluster is built around a multi-banked local static memory
shared by 16+1 (compute cluster) or 4+4 (I/O cluster) processing + man-
agement cores. The clusters communicate through a NoC, with one node per
compute cluster and 8 nodes per I/O cluster. More details can be found in Saidi
et al. (2015).

The MPPA2 NoC is a direct network based on a 2D-torus topology extended
with extra links connected to the otherwise unused ports of the NoC nodes on
the I/O clusters (see Figure 1).

The MPPA2 NoC implements wormhole switching with source routing and
without virtual channels. With wormhole switching, a packet is decomposed
into flits (of 32-bits on the MPPA2 NoC), which travel in a pipelined fashion
across the network elements, with buffering and flow control applied at the flit
level. The packet follows a route determined by a bit string in the header. The
packet size is between 2 and 71 flits.

The motivation for implementing wormhole switching with source routing
and without virtual channels is the reduction of complexity of the network ele-
ments and interfaces while still supporting services guarantees. However, once
a buffer is full, the flow control mechanism of wormhole switching requires that
the previous router store flits instead of forwarding them. This back pressure
mechanism can go back up to the source, a situation called congestion. Conges-
tion can also lead to deadlock of a wormhole switching NoC when flows are not
routed feed-forward, as presented in Dupont de Dinechin et al. (2014).

Each MPPA2 NoC node is composed of a cluster interface and a router
(Fig. 3). They are eight traffic limiters in the cluster interface. Each one
implements a token-bucket traffic shaper with configurable burst b and rate r.
The burst parameter must be large enough to allow to send one full packet at
link speed (one flit per cycle) before being limited by the budget (as illustrated
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Figure 2: Tocken-bucket traffic limiter.

Figure 3: Structure of a MPPA2 NoC router.

in Figure 2 – the exact relation between r, b and the packet size will be given in
eq. (21)). Each router is connected to its four neighbors and to the local cluster
(respectively called North, West, South, West and Local). Each output port
has four (or five) queues, to store waiting flits. They are arbitrated using a per
packet round-robin algorithm.

Whereas the back pressure mechanism of the wormhole switching can lead
to complex interactions between flows, and even deadlocks, one may avoid its
activation by preventing that the router queues be full. This can be done by:
1) defining a static set of data flows; 2) allocating to each flow a traffic limiter
and a route, with and adequate configurations of the traffic limiters. Assuming
the route of each data flow is determined (for example using the techniques in
Dupont de Dinechin et al. (2014)), a network calculus formulation can be used
to compute the traffic limiters configuration.

3 Deterministic Network Calculus

Deterministic network calculus is a theory designed for the performance analysis
of computer networks. Its main purpose is to compute upper bounds on delay
and buffer memory usage in macro networks Cruz (1991).

The following is a short summary of the deterministic network calculus the-
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ory, in order to present its main results and set the notations. All results
presented in this section can be found in Chang (2000), Le Boudec and Thiran
(2001), except when a specific reference is given.

3.1 Mathematical background and notations

The network calculus mainly uses functions from time domain, R`, to data
amount R`. Let F denote the set of such functions, and FÒ the subset of

non-decreasing functions: FÒ def
“ tf P F @t, d P R` : fpt` dq ě fptqu.

Since one may need to project functions in F or FÒ, let define rf s
` def
“

maxpf, 0q, fÒ : R` Ñ R, fÒptq
def
“ sup0ďsďt fpsq, and rf s

`

Ò

def
“ prf s

`
qÒ.

The composition operator is denoted ˝: pf ˝ gqpxq “ fpgpxqq. The ceiling is
denoted r.s and the flooring t.u: r1.5s “ 2, t1.5u “ 1.

The network calculus relies on the (min,+) dioid. On this structure, convo-
lution ˚ and deconvolution m operators are defined as:

pf ˚ gqptq
def
“ inf

0ďsďt
tfpt´ sq ` gpsqu , (1)

pf m gqptq
def
“ sup

0ďu
tfpt` uq ´ gpuqu . (2)

The point-wise minimum operator of functions is denoted ^.
Some functions, plotted in Figure 4, are commonly used: the delay function

δT ptq “ 0 if t ď T , 8 otherwise; the token-bucket function γr,bptq “ prt `

bq ^ δ0ptq; the rate-latency function βR,T ptq “ R rt´ T s
`

; the test function
1tąDuptq “ 1 if t ą D, 0 otherwise; the pure rate λR “ βR,0; and the stair-case

νh,P ptq “ h
P

t
P

T

, where r¨s is the ceiling function.

3.2 Modeling systems within network calculus

In network calculus, a flow is modeled by its cumulative function, a function
A P FÒ, left-continuous1, with Ap0q “ 0. The semantics of such a function is
that Aptq represents the total amount of data sent by the flow up to time t.

1For a discussion on continuity in network calculus, see Boyer et al. (2013) or § 1.3 in
Bouillard et al. (2018).
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Figure 6: Delay and backlog between arrival and departure flows.

A server is a relation S between two cumulative functions, such that for
any arrival A, it exists a departure D such that pA,Dq P S. Moreover, for any
pA,Dq P S, D ď A, meaning that the departure of a bit of data always occurs

after its arrival. One may also denote by A
S
ÝÑ D the relation pA,Dq P S.

The delay and backlog associated to a server are defined from the arrival
A and departure D cumulative functions. The delay at time t is defined as
hDevpA,D, tq, and the backlog at time t is vDevpA,D, tq,

hDevpA,D, tq
def
“ inf

 

d P R` Aptq ď Dpt` dq
(

, (3)

vDevpA,D, tq
def
“ Aptq ´Dptq. (4)

The semantics of the backlog is quite obvious: it is the amount of data held by
the server. The one of the delay deserves an explanation: for a bit arrived at
time t, it is the duration required for the accumulated departure curve to reach
the same amount of data.

The worst delay (resp. backlog) associated to the pair pA,Dq is the supre-
mum of the delay (resp. backlog) for all time t.

hDevpA,Dq
def
“ sup

tPR`
hDevpA,D, tq, (5)

vDevpA,Dq
def
“ sup

tPR`
vDevpA,D, tq. (6)

In general, a server is shared by several flows, but as will be presented further,
a main step in network calculus consists in reducing a server shared by several
flows into an “equivalent” server crossed by a single flow.
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A n-server S is a relation that associates to each vector of arrival cumulative
functions pA1, . . . , Anq at least one vector of departure cumulative functions
pD1, . . . , Dnq such that @i P r1, ns : Di ď Ai.

Given a n-server, its aggregate server SΣ is defined as A
SΣ
ÝÝÑ D if is exists

pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq such that A “

řn
i“1Ai, D “

řn
i“1Di. And

for any i P r1, ns, its residual server Si is defined by Ai
Si
ÝÑ Di if it exists

pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq.

3.3 Contracts

The exact behavior of a data flow or a server is commonly unknown at design
time, or too complex. Then, the performance analysis is made using contracts:
the maximal load generated by a flow, and the minimal capacity of a server.

A cumulative function A is said to have a function α P F as maximal arrival
curve if

@t, d P R` : Apt` dq ´Aptq ď αpdq. (7)

This condition is equivalent to A ď A ˚ α. The adjective “maximal” is of-
ten omitted since even if it exists a notion of minimal arrival curve, it is not
commonly used, and in particular it is not used in this article.

There exists two contracts on the minimal capacity of a server: a simple
minimal service and a strict minimal service.

Given a server S, it offers a simple minimal service of curve β P F if

@A
S
ÝÑ D : D ě A ˚ β. (8)
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This server offers a strict minimal service of curve β P F if

@A
S
ÝÑ D,@t, d ě 0,@x P rt, t`dq, Apxq ą Dpxq ùñ Dpt`dq´Dptq ě βpdq.

(9)

An interval rt, t`dq such that @x P rt, t`dq : Apxq ą Dpxq is called a backlogged
interval or backlogged period.

If a server offers a strict minimal service of curve β, it also offers a simple
minimal service of curve β Servers that are work-conserving, that is, do not idle
as long as there is data to transmit, offer a strict service curve.

The maximal capacity of a server is also of interest: given an arrival/departure

pair A
S
ÝÑ D, the upper bounds on the delay and backlog of the flow in the server

S are influenced by the minimal performance of the server, but the shape of the
departure cumulative functions is influenced by the maximal capacity of the
server, as will be shown in Theorem 1.

Let σ P F , a server S is a σ-shaper if @A
S
ÝÑ D, D has σ as arrival curve.

3.4 Main results

If the contracts on the arrival and the server are known, one can compute upper
bounds on the delay, backlog, and also compute the contract on the departure
(its allows to propagate the computation).

Theorem 1 (Network calculus bounds). Let S be a server, and A
S
ÝÑ D two

arrival and departure cumulative functions. Then if S offers a minimal service
of curve β, and S is a σ-shaper, and A has α as arrival curve, then

hDevpA,Dq ď hDevpα, βq, (10)

vDevpA,Dq ď vDevpα, βq, (11)

and D has α1 as arrival curve, with

α1 “ pαm βq ^ σ. (12)

This theorem computes local bounds, but when considering a sequence of
servers, a tighter bound can be computed.

Theorem 2 (Pay burst only once). Let S1,S2 be two servers offering respec-
tively a minimal simple service of curve β1, β2, and let A a cumulative function

crossing both in sequence ( i.e. A
S1
ÝÑ B

S2
ÝÑ C). Then, the sequence S1,S2 is a

server offering a minimal simple service of curve β1 ˚ β2.

This result is interesting since it gives lower bounds than the sum of local
delays2.

2i.e. hDevpα, β1 ˚ β2q ď hDevpα, β1q ` hDevpα1, β2q with α1 “ αm β1
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Theorem 3 (Blind multiplexing). Let S be a n-server such that SΣ offers a
minimal strict service of curve β. Then, if each arrival Aj has αj as arrival
curve, for any i P r1, ns, the residual server Si offers the minimal simple service
of curve

βblind
i “

«

β ´
ÿ

j‰i

αj

ff`

Ò

. (13)

The result was in (Le Boudec and Thiran, 2001, Thm. 6.2.1) without the
non-decreasing closure that has been added in Bouillard (2011). It is also known
as “arbitrary multiplexing” since it can be applied on any service policy.

When several flows share a queue with with First-In First Out (FIFO) policy,
one can derive a per flow residual service.

Theorem 4 (FIFO multiplexing). Let S be a n-server such that SΣ offers a
minimal simple service of curve β. Then, if each arrival Aj has αj as arrival
curve, for any i P r1, ns, the residual server Si offers the minimal simple service
of curves

βg-FIFO
i “ δd with d “ hDev

˜

n
ÿ

j“1

αj , β

¸

, (14)

βθ´FIFO
i “

«

β ´
ÿ

j‰i

αj ˚ δθ

ff`

^ δθ,@θ P R`. (15)

In fact, they are two results for the FIFO policy. One may either compute
the delay of the aggregate server, d, or choose one θ for each flow and use
βθ´FIFO
i . In this case, the challenge is the choice of the θ value (that will be

discussed in Sections 4 and 7.2). Proofs can be found at Theorems 7.4 and 7.5
in Bouillard et al. (2018).

Proposition 1 (Burstiness increase due to FIFO, general case). Let S be a
n-server such that SΣ offers a minimal simple service of curve βR,T . Assume
that the flow of interest Ai has arrival curve γri,bi , and that the aggregate flow
A‰i “

ř

j‰iAj has a sub-additive arrival curve α‰i, with r‰i its long term rate.
Then, if ri ` r‰i ă R, then departure flow Di has arrival curve γri,b1i with

b1i “ bi ` ri

ˆ

T `
B

R

˙

, B “ sup
uě0

tα‰ipuq ` riu´Ruu .

The previous proposition is the re-writing of Theorem 6.4.1 from Le Boudec
and Thiran (2001).

Corollary 1 (FIFO and token-bucket arrival curves). Let S be a n-server such
that SΣ offers a minimal simple service of curve βR,T . Assume that each arrival
Aj has γrj ,bj as arrival curve, with

řn
j“1 rj ă R. Then for any i P r1, ns,

the residual server Si offers the simple minimal service of curve βRi,Ti
with

Ri “ R ´
ř

j‰i rj, Ti “ T `
ř

j‰i bj

R , and the departure Di has arrival curve
γri,b1i with b1i “ bi ` riTi.

9
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Figure 9: Illustration of WRR residual service, with βptq “ Rt.

The previous corollary is the re-writing of Cor. 6.2.3 from Le Boudec and
Thiran (2001).

Theorem 5 (Residual service of RR). Let S be a n-server shared by n flows,

denoted by pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq, applying a round robin policy. For

any i P r1, ns, let lmax
i and lmin

i , some upper and lower packet sizes for the flow
i.

If SΣ offers a strict service of curves β, then the residual server Si offers
the residual strict service of curves

βRR
i “

´

λ1 ˚ νlmin
i ,lmin

i `Lmax
‰i

¯

˝
`

β ´ Lmax
‰i

˘

, (16)

βRR-lin
i “

lmin
i

lmin
i ` Lmax

‰i

“

β ´ Lmax
‰i

‰`
(17)

with Lmax
‰i “

ř

j‰i l
max
j . If βptq “ Rt, then βRR-lin

i “ βRRR
i ,TRR

i
with

RRR
i “ R

lmin
i

lmin
i ` Lmax

‰i

, TRR
i “

Lmax
‰i

R
. (18)

This theorem gives three expressions of residual services, but in fact there
is only one, since βRR-lin

i is just a linear lower bound of βRR
i , and βRRR

i ,TRR
i

the expression of βRR-lin
i when the aggregate service is a constant rate. Their

relation is illustrated on Figure 9. The proof can be found in (Bouillard et al.,
2018, Thm. 8.6).

3.5 Analysis principles

3.5.1 Local analysis

When an output port implements a round robin policy between queues, and each
input queue is shared by several flows, there exists several ways to compute the
delay associated to each flow. Consider Figure 10, where an output port is
shared by three flows, A1, A2, A3, with A1, A2 buffered in queue q1 and flow A3

buffered in queue q2. Assume we are interested by the flow A1. From the initial
configuration (on the middle left), with strict service of curve β123, one may
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Figure 11: Simple topology.

compute a residual server, S1, with service β1, considering blind multiplexing
(cf. Theorem 3). But one also may first reduce the system to a FIFO one, S12,
with simple service β12, using either Theorem 3 or Theorem 5. Then, one may
either use a tool dedicated to FIFO network, or use Theorem 4 or Corollary 1.

Since the expressions of the residual curves are different for each theorem,
the choice of one or the other will give a different residual curve, and then
different bounds on the delay. They all are correct, but some are smaller.

For example, when going from S to S12, if A3 uses less then half of the
bandwidth, it may be better to use Theorem 3 on blind multiplexing. Indeed,
the round robin policy, with equal packets size, will guaranty to queue q1 half of
the bandwidth. If A3 uses only one third of the bandwidth, blind multiplexing
will guaranty queue q1 two thirds of this bandwidth

3.5.2 Global analysis

There exist several ways to bound the end-to-end delay of a given flow. Let F j

denotes the set of flows crossing a server Sj .
The simplest one, the Total Flow Analysis (TFA), initially defined in Schmitt

and Zdarsky (2006), computes one bound dj for each server, and for a given flow,
does the sum of all servers its crosses dTFA

i “
ř

fiPF j dj . It will be presented

11
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in details in Section 7.1. In the topology of Figure 11, TFA will compute one
delay di for each server Si, and the delay for the flow f4 (of cumulative functions
A4, B4, C4) will be bounded by d3 ` d4.

The most famous one, the Separated Flow Analysis (SFA) computes, for a
given flow fi, for each crossed server Sj , a residual service βji . Then, using the
Pay Burst Only Once principle (Theorem 2), one gets an end-to-end service
βSFA
i “ ˚fiPF j βji that allows computing dSFA “ hDevpαi, β

SFA
i q a bound on the

end-to-end delay. In the topology of Figure 11, to bound the delay of f4, SFA
will compute β3

4 (resp. β3
4), a residual service for the flow f4 in the server S3

(resp. S4), and the delay will be bounded by hDevpα4, β
3
3 ˚ β

4
3q.

In both SFA and TFA, the computation of the residual service depends on
the scheduling policy. And none of the algorithm specifies how to compute the
arrival curves of the interfering flows (the arrival curves of B2 and B3).

SFA is often considered as better than TFA3. But most of the studies have
considered only blind multiplexing. As will be shown in this study, when con-
sidering FIFO policy, the results can be different. The reason may be that there
is no well known strategy to get a “good” residual service for FIFO.

A complete different approach has been developed in Bouillard et al. (2010):
assuming that all arrival (resp. service) curves are piece-wise linear concave
(resp. convex) functions, instead of computing a residual service, all network
behaviors are encoded as one mixed-integer linear program.

3.6 Cyclic dependencies

Last, let us illustrate why cyclic dependencies are still an open problem in
network calculus.

Consider the topology of Figure 12, and first assume a blind policy. To
compute the delay of the flow A1 in S1, one may use Theorem 3, but then, the
arrival curve of B2 is required. And to compute this arrival curve, one may use
Theorems 1 and 3, but the arrival curve of B1 is required.

The same applies if S1 and S2 apply a FIFO policy. An overview of managing
cyclic dependencies can be found at Chapter 12 in Bouillard et al. (2018).

But if S1 or S2 uses a round robin policy, alternating service of packets
for flows A and B, the problem does not occur anymore since computing the

3“In network calculus, the Total Flow Analysis (TFA) had been abandoned since it is
inferior to other methods.” (Bondorf and Schmitt, 2016, §7)
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residual service does not require the arrival curve of the competing flows.

4 State of the art

They have been several studies designed to compute upper bounds on the worst
case traversal times (WCTT) of a NoC by a set of data flows. Nevertheless,
very few address the Karlay MPPA NoC architecture.

An overview of the state of the art of NoC performance evaluation (up to
2013) can be found in Kiasari et al. (2013).

Most NoCs use a wormhole switching mechanisms: a packet is decomposed
as a sequence of flits (typically of 64 or 128 bits), and the flits are forwarded in a
cut-through way once the routing decision has been made, based on the header
of the packet. This mechanism allows a router to forward the head of a packet
before the reception of the full packet. A credit-based mechanism ensures that
no buffer overflows: if a destination buffer is full, the switch stops forwarding
flits. This can lead to a local buffer filling and then the previous switch must
also stop to send flits, and so on, up to the source. This mechanism is called
back-pressure.

In a real-time environment, the back-pressure mechanism may create large
latencies and is quite difficult to analyze. Then, in case of real-time constraints,
one often tries to avoid back-pressure activation.

TDMA access upon wormhole switching One solution to avoid the back-
pressure activation is to build a global time-based schedule (Time Division Mul-
tiple Access, TDMA), where times slots are reserved to data flows, in a way such
that no contention occurs in the buffers, as in Carle et al. (2014), Perret et al.
(2016a), Perret et al. (2016b).

Wormhole switching, virtual channels and static priorities The use of
virtual channels allows reducing the number of conflicts in buffer use and so the
number of activations of the back-pressure mechanism.

For example, an active community considers NoC with wormhole switching,
in each routers, preemption at the flit level and static priorities scheduling be-
tween virtual channels. Moreover, it is often assumed that the number of virtual
channel is not less than the maximum number of contentions in each port, as
in Shi and Burns (2008), Nikolić et al. (2016), Burns et al. (2014), Xiong et al.
(2017) or Nikolić et al. (2018). Note that with such assumptions, the back-
pressure mechanisms of the wormhole switching is only due to higher priority
flows.

Wormhole with back-pressure A few papers address the problem of worm-
hole switching with back-pressure activation within the same priority level.

The recursive calculus was designed in Ferrandiz et al. (2009), Ferrandiz
et al. (2011) to compute bounds on the SpaceWire technology, a wormhole-
based technology. The recursive calculus is one of the rare method that fully

13



takes into account the back-pressure mechanism of the wormhole switching. It
has been adapted to the Karlay MPPA NoC in Ayed et al. (2016) and compared
with a network-calculus based approach Dupont de Dinechin et al. (2014) on
an example, that will also be considered in this article (cf. Section 8.2). This
recursive calculus approach has been enhanced in Abdallah et al. (2015) to take
into account the pipeline effect of the cut-through forwarding in the wormhole
switching, considering a NoC with input-queuing and round-robin arbitration.

The Compositional Performance Analysis (CPA, Henia et al. (2005)) is a
theory that, like network calculus, uses functions to bounds the flow shape, but,
unlike network calculus, uses a busy-period based analysis to compute the per
node latency. In Tobuschat and Ernst (2017), the authors develop a CPA-based
method to compute the latency bounds on a wormhole NoC, with back-pressure
activation and taking into account the input flow shapes.

The trajectory approach, originally developed for Ethernet networks in Mar-
tin and Minet (2004) and corrected in Li et al. (2014), has been adapted to NoC,
considering a system with input queuing, FIFO arbitration and back-pressure
activation in Papastefanakis et al. (2015).

Last, one study takes into account the back-pressure withing network calcu-
lus framework, and it is presented in the next section.

Network calculus Since the back-pressure is activated once a buffer is full,
one way to avoid its activation consists in statically ensuring that it will never
occur, by adequate configuration of the traffic limiters. To do so, one may use
the network calculus theory that is devoted to the computation on upper bounds
on buffer occupancy and delay.

From the network calculus point of view, when the back-pressure mechanism
is not activated, the MPPA NoC simply appears as a network using a round
robin arbiter and cut-through forwarding. So, we are going to present first pure
network-calculus studies on Weighted Round Robin (WRR), FIFO policy and
thereafter their application to NoCs.

A network-calculus model of the WRR policy has been presented in Georges
et al. (2011), Georges et al. (2005), without any proof and implicitly considering
that all packets have the same size. It gives, for each class, a residual service.
The same assumptions are done in Long et al. (2014), that also gives a residual
service. Theses works have been generalized in (Bouillard et al., 2018, Thm. 8.6)
considering an upper and lower bound on packet size for each flow. This last
result is the one presented as Theorem 5 in Section 3.

One may also analyze a WRR arbiter using the “blind multiplexing” (cf.
Theorem 3), since a WRR arbiter is also a work-conserving arbiter. One dif-
ference between both is that the WRR residual service offered to one queue
depends only on the weights and the packet sizes, but is independent from the
traffic of the flows using the others queues, whereas the blind multiplexing re-
sult does not consider the weights, only the maximal packet size and the flow
traffics.

Both theorems on WRR transform the network into another one using only
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FIFO policy. They have been several works done on FIFO policy in the network
calculus domain. The simplest approach, used for example in Frances et al.
(2006),Boyer et al. (2011a), computes the end-to-end delay of a flow by doing
the sum of the local delays. But, as recalled in Theorem 2, network calculus
allows to compute smaller end-to-end bounds, using the Pay burst only once
principle. Nevertheless, in the case of the FIFO policy, the application of this
principle requires the choice of some real parameter θ ě 0 (cf. Theorem 4) per
crossed server. The choice of a good set of parameters was the core work of the
DEBORAH tool, presented in Bisti et al. (2010), Lenzini et al. (2004), Lenzini
et al. (2005), Lenzini et al. (2007) and downloadable at Bisti et al. (2011). Since
this work only considers token-bucket flows and latency-rate servers, some others
works have been done on more general classes of curves in Cholvi et al. (2002),
Boyer and Fraboul (2008). Surprisingly, all these works compute either optimal
delay or arrival curve, without any explicit expression of the θ parameters.

A new approach have been developed in Bouillard et al. (2010): instead of
locally computing a residual service, the basic equations of network calculus are
encoded as a mixed-integer linear program (MILP), looking only at a set of well
defined time variables. Moreover, it does not compute an upper bound on the
delay, but the worst delay, also know as worst case delay. It has thereafter been
adapted to FIFO multiplexing, in Le Boudec and Thiran (2001), Chang (2000),
and since the computation complexity was high, is has been enhanced to com-
pute a simplified problem, that computes only an upper bound on delay. A free
implementation, NetCalBound, is provided at Bouillard (2017), and experimen-
tal comparisons with DEBORAH are can be found in Bouillard and Stea (2012),
Bouillard and Stea (2014). Following Bondorf et al. (2017), computing worst
bounds with this method will be called “LP” and computing upper bounds will
be called “ULP”.

Considering the studies on NoC using network calculus, one may first cite
Qian et al. (2009a), where the authors assume a NoC with FIFO policy and
infinite buffers. The paper is mainly an adaption of Lenzini et al. (2005) to the
NoC context.

The same authors address a realistic configuration in Qian et al. (2009b):
each router has only one queue per input port (input queuing), the switching
fabric uses a weighted round-robin to serve this input queues, and wormhole
switching is used to avoid buffer overflow. The network-calculus model takes
into account the limited sizes of the queues and the use of the back-pressure
mechanism. The back-pressure mechanism is also modeled in Zhan et al. (2013),
but the authors seem not aware of the previous work of Qian et al. (2009b) and
the equation (5) in Zhan et al. (2013) are different than the equations (4.1) and
(4.2) in Qian et al. (2009b).

Weighted round-robin policy is also assumed in Jafari et al. (2010). It con-
siders a NoC where in each port, the number of virtual channels is not less than
the number of flows, and that VCs are served with a per-packet round-robin pol-
icy. It also assumes that the flows are regulated at the source by a token-bucket
shaper. Then, it optimizes the token-bucket parameters in order to minimize
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the buffer use while “satisfying acceptable communication performances”.
This model (round-robin arbitration and token-bucket shaping at the source)

is quite close to the MPPA NoC architecture, but the MPPA NoC applies round-
robin arbitration per queue, not per flow.

The Karlay MPPA is explicitly targeted in Giannopoulou et al. (2016), avoid-
ing back-pressure by adequate traffic limiter configuration, but per flow round-
robin is assumed.

In Dupont de Dinechin et al. (2014), a first network calculus model of the
Karlay MPPA model was presented, assuming constant packet size.

Last, computing routing and resource allocation under delay constraint have
been also studied in Frangioni et al. (2014), Frangioni et al. (2017)

5 Notations on topology

Before presenting the different methods used in this study to compute upper
bounds for flows on the MPPA NoC, let us introduce some notations shared by
all these methods.

These notations will be illustrated on a small example. In Figure 13, a flow
f1 goes from N1 to N3, crossing routers R1, R2, R3; another flow f2 goes from
N2 to N3, crossing routers R2, R3. In router R1, the flow f1 is set in the queue
“From Local” of the output port “To West”. In router R2, it is set into the
queue “From East” of the output port “To West”. And in router R3, it uses
the queue “From East” of the output port “To Local”.

A hierarchical model would define routers, with ports and queues as at-
tributes of a router. Our network calculus model considers a flat set of all ports
in the NoC,

 

p1, . . . , pnp
(

, and also a flat set of all queues
 

q1, . . . , qnq
(

. Fig-
ure 14 reports a subset of the queues involved in example of Figure 13: only
queues “From Local” and “From West” have been drawn, and only the used
ports. For example, the output port “To East” of the router R1 is p1, and its
queue “From Local” is q1.

The relation between queues and ports is done by a function p such that
ppqiq “ pk if qi is an input queue of the port pj . In the example, ppq1q “

ppq2q “ p1, ppq3q “ ppq4q “ p2, etc.
The set of flow is

 

f1, . . . , fnf

(

. A flow has a determined path between
one source and one destination4, lmin

i (resp. lmax
i ) denotes the minimal (resp.

maximal) size of a packet of flow fi. The route of a flow is denoted queue per

queue: qj
fi
ÝÑ qk if the flow f i goes from the queue qj to the queue qk.

For a flow fi, Qi is the (ordered) sequence of queues it crosses, i.e. since the

flow f1 follows the path q1 f1
ÝÑ q4 f1

ÝÑ q6, then Q1 “ q1q4q6.
For a queue qj , F j denotes the set of flows crossing this queue. Of course,

if a queue qj is in the path of flow fi, then fi is in the set of flows crossing
this queue, i.e. qj P Qi ðñ fi P F

j . In the example, F 1 “ F 4 “ tf1u,
F 2 “ F 5 “ H, F 3 “ tf2u, and F 6 “ tf1, f2u.

4The MPPA NoC has multicast capabilities, not considered here to keep notations simple.
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q1, . . . , qnq
(

set of queues
 

p1, . . . , pnp
(

set of ports
ppqiq “ pk qi is an input queue of pj

 

f1, . . . , fnf

(

set of flows
lmin
i , lmax

i minimal and maximal packet size of fi

qj
fi
ÝÑ qk f i goes from qj to qk

Qi route of flow fi, as a sequence of queues
F j set of flows crossing qj

Aji cumulative function of fi entering qj

Dj
i cumulative function of fi leaving ppqjq

αji arrival curve of Aji
9αji arrival curve of Dj

i

Table 1: Notations related to topology.

Figure 13: Network elements and flows example to illustrate notations/

The cumulative function of the flow fi entering the queue qj is denoted Aji .

The cumulative function leaving the output port ppqjq is denoted Dj
i .

For a given method5, αji (resp. 9αji ) denotes the arrival curve of the cu-

mulative function Aji (resp. Dj
i ). Of course, qj

fi
ÝÑ qk implies Dj

i “ Aki and

9αji “ αki .

6 Explicit linear method for the MPPA NoC

The delay experienced by a flow crossing a NoC depends on the capacity of
network elements, on the route from the source to the destination, and on the

5Different methods may compute different arrival curve for the same cumulative function.

q1

q2
p1

q3

q4
p2

q5

q6
p3

f1
f2

A3
2

D3
2 “ A6

2

D6
2

Figure 14: Partial translation of example of Figure 13.
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characteristics of the flows sharing some buffer or links along this route. We
assume that each flow has been assigned a path and a maximum rate that
ensures no link capacity is exceeded. This global network optimization problem
can be solved using the max-min fairness criterion, for instance by using one of
the methods described in Dupont de Dinechin et al. (2014).

Once flow paths and their maximum rate is known, the problem of ensur-
ing that no back-pressure mechanism is active and expressing bounds on the
flow end-to-end latencies can be formulated as a Mixed-Integer Linear Problem
(MILP). Indeed, by assuming that the flow rates are constant, is is possible to
evaluate the delays and backlogs as variables of a linear problem6.

This section will present only the part related to delays, and the reader
may refer to Dupont de Dinechin and Graillat (2017) for details on routing and
fairness.

This method is called “explicit” since the network calculus results presented
in Section 3, involving specific operators (deviations, convolutions, etc.) are
particularized in the specific case of affine arrival and service curves, and explicit
analytic expressions are derived.

In this linear formulation, the arrival curve associated to each flow fi at
the input of a queue qj P Qi is a token-bucket αji “ γri,bji

, where ri is its rate

(constant along the path) and bji its burstiness in front of queue qj .

6.1 Arrival curve at queue input, and shaping of incoming
link

Queue qj receives the aggregates of flows F j passing through it, so its arrival
curve is of leaky-bucket type γrj ,bj with

rj “
ÿ

fiPF j

ri, bj “
ÿ

fiPF j

bji . (19)

But this aggregate flow comes from a link of peak rate r. Then, it also have λr
as arrival curve. Combining both, it yields the arrival curve λr ^ γrj ,bj : t ÞÑ
minprt, bj ` rjtq, which is a special case of the standard T-SPEC arrival curve
αptq “ minpM ` pt, rt` bq1ttą0u used in IntServ Firoiu et al. (2002). Note the

intersection of the two lines pt`M and rt`b has coordinate pM´br´p ,
Mr´pb
r´p q and

that αptq “M ` pt if t P
´

0, M´br´p

ı

and αptq “ rt` b if t ě M´b
r´p (cf Figure 15).

Assume that this queue qj receives from the link arbiter a rate-latency ser-
vice curve βRj ,T j (the computation of these parameters Rj , T j will be done in
Section 6.3) with Rj ď r and Rj ě rj . The bound on delay for queue qj is the

6The use of MILP in this explicit linear formulation must not be confused with the use
of MILP in LP method. In the explicit linear formulation, the variables of the mixed-integer
linear problem are the burst sizes of the arrival curves at queue input, and routing-related
values, as presented in Dupont de Dinechin and Graillat (2017), whereas the LP approach
assumes that the routing is fixed and the MILP variables are specific instants and the values
of the cumulative functions at these instants, cf. Bouillard and Stea (2014).
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M

p

b

r

M´b
r´p

Mr´pb
r´p

Figure 15: T-SPEC flow caracteris-
tic curve.

bj r

rj

T j

Rjdj

Figure 16: Delay between shaped
token-bucket and rate-latency ser-
vice: dj “ hDevpλr^γrj ,bj , βRj ,T j q.

maximum horizontal deviation between the arrival curve and the service curve
dj

def
“ hDevpλr ^ γr,bj , βT j ,Rj q. As illustrated in Figure 16, application of the

T-SPEC arrival curve on such service curve yields

dj “ T j `
bjpr ´Rjq

Rjpr ´ rjq
. (20)

6.2 Flow arrival curve

At ingress, whole packets are atomically injected at rate r. Call u the date when
injection ends. We have ru “ lmax

i and lmax
i ď bi ` riu, so

@fi P F : bi ě bmin
i

def
“ lmax

i

r ´ ri
r

. (21)

We now express the values rji and bji for all flows fi P F
j for a queue qj . If qj

is the first queue traversed by the flow, then bji “ bi. Else, let qk be predecessor

of qj in the sequence of active queues traversed by flow fi (i.e. qk
fi
ÝÑ qj),

with βRk,Tk its (residual) service curve. When flow fi traverses queue qk, its
burstiness increases differently whether it is alone or aggregated with other flows
in qk.

If the flow is alone in queue qk, we apply the classic result of the effects of a
rate-latency service curve βR,T on a flow constrained by an affine arrival curve
γr,b. The result is another affine arrival curve γr,b`rT Le Boudec and Thiran
(2001), so

bji “ bki ` riT
k. (22)

Else, we apply Prop. 1. Let us introduce rj‰i “ rj ´ ri, b
j
‰i “ bj ´ bji , i.e.

rj‰i “
ÿ

flPF j ,l‰i

rl, bj‰i “
ÿ

flPF j ,l‰i

bjl . (23)

The competing flows have arrival curve α‰iptq “ minprt, rj‰it`b
j
‰iq1ttą0u (the rt

term comes from link shaping at qk ingress). Since this function is sub-additive
and ri ` r‰i “

ř

lPF i rl ă R, the proposition can be applied.
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The α‰i function is a T-SPEC function, which is equal to the first term if

u ď b‰i

r´rj
‰i

and to the second otherwise. Then

sup
uě0

α2puq ` riu´R
j (24)

“

¨

˚

˚

˝

sup
0ďuď

b‰i

r´r
j
‰i

pr ` ri ´R
jqu

˛

‹

‹

‚

_

¨

˚

˚

˝

sup
uě

b‰i

r´r
j
‰i

prj‰i ` ri ´Rqu` b‰i

˛

‹

‹

‚

(25)

“ b‰i
r ` ri ´R

j

r ´ rj‰i
. (26)

Application of Prop. 1 leads to

bji “ bki ` ri

˜

T j `
bj‰ipr ` ri ´R

jq

Rjpr ´ rj‰iq

¸

. (27)

Note that the use of Cor. 1 would lead to bki ` ri

ˆ

T j `
bj
‰i

Rj

˙

that does not

capture the benefit of the shaping r at input.

6.3 Link Arbiter Service Curves

On the MPPA2 NoC, the output link arbiters operate in round-robin per input
queues at the packet granularity, while each queue contains flows aggregated
in FIFO. As the packets presented to a link arbiter are not processed in FIFO
order, previous work (e.g. Bouillard and Stea (2015)) would have to assume
blind multiplexing between all flows and fail to exploit FIFO aggregation. This
is addressed in Dupont de Dinechin and Graillat (2017) by exposing the service
offered to each queue of a link arbiter: either, the rate and latency ensured
by round-robin packet scheduling; or, the residual service guaranteed by blind
multiplexing across queues when the round-robin service does not apply. Then,
each queue can be seen as a server applying a FIFO policy.

The service curve offered by a link arbiter to each of its queues is abstracted
as a rate-latency function βj “ βRj ,T j . The first approach to derive this curve
is to consider the behavior of the round-robin arbiter, assuming that each flow
fi has its packet sizes bounded by a minimum lmin

i and a maximum lmax
i . Let

lmin
F j

def
“ minfiPF j lmin

i and lmax
F j

def
“ maxfiPF j lmax

i be respectively the minimum
and maximum packet sizes for qj (with convention that maxH “ 0 to encode
the fact that a queue crossed by no flow has no influence on the round robin

arbiter). Let Q‰j
def
“

 

qk ppqkq “ ppqjq, k ‰ j
(

be the set of queues sharing the
same arbiter than qj . By application of eq. (18), the general round-robin service
curve βj “ βRj ,T j for qj is

Rj “
rlmin
F j

lmin
F j `

ř

kPQ‰j lmax
Fk

, T j “

ř

kPQ‰j lmax
Fk

r
. (28)
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The second approach to derive a service curve for queue qj is to consider
that the round-robin arbiter serves packets at peak rate r according to a blind
multiplexing strategy across the queues. Application of Theorem 3 yields the
blind multiplexing service curve βj “ βRj ,T j for qj

Rj “ r ´
ÿ

kPQ‰j

rk, T j “

ř

kPQ‰j bk

r ´
ř

kPQ‰j rk
. (29)

The blind multiplexing service curve must be used whenever the sum of flow
rates inside qj exceeds Rj in Eq. (28). Else, we select the formula that evaluates
to the lowest T j .

6.4 End-to-End Latency Bound

For computing an upper bound on the end-to-end latency of any particular flow
fi, we proceed in three steps. First, compute the residual (or left-over) service
curve βji of each active queue qj traversed by fi. Second, find the equivalent
service curve β˚i offered by the NoC to flow fi through the convolution of the left-

over service curves βji . Last, find the end-to-end latency bound by computing
d˚i the delay between αi the arrival curve of flow fi and β˚i . Adding d˚i to the
constant delays of flow fi such as the traversal of non-active queues and other
logic and wiring pipeline yields the upper bound.

This approach is an application of the SFA principle (cf. Section 3.5.2).
For the first step, we have two cases to consider at each queue qj . Either fi

is the only flow traversing qj , and βji “ βRj ,T j from equations (28) or (29). Or,
fi is aggregated in qj with other flows in F j . Packets from the flow aggregate
F j are served in FIFO order, so we may apply Corollary 1. This yields the
left-over service curve βji “ βRj

i ,T
j
i

for an active queue qj traversed by fi:

Rji “ Rj ´ rj‰iF
j , T ji “ T j `

bj‰i
Rj

. (30)

For the second step, we compute the convolution β˚i “ ˚qjPQi
βji of the

left-over service curves βji . Thanks to the properties of rate-latency curves
Le Boudec and Thiran (2001), β˚i is a rate-latency curve whose rate R˚i is the
minimum of the rates and the latency T˚i is the sum of the latencies of the

left-over service curves βji :

R˚i “ min
jPQi

Rji , T˚i “
ÿ

jPQi

T ji . (31)

For the last step, we compute the delay d˚i between αi the arrival curve of
flow fi at ingress and β˚i . This flow is injected at rate ri and burstiness bi,
however it is subject to link shaping at rate r as it enters the network. As a
result, αi “ minprt, bi ` ritq1tą0 and we may apply Eq. (20):

d˚i “ T˚i `
bipr ´R

˚
i q

R˚i pr ´ riq
. (32)
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7 Adaptation of generic algorithms to the MPPA
NoC

Section 6 has presented a modeling of the MPPA NoC using linear constraints
for respecting deadline and buffer constraints (even if in this article, the focus
is done only on the delay evaluation).

One may wonder if other algorithms may compute better bounds.
This section presents first how the Total Flow Analysis (TFA) and Sepa-

rated Flow Analysis (SFA), initially defined for tandem topology with blind
multiplexing, can be adapted to the case of the MPPA NoC, and especially
to its hierarchical FIFO/RR scheduling (sections 7.1 and 7.2). Thereafter, is
discusses how the specific case of constant packet size can help the analysis.

7.1 Total flow analysis

This section presents how the Total Flow Analysis (TFA), introduced in Sec-
tion 3.5.2, is used and has been adapted to the specific case of the MPPA NoC.

The basic idea is of TFA is, given a queue qj , to consider Aj “
ř

fiPF j A
j
i the

total input flow, to compute αj an arrival curve for Aj , and given βj a service
curve of the queue, to compute dj “ hDevpαj , βjq a delay bound of the queue.
Since the queue applies a FIFO policy between its flows, this delay bound is also
a bound for each flow, and the end-to-end delay of a flow fi can be bounded by
the sum of the dj of the crossed queues qj : dTFA

i “
ř

qjPQi
dj .

This algorithm requires to compute αj and βj for each queue qj .
The computation of αj relies on the iterative transformation of arrival curve7.

Let αji be an arrival curve for the flow Aji . Then, the corresponding departure

flow Dj
i has arrival curve 9αji “

´

αji m δdj
¯

^ δ0 (cf. eq. (12) and eq. (14)).

Then, the computation of αj relies on the identification of all queues qk

sending flits to the queue qj . Let Ij
def
“

!

qk Dfi : qk
fi
ÝÑ qj

)

be this set.

Note that if a flow fi goes from a queue qk to a queue qj , then Aji “ Dk
i .

Then αj can be computed as the sum of all individual arrival curves 9αki . But
all these flows also pass through a link with peak rate r. This shaping implies
that λr is another arrival curve for Aj , leading to

αj “ λr ^
ÿ

qkPIj

ÿ

fiPFkXF j

9αki . (33)

The computation of βj can be done using either the residual service of the
round-robin policy (Theorem 5), or the blind multiplexing (Theorem 3). The
computation of the blind multiplexing requires to compute the arrival curve of
the competing flows8. It can be of interest when a queue shares the output

7A discussion on how the original input curves are computed is postponed to Section 7.3.
8This can be done using eq. (33). If Cj is the set of queues sharing the same output

port than qj , α´j “
ř

kPCj αk is an arrival curve for all the competing flows, and βj
Blind “

“

β ´ α´j
‰`

Ò
the blind residual service.
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βj,Blind
i

Thm. 3
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βj,RR/g-FIFO

eq. (14)

β
j,RR/θ-FIFO
i

eq. (15)

β
j,RR/β-FIFO
i

Cor. 1

βj,Blind

Thm. 3 β
j,Blind/g-FIFO
ieq. (14)

β
j,Blind/θ-FIFO
i

eq. (15)

β
j,Blind/β-FIFO
i

Cor. 1

Figure 17: Different ways to compute a residual service.

link with lightly loaded queues. But the TFA algorithm is not forced to choose
between both, it can compute both residual services, βjBlind, βjRR and then set

dj “ hDevpαj , βjBlindq ^ hDevpαj , βjRRq.

7.2 Separated flow analysis

Whereas the Separated Flow Analysis (SFA) is well defined for a tandem net-
work with blind multiplexing policy, its application to the NoC MPPA requires
several adaptations, and some trade-offs, presented in this section.

The basic idea of SFA is, given a flow fi to compute βSFA
i “ ˚qjPQi

βji , where

βji is a residual service for the flow fi in queue qj . From a single flow point of
view, the MPPA applies a hierarchical scheduling FIFO/RR: the bandwidth is
shared between the queues using a RR scheduling and this left-over service is
shared by the flows using a FIFO policy.

Then, one may consider several ways to compute the residual service βji :
either consider this hierarchical scheduling as a black box, and use the blind
multiplexing result (Theorem 3), or first consider the residual service offered to
the queue βj (using either round robin residual service or blind multiplexing, as
discussed in Section 7.1 on TFA) and secondly deduce the residual service left
by the FIFO policy (using either eq. (15) or eq. (14) or the Cor. 1). Combining
all possibilities leads to 7 different expressions, as presented in Figure 17. In
fact, not all are of interest.

Considering only blind multiplexing (βj,Blind
i ) is always worse than modeling

the RR arbiter per a blind policy and thereafter modeling the FIFO policy inside

the queue (residual services β
j,Blind/*-FIFO
i ). The reason is that modeling a FIFO

policy with blind multiplexing is pessimistic.
For the global delay (g-FIFO residual service), it would lead to the same

result than TFA (presented in Section 7.1), and is not considered further.
Similarly, Corollary 1 can be applied only to affine modeling, and would lead

to quite the same results than the explicit linear method (presented in Section 6)
and is not considered further.

So, either β
j,RR/θ-FIFO
i or β

j,Blind/θ-FIFO
i has to be considered.
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Figure 18: Residual FIFO service with to θ, θ1 parameters, α‰i “
ř

j‰i αj .

Note that every value of θ P R` leads to a possible residual service, so each

β
j,RR/θ-FIFO
i and β

j,Blind/θ-FIFO
i represents an infinite number of service curves.

We postpone the discussion on the choice of θ and start by discussion the choice

between β
j,RR/θ-FIFO
i and β

j,Blind/θ-FIFO
i .

One may want to compute both βj,RR and βj,Blind and keep the maximum
of both service curves. But it is not correct in general: it is true that if a server
offers two minimal strict service of curves β, β1, it offers a minimal strict service
curve max tβ, β1u, but the results does not hold for minimal simple service, as
illustrated at § 5.2.3 in Bouillard et al. (2018). One also may want to compute
both for each server, and compute a residual service for all possible combination.
But, for a path of length n, it will results in 2n service curves. The strategy
used in this paper consists in computing both βj,RR and βj,Blind, and then to
choose the one with the smaller TFA delay.

Let now discuss the choice of the θ parameter. The expression of the residual
service is recalled here

βθ-FIFO
i “ rβ ´ α‰j ˚ δθs

`
^ δθ, (34)

with α‰i “
ř

j‰i αj . To the best of our knowledge, there is no general result on
the best, neither any good, θ parameter. The works presented in the state of
the art consider only affine or piece-wise linear concave/convex functions, and
do not give any explicit expression of this θ parameter.

Nevertheless, one may notice that setting θ “ 0 is equivalent to consider a
blind multiplexing, i.e. the worst possible scheduling among all others for the
flow of interest9.

9To be exact, with θ “ 0, the θ-FIFO residual service can be worst than the blind multi-
plexing since there is no non-decreasing closure.
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The choice of the parameter is a trade-off: let θ, θ1 be two parameters, with
θ ă θ1, how to compare βθ-FIFO

i and βθ
1-FIFO
i ? The convolution by a delay is

just a time shift: for any θ P R`, pf ˚ δθqptq “ fprt´ θs
`
q. Then, on the one

hand, θ ă θ1 implies α‰j ˚ δθ ą α‰j ˚ δθ1 , i.e. a larger parameter decreases the
impact of competing flows, leading to β ´ α‰j ˚ δθ ă β ´ α‰j ˚ δθ1 . On the

other hand, θ ă θ1 ùñ δθ ą δθ1 . Then, in general, βθ-FIFO
i and βθ

1-FIFO
i are

incomparable (cf. Figure 18).
One may nevertheless restrict the range of the parameter. First, notice

that βθ-FIFO ď δθ, then any θ greater than hDevp
řn
i“1 αi, βq, will yield a

residual service βθ-FIFO smaller than the one obtained with the g-FIFO so-
lution. So any θ ą hDevp

řn
i“1 αi, βq will give a worst delay than the TFA

approach. Second, it is common to have a service curve that is equal to
zero up to some value. Let Tβ “ inf tt βptq ą 0u (for a rate-latency func-
tion βR,T , this is the latency term, i.e. TβR,T

“ T ). Then, for any θ ă Tβ ,

β ^ δθ “ β, leading to βθ-FIFO “ rβ ´ α‰j ˚ δθs
`

. So, considering θ ă θ1 ă Tβ ,

βθ-FIFO ă βθ
1-FIFO, meaning that values of θ P r0, Tβs have no interest. Then,

only values θ P rTβ , hDevp
řn
i“1 αi, βqs are of interest.

To sum up, the value 0 reduces FIFO to blind multiplexing, the values in
r0, Tβq are worst than Tβ and the value hDevp

řn
i“1 αi, βq gives the same result

than TFA. So, in this study, the value θ “ Tβ will be considered. The definition
of a strategy for computing a better parameter value is out of the scope of this
study.

Last, the SFA approach does not specify how are computed the arrival curves
of the competing flows: in each node, for any j ‰ i, one may compute αj using
TFA, or considering a new SFA problem for this flow (up to this node), or
compute both and take the minimum, etc. In order to ease comparisons, the
arrival curves of the competing flows will be the one computed with the TFA
approach.

7.3 Constant packet size

Both the TFA and SFA approaches, presented in the previous section, can be
seen as black boxes transforming some input arrival and service curves into delay
bounds. This section discusses these input curves.

The traffic limiters at the NoC ingress ensure that each flow respects a
(configurable) token-bucket shape. Considering also the limited link throughput
lead to a T-SPEC arrival curves, as presented in section 6.1 (cf. Figure 2). It
belongs to the class of concave piecewise-linear function (CPL). Conversely, the
residual service of a round robin arbiter given by eq. 18 is also a convex piecewise-
linear function (CxPL). And the residual service of a blind multiplexing is also
a CxPL function if the arrival curves are CPL and the aggregate service is
CxPL. Using such concave/convex piecewise-linear functions in network calculus
is called a linear, or affine or fluid model.

In Boyer et al. (2018), the explicit linear method and the TFA approach
with affine curves has been compared on one example (that will be reused in
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Figure 19: Effect of constant packet size on arrival curve, Thm. 6, with α “
γ1{2,1{2 ^ λ1, l “ 1.

Section 8.2).
But such model cannot capture accurately the impact of packetization. In-

deed, a flow is made of packets, and in the MPPA NoC (and in the absence
of back-pressure activation), when a packet starts is emission, it is sent up to
completion at link speed. Modeling this effect allows more accurate arrival and
service curve, leading to better (i.e. smaller) bounds. This is true at arbiter
output, and this behavior is captured by eq. 16. But this is also true at traffic
limiters output and this is captured by Theorem 6 when all packets in a flow
have the same size.

Indeed, the traffic limiter at ingress of the MPPA NoC, presented in Sec-
tion 2, ensures by design that the output flow will respect a token-bucket arrival
curve γr,b. But this limiter only injects full packets, i.e. the first flit of a packet
is sent only if there will be enough credit to send the full packet without any
interruption. When a data flow always sends packets of the same size, it means
that not all values of the arrival token-bucket arrival curves can be reached by
an actual sequence of packets.

Theorem 6. Consider a data flow A made only of packets of fixed length l, such
that when a packet starts it emission, it is emitted up to completion at a constant
rate R. Then if α is a maximal arrival curve for A, also is α1 “ l

X

α
l

\

m λR.

The cumulative function of such a flow is an alternation of flat segments (no
output of data) and segments of slope R, height l and length l

R .
Note that this result can be applied for any arrival curve, whereas in the

context of the MPPA NoC, it will be used only for functions of the form α “
λR ^ γr,b (as in Figure 19).

Proof. Let t, d P R` be a time instant and a duration, and consider the amount
of data Apt` dq ´Aptq.

Let us first assume that some packet is being sent at instants t and t` d.
Let s be the begin of the sending interval containing t, and v the end of the

sending interval of t` d, as illustrated on Figure 20.
The main step of the proof consist in showing that Apt ` dq ´ Aptq ď

l
Y

αpd`wq
l

]

´Rw with w “ pt´ sq ` pv ´ pt` dqq.
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Figure 20: Per packet cumulative function.

Let w1 “ t´ s, w2 “ v ´ pt` dq, A1 “ Aptq ´Apsq the amount of data sent
on rs, ts, A2 “ Apvq´Apt`dq the one on rt`d, vs. Consider the decomposition
Apvq ´Apsq “ A1 `Apt` dq ´Aptq `A2.

On intervals rs, ts and rt ` d, vs, some part of a packet is sent, as constant
speed R, so A1 “ Rw1 and A2 “ Rw2, leading to Apvq ´ Apsq “ Apt ` dq ´
Aptq `Rpw1 ` w2q.

The flow admits α as arrival curve, so Apvq ´ Apsq ď αpv ´ sq. But by
construction, they are n P N full packets of size l sent on rs, vs, i.e. Apvq´Apsq “

nl, so n ď
Y

αpv´sq
l

]

and

Apt` dq ´Aptq `Rpw1 ` w2q ď l

Z

αpv ´ sq

l

^

(35)

Let w “ w1 ` w2, notice that v ´ s can be written as v ´ s “ d` w, it yields

Apt` dq ´Aptq ď l

Z

αpd´ wq

l

^

´Rw (36)

ď sup
wě0

l

Z

αpd´ wq

l

^

´ λRpwq (37)

“

´

l
Yα

l

]

m λR

¯

pdq (38)

If not packet is sent at time t, let t1 be the next instant when some packet
starts its emission (if t1 does not exist, it means that Apt ` dq “ Aptq and the
result holds). Then Aptq “ Apt1q. Conversely, if no packet is sent at t ` d,
let d1 ď d be such that t ` d1 is the previous instant when some packet ends
its emission. It holds Apt ` d1q “ Apt ` dq. Then, the previous result can
be applied: Apt ` d1q ´ Apt1q ď

`

l
X

α
l

\

m λR
˘

pd1q. By definition of t1 and d1,

Apt` dq ´Aptq “ Apt` d1q ´Apt1q and since l
X

α
l

\

m λR is non decreasing, and
d1 ď d

Apt` dq ´Aptq ď
´

l
Yα

l

]

m λR

¯

pdq. (39)
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Approach

Model

Fluid Per flow con-
stant packet
size

Per flow and
per queue
constant
packet size

End-to-End Explicit Linear, LP SFA/Fc SFA/FQc
Local TFA/Aff TFA/Fc TFA/FQc

Table 2: The analysis strategies.

8 Comparing strategies

Several approaches and models have been presented in the previous sections.
They will be compared on several case studies, with increasing size to ease
interpretation of the results.

The approaches have been partitioned in two categories: a first one com-
puting a end-to-end delay, and a second one computing local per queue delays.
Three kinds of models have been considered: either no information on the packet
size is modeled (“fluid” model), or we assume that all packets in a given flow
have the same size (“per flow constant packet sizes” model) or we also assume
that all packets in a given queue have the same size (“per flow and per queue
constant packet sizes” model).

The explicit linear method, presented in Section 6, is an end-to-end approach
with an affine model. The SFA is the most known end-to-end approach, but in
the specific case of concave/convex piecewise-linear arrival and service curves,
it is outperformed by the NetCalBounds tool, a free implementation of the LP
method developed in Bouillard and Stea (2014). This LP method gives the
exact worst delay (also known as tight), but its computation is exponential in
the length of the path. Nevertheless, since the paths on our case studies are not
so long, it was possible to use it. So, LP is used instead of SFA for the affine
model. The modeling of per flow constant packet sizes (use of Theorem 6) lead
to non concave arrival curves, and in this case, we use SFA for the end-to-end
delay computation (SFA/Fc). Moreover, the model considers that all packets
in a queue have the same size (use of Theorem 5); this is method SFA/FQc.

Conversely, the computation of the flow delay as the sum of the local de-
lays is done with TFA, with either an affine model (TFA/Aff), per flow con-
stant packets sizes (TFA/Fc) and per flow and per queue constant packets sizes
(TFA/FQc).

These different methods will be compared on two examples, with variation
on three parameters, the maximal packet size, the load, and the number of flows
per queue.
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Flow f1 f2 f3 f4

Rate 2
3

1
3

1
3

1
3

Max. Packet Size. 17 17 17 17
Burst 17

3
34
3

34
3

34
3

Table 3: Flow parameters, first example (topology of Figure 21), first experiment
(original values).

Figure 21: Case study from Dupont de Dinechin and Graillat (2017), 4 nodes.

The results on the explicit linear method have been obtained using a tool
developed by Kalray, presented in Dupont de Dinechin and Graillat (2017).
The results on the LP method have been obtained using the NetCalBounds tool
from Bouillard (2017). The results on the affine Total Flow Analysis have been
obtained using the RTaW-Pegase tool, from at Work (2019). All other results
have been obtained by a prototype plugin to the RTaW-Pegase tool.

8.1 First example: 4 nodes

The first example is from Dupont de Dinechin and Graillat (2017). It has 4
nodes, generating 4 flows crossing 4 routers, with routing depicted in Figure 21.

8.1.1 First experiment, original values

In a first experiment, all flows have a packet size of 17 flits (considered as typi-
cal), all flows have a long-term rate 1

3 but f1 that have r1 “
2
3 . The admissible

bursts at network ingress are 34
3 but f1 that have b1 “

17
3 (cf. Table 3).

The upper bounds on delays for this example are displayed in Figure 22.
Even this simple example shows interesting trends, that will be mainly confirmed
by the other experiments.

First, the explicit linear method, which has been designed to compute also
routing and allocate burst and throughput budget, gives good results w.r.t.
other methods. The interpretation of the TFA method is also simple: whereas
TFA is a perhaps the simplest approach, it is the one that captures in the
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Figure 22: Upper bounds on delay, per flow and per method, first example
(topology from Figure 21), first experiment (original values, parameters from
Table 3).

most efficient way the packetisation effect of data flows. Whereas the fluid TFA
perfoms worst for all flows, TFA with constant packet size per flow give results
comparable to other methods, and if moreover all packets in each queue have
the same size, it gives the best results.

The end-to-end computation deserve a discussion: whereas the LP methods
has been designed to compute the exact worst case, the explicit linear method
result is smaller for flow f3. The reason is that the LP method does not model
the shaping introduced by the link. Having stronger assumptions, the explicit
linear method reduces the set of admissible flows, and even if it does not compute
the maximum of this set, but only an upper bound, this upper bound is smaller
than the maximum of the larger set where no shaping constraint exist. The same
happens when considering packets of fixed sizes in SFA: with more assumptions,
and considering non concave/convex piecewise-linear functions (Figures 9, 19),
the bounds are better, even if the core of the resolution method is worse.

8.1.2 Second experiment, splitting flows

The second experiment is a modification of the first one: each flow fi is split
into two flows fi,1, fi,2 with the same routing; a flow rate divided by two; fi,1
has maximal packet size 9; and fi,2 has maximal packet size 8. This example
has more flows, each queue is used by at least two flows, and one cannot assume
that all packets in a queue have the same size. The parameters are listed in
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Flow f1,1 f2,1 f3,1 f4,1 f1,2 f2,2 f3,2 f4,2

Rate 1
3

1
6

1
6

1
6

1
3

1
6

1
6

1
6

Max. Packet Size. 9 9 9 9 8 8 8 8
Burst 6 7.5 7.5 7.5 16

3
20
3

20
3

20
3

Table 4: Flow parameters, first example (topology of Figure 21), second exper-
iment (splitting flows).
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Figure 23: Upper bounds on delay, per flow and per method, first example
(topology from Figure 21), second experiment (splitting flows, parameters from
Table 4).

Table 4. Note that splitting a flow increases the initial burst10. This is due to
the fact that the MPPA NoC ingress traffic limiter must always allow a packet
to be fully sent at ingress: then, reducing the per flow rate increases the burst
size w.r.t. the packet size (cf. Figure 2 and eq. (21)).

The results are reported in Figure 23. The results are comparable to those
of the previous experiment. The explicit linear method does not give the best
results, but nevertheless give good bounds. The LP method is in general better
than the other affine methods (explicit linear and fluid TFA), and even gives
the best results for flows f2,1, f2,2. For all other flows, if all packets of a given
flow have the same size, the per flow constant size TFA can model it and gives
the bests results.

10If rpfq (resp. lmaxpfq and bpfq) denotes the rate (resp. maximal size and burst) of the flow
f , then rpfi,1q`rpfi,2q “ rpfiq, l

maxpfi,1q` l
maxpfi,2q “ lmaxpfiq, but bpfi,1q`bpfi,2q ą bpfiq
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Flow f1 f2 f3 f4

Rate 2
3

1
3

1
3

1
3

Max. Packet Size. 7O 70 70 70
Burst 70

3
140
3

140
3

140
3

Table 5: Flow parameters, first example (topology of Figure 21), third experi-
ment (large packet size).
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Figure 24: Upper bounds on delay, per flow and per method, first example
(topology from Figure 21), third experiment (large packets, parameters from
Table 5).

8.1.3 Third experiment, large packet size

The third experiment uses the same parameters as the initial experiment (Sec-
tion 8.1.3), but with large packet size (70 flits). The flow parameters are given
in Table 5, and the results are reported in Figure 24.

The results look very similar to those of the first experiment, but one has
to pay attention that the range of values is very different: whereas the range of
values was [0,180] in the first experiment (Figure 22), it is [0,700] in Figure 24.
Since the packet and burst sizes are 70

17 « 4.11 larger, the delay also are globally
four times larger. The main difference is that the explicit linear method is now
the best. The reason is that this method uses Proposition 1, that captures in a
very efficient way the limited impact of FIFO policy on burst sizes. Its increase
of delay is only around 2.5.
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Figure 25: Case study from Ayed et al. (2016), 7 nodes.

8.2 Second Example: 7 nodes

The second example comes from Ayed et al. (2016). It is made of 6 flows,
f1, . . . , f6. The routing is given in Figure 25. This case study has been used to
illustrate the “Recursive Calculus”, a method developed in Ayed et al. (2016).

8.2.1 First experiment, original parameters

The first experiment uses the values of the parameters used in Ayed et al. (2016):
all packets have a constant size of 50 flits, and all flows have a period of 1000
cycles. Furthermore all flows have a rate of 0.05 and a burst of 47.5.

On this example with very small loads (from 5% to 15%), the burst is the
parameter that have the main influence. The results are reported in Figure 26.
The bounds of the “Recursive Calculus” from Ayed et al. (2016) have been re-
ported11. In this example, the TFA approach outperforms all others, except for
flow f5. This is mainly because this flow is very long, with very few interfer-
ence. The recursive calculus, that has been designed to analyze both Tilera and
MPPA NoCs, with possible back-pressure activation, gives results comparable
to the SFA approach (flows f2, f4, f5, f6) or to the explicit linear model (flows
f1, f3).

Since the different methods gives very different values in this example, it
well illustrates some of their differences.

Consider the flow f1. The explicit linear method computes a delay d˚1 of
206 cycles, decomposed into a latency of T˚1 “ 145 and a “burst absorption

11Note that the values presented here are not exactly the same as in Ayed et al. (2016):
as far as we understand, in Ayed et al. (2016) the delays include the arbitration in the node,
whereas the methods presented here only consider the NoC delays. Then, the node arbitration
delays have been removed for flows f1, f2 and f3.
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Figure 26: Upper bounds on delay, per flow and per method, second example
(topology from Figure 25), first experiment (original parameters).

time of” 61, cf. eq (32). This latency is due to the traversal of one round-robin
arbitration (in router R2), whereas the burst related term is related to the FIFO
sharing of the queue in routers R1 and R3. The LP formulation also counts a
latency of 50 due to arbitration in router R2 and reduces the FIFO interference
all along the path to 50. The TFA approach computes a per router delay. But
it computes a null delay in routers R1 and R3: indeed, in R1, the three flows
f1,f2 and f3 are shaped (i.e. serialized) at the input link, then since the router
uses a cut-through forwarding, there is a null delay12. Then, the only delay is
related to the arbitration in output port of R2.

Note that small delay in R1 is true, but related to the fact that the contention
between the flows has been resolved in the node N1 itself.

8.2.2 Second experiment, realistic load

The second experiment considers the same routing than the previous one, but
with maximal packet size of 17 and rates computed in order to ensure fairness
and efficient link utilization (all parameters are presented in Table 6).

The delay bounds are plotted in Figure 27. The first observation is that
even if the rates are quite 10 times bigger, the delay bounds are about 2 times
smaller. This is due to packet size reduction, since the packet size influences
both the flow burst size and the latency of the round-robin arbiter.

12In fact, it exists some cycles related to the routing and the computation, but since this
delay is small and constant, it has not be modeled in any method.
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Flow f1 f2 f3 f4 f5 f6

Rate 1{3 1{3 1{3 2{3 1{3 2{3
Max. Packet Size. 17 17 17 17 17 17
Burst 34{3 34{3 34{3 17{3 34{3 17{3

Table 6: Flow parameters, second example (topology of Figure 25), second
experiment (realistic configuration).
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Figure 27: Upper bounds on delay, per flow and per method, second example
(topology from Figure 25), second experiment (realistic configuration, parame-
ters from Table 6).
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Flow f1 f2 f3 f4 f5 f6

Rate 1{3 1{3 1{3 2{3 1{3 2{3
Max. Packet Size. 50 50 50 50 50 50
Burst 100{3 100{3 100{3 50{3 100{3 50{3

Table 7: Flow parameters, second example (topology of Figure 25), third ex-
periment (loaded configuration).
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Figure 28: Upper bounds on delay, per flow and per method, second example
(topology of Figure 25), third experiment (loaded configuration, parameters
from Table 7).

Like for other case studies, even for the fluid model, there is no best solution:
depending on the flow, the best bound is given either by explicit linear method
(f5, f6) or the affine TFA (f1, f2). The LP is never the best, meaning that
shaping has a strong influence on this case study. And if all packets have the
same size, the TFA approaches gives the best results.

8.2.3 Third experiment, loaded configuration

The third experiment considers the large packet size of the first experiment (50
flits) and the flow rates of the second (cf. Table 7). The results appear in
Figure 28, with the same scale as in Figure 26.

Looking at load change (i.e. comparing with the first experiment, where
maximal packet size is the same, but the load is smaller), the impact is very
different on each method. The explicit linear method computes quite the same
value in both experiments. On this example, the explicit linear method is mainly

36



Flows (k P t1, 2u) f1,k f2,k f3,k f4,k f5,k f6,k

Rate 1{6 1{6 1{6 1{3 1{6 1{3
Max. Packet Size. 25 25 25 25 25 25
Burst 125{6 125{6 125{6 50{3 125{6 50{3

Table 8: Flow parameters, second example (topology of Figure 25), fourth ex-
periment (loaded configuration, doubling number of flows).

influenced by the packet size and very few by the load. The other methods are
more influenced by this change of load, and this changes the relative quality of
the different methods.

Looking at maximal packet size change, (i.e. comparing with the second
experiment, where maximal packet size is 17 instead of 50, but the load is the
same) a remarkable effect appears: the ratio between the bounds computed in
both experiments is exactly 50

17 ˘ 1%, for each methods and each flow. This
is due to the fact that both the arbiter latency (round-robin) and the burst
size are proportional to this maximal packet size (all other parameters being
unchanged).

8.2.4 Fourth experiment, loaded configuration, doubling number of
flows

The fourth experiment is based on the third one, where each flow fi is split into
two flows fi,1, fi,2 with the maximal packet size and the throughput divided by
two, as shown in Table 8.

It means that this experiment has somehow the same global load (except the
burst that are slightly higher), but there are two times more flows per queue.
Moreover, since the maximal packet size is smaller, the blocking time associated
to the round-robin arbiter is also smaller, even if the long-term rate is the same.
Both effects have opposite impact in the delay. On the one hand, the increase in
the number of flows, and the associated small increase of the burst both lead to
a per flow delay increase. On the other hand, the reduction of the round-robin
blocking time decreases the per flow delay.

Then, for a given method, the difference in the result between this exper-
iment and the third one depends on how the method handle the FIFO policy
(inside each queue) and the round-robin policy (between queues).

The results are displayed in Figure 29 (except the values of methods SFA/Fc
and SFA/FQc, which is equal to 750 cycles).

As in previous experiments, in case of a fluid model, the explicit linear,
LP and TFA methods give comparable results (within a factor of 2), but none
dominates the others. But in case of packets of constant size, per flow or also
per queue, only the TFA approach captures this effect and always give the
better bounds. Since the TFA approach computes an aggregate arrival curve by
summing all arrival curves in a queue, it is insensitive to the number of flows,
as long as the total load and burst is the same.
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Figure 29: Upper bounds on delay, per flow and per method, second exam-
ple (topology of Figure 25), fourth experiment (loaded configuration, doubling
number of flows, parameters from Table 8).
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Flows (k P t1, . . . , 5u) f1,k f2,k f3,k f4,k f5,k f6,k

Rate 1{15 1{15 1{15 2{15 1{15 2{15
Max. Packet Size. 10 10 10 10 10 10
Burst 28{3 28{3 28{3 26{3 28{3 26{3

Table 9: Flow parameters, second example (topology of Figure 25), fifth exper-
iment (loaded configuration, large number of flows).
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Figure 30: Upper bounds on delay, per flow and per method, second example
(topology of Figure 25), fifth experiment (loaded configuration, large number of
flows, parameters from Table 9).

8.2.5 Fifth experiment, loaded configuration, large number of flows

The fifth experiment is based on the third one, where each flow fi is split into
five flows fi,1, . . . , fi,5 with the maximal packet size and the throughput divided
by five, as shown in Table 9.

The results are displayed in Figure 30, where the SFA results have been
plotted separately because of their very large values. Note that this time, the
affine SFA method has been plotted, even if it has no practical interest since it
is outperformed by the LP method with equivalent hypotheses (piecewise-linear
concave/convex functions, without modeling of shaping for LP).

Considering a fluid model, the TFA approach gives this time the best results
for all flows, whereas the explicit linear and the LP methods are incomparable,
but always in the same range of values.

On the opposite, the SFA approach gives bounds that are 5 to 10 times
bigger than the corresponding TFA approach. When packets are of constant
size, the TFA approach can improve its bounds.
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Length 2 3 4 5 6 7 8
Number of flows 16 22 31 26 22 10 1
Number of LP time-out 0 0 0 2 4 8 1

Table 10: Number of flows with a given length (Mean: 4.4) and number of time-
out with method LP (with time-out at 2mn), third example, first experiment.

8.3 Third example, full MPPA NoC

8.3.1 First experiment: 128 flows

The third example is based on the MPPA architecture presented in Figure 1.
Each node is the source of 4 flows, with randomly chosen destination, leading to
128 flows. Each flow has a constant packet size of 17 flits, and the routing and
rate allocations have been generated using the strategies presented in Dupont de
Dinechin et al. (2014), Boyer et al. (2018). The average flow length is 4.4, and
the length distribution is listed in Table 10. The average link load is 44% (168
links are used), 4 links have a load of 100%, 7 of load in r80%, 89%s and 36 a
load in r50%, 79%s.

Furthermore, the upper bounds on delays have been computed using some
of the method presented in the previous sections. The NetCalBounds tool,
implementing the LP method from Bouillard and Stea (2014) has been limited
to 2mn of computing time for each flow13. In case of timeout, two upper bounds
have been computed: one using the NetCalBounds tool with the ULP method,
and the other with the deborah tool, and the minimum of both is used. The
bound obtained will be denoted LP|ULP|deb. The number of LP timeout is
listed Table 10. The SFA/Fc and SFA/FQc methods require the computation
of the convolution between complex service curves, and its leads to very long
computation times. Moreover, the previous experiments have shown that they
are outperformed by the TFA/FQc method. Therefor, they have not been used
in this experiment.

The bound computed for each flow with each method appears in Figure 31,
where flows have been sorted w.r.t. the bound computed by the explicit linear
method (which yields to a smooth curve for this method).

The results are quite similar to the one on the small test cases: the TFA/FQc
method (that captures both shaping and the fixed packet size nature of flows)
outperforms all other methods in most cases. The LP, ULP or deborah tools
(that does not capture the shaping neither the packet sizes) gives almost al-
ways a worse value than the explicit linear methods (that captures the shap-
ing but not accurately the packet sizes). The TFA/Aff and TFA/Fc methods
behave sometime better, sometime worse than explicit linear or LP|ULP|deb.
When considering average values (last column of Figure 32), the importance
of shaping appears clearly: the explicit linear gives bound one third less than
LP|ULP|deb. The TFA methods is quite poor with an affine model, but once

13To be exact, the NetCalBounds tool generates a MILP problem, in negligible time. The
computation time comes from the lp solve tool, that we used to solve the MILP problem.
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Figure 31: Upper bounds on delay, per flow and per method, third example, first
experiment. The flow are sorted by bound value with explicit linear method.

modeling constant packet sizes, its gives the best results.
One may wonder if the path length has an influence, guessing that methods

using the PBOO principle may have better results on long paths. Then, Fig-
ure 33 plots the same bounds as Figure 31, but flows are grouped by flow length
before being sorted by bound of the explicit linear method. It appears clearly
that longer paths have larger delays, but showing the relation between methods
requires other figures. Figure 34 displays, for each flow, the ratio between ex-
plicit linear and LP|ULP|deb w.r.t TFA/FQc, using the same flow ordering as
in Figure 33. Figure 32 shows the average bound computed by each method,
depending on the flow length.

Both results confirm the relations obtained between methods, independently
of the path length. The gain obtained by the PBOO principle is mitigated by
a looser modeling of the residual service in each router.

8.3.2 Second experiment: 256 flows

The second experiment on the full MPPA NoC topology considers 8 flows per
cluster. Since there are 8 traffic limiter per cluster, this is the maximum that
can be done on the MPPA processor.

The distribution of flow length is given in Table 11, and the average length
is 4.6. In this example, the average link load is 34%, and only 2 links have a
100% load, 5 are in interval r90%, 99%s and 20 in interval r50%, 89%s.

The individual bounds per flow are not displayed, since the relations between
the methods are the same as in previous experiment. Only the mean bound per
flow length are given in Figure 35. Since they are more flows, they are more
conflicts per router, and the worst case delays are increased. The mean gain
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Figure 32: Mean value of bounds (in cycle), per flow length n, third example,
first experiment.
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Figure 33: Upper bounds on delay, per flow and per method, third example,
first experiment. The flow are sorted first by flow length n then by bound value
with explicit linear method.
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Figure 34: Ratio between each method and the TFA/FQc one, third example,
first experiment, same sorting as in Figure 33.

.

Length 2 3 4 5 6 7 8
Number of flows 18 45 57 60 49 21 6
Number of LP time-out 0 0 0 12 31 21 6

Table 11: Number of flows with a given length (Mean: 4.4) and number of time-
out with method LP (with time-out at 2mn), third example, second experiment.
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Figure 35: Mean value of bounds (in cycle), per flow length n, third example,
second experiment.

between the explicit linear and TFA/FQc methods becomes 25%, whereas it
was 20% in the previous experiment with 128 flows.

8.4 Conclusions on the case studies

Theses experiments on a realistic case study give us several insights, some con-
firming well known features of network calculus, and some more unexpected.

The well known result is that modeling the shaping introduced by link ca-
pacity has a significant impact on delay bounds. Theses has been shown in
the context of AFDX network in Frances et al. (2006) and confirmed in Boyer
and Fraboul (2008), Scharbarg et al. (2009), Zhao et al. (2013): while the LP
method computes the exact worst case for the FIFO policy (without considering
shaping), it is outperformed by methods that model link shaping: explicit linear
method (in all cases), and TFA methods on the first and second case studies.

The shaping can be easily added in the LP method, since it only amount
to adding new linear constraints. The LP method introduces some well chosen
time instants ti and keeps only from the relation D ě A ˚ βR,T the inequality
Dptiq ě Aptjq `Rpti ´ tjq as a constraint

Dti ě Atj`Rpti´ tj´ T q (40)

where ti, tj, Dti, Atj are program variables that respectively represents the two
instants ti, tj and flow departure and arrival values Dptiq, Aptjq. Then, encoding
the fact that departure D is constrained by shaping of a link of constant capacity
C can be encoded as

Dtm` Dtn ď Cptm´ tnq. (41)
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Figure 36: Gain related to modeling of packets in arrival curve.

for all variables Dtm, Dtn related to the function D and the instants tm, tn in the
program.

A second expected result is that the modeling of packet size in data flows
has also a beneficial impact (it has been shown in the context of AFDX in Boyer
et al. (2011b),Boyer et al. (2012)), since it gives smaller arrival curves, and gives
lower burst in the network. Looking at Figure 19, it is obvious that, αp, the
arrival curve modeling constant packet size is smaller than αf , but the impact
on the delay bound is not so obvious. Figure 36 illustrate this relation between
the per packet arrival and the delay. Consider a fluid flow arrival, αf and the
associated per packet flow arrival αp; even if αf ď αp they both have the same
horizontal deviation with the service curve β. But after crossing the first node,
the flow has a new arrival curve. To ease the discussion, assume that this server
creates a jitter J , and has a shaping curve equals to the link input shaping.
Then, the respective arrival curves at the next node will be α1f and α1p. And in
this case, the delay associated with each arrival curve are different, as illustrated
in Figure 36.b.

Conversely, the modeling of packet sizes in the round robin scheduling policy
gives a bigger service curve, as illustrated in Figure 9. But the benefit in the
delay evaluation is related to the modeling of the packet size in the arrival curve
also. Figure 37 illustrates the situation where a single flow is entering a round-
robin arbiter, and all packets in the flow have the same size. This flow (resp.
arbiter) can be modeled using either a fluid arrival curve αf or a packetized
one αp (resp. a fluid service curve βf or a packetized one βp). Then, the burst
fits exactly the height of the first step of the curve, and the delay a is smaller
than considering a fluid residual service (delay a ` b), or even considering a
fluid arrival curve and a fluid residual service (delay c ` d). But it might also
happen that both sizes do not fit, like in Figure 38, and even if there is a gain
at modeling packet size, it may be smaller.

Nevertheless, an accurate modeling of packet sizes requires to abandon the
efficient class of piecewise-linear concave/convex functions to handle more gen-
eral classes, like the Ultimately Pseudo Periodic class defined in Bouillard and
Thierry (2008). There encoding in a integer linear program is not so straight-
forward and may moreover increase the computation time.

On the side of unexpected result, a first one was the usability of the LP
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Figure 37: Gain related to modeling of packets in both arrival and service curves,
when service packet size fits arrival packet size.
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when service packet size does not fit arrival packet size.
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solution. Whereas it has a theoretical exponential cost, related to the length
of paths, it can in practice be used for NoC, since the paths are not very long.
Table 10 shows that even if it was no able to deal with paths of size greater than
6 (in less than 2mn), its has computed bounds for 17 out of 22 paths of length
6 (i.e. 77%) and 24 out of 26 (i.e. 92%) of paths of length 5, and all for smaller
paths. Notice also that the LP problems has been solved using the lp solve

solver Berkelaar et al. (2018). Other solvers may have different resolution time.
But the main unexpected result is the lower accuracy of the Single Flow

Analysis (SFA) approach w.r.t. Total Flow Analysis (TFA) approach. Almost
all published studies in network calculus report that the TFA is the less effective
approach, except in a few specific cases, as presented in Bondorf and Schmitt
(2016). But all these studies consider blind multiplexing, and the residual service
computed in this case with Theorem 3 is known to be tight. But for the FIFO
policy, SFA requires the choice of a θ parameter (the choice of its value has
been discussed in section 7.2). It may happen that with a better choice of this
parameter, SFA can give better results than TFA, but it does not exist, up to
our knowledge, any strategy for choosing this parameter in the general case (and
in the specific case of piecewise-linear concave/convex function, one better have
to use the LP method). In other words, SFA is certainly a good approach when
a good residual service per flow is known, which is not the case for the FIFO
multiplexing policy up to now.

Last, one have to pay attention to the fact that even if all methods give
similar results on average (cf. Figures 32, 35), for a given flow, the difference
may be very large (cf. Figure 34). Nevertheless, since all are valid bounds, one
may run several or all methods and take the minimum of all bounds.

9 Conclusion

The MPPA2-256 processor, presented in Saidi et al. (2015), integrates 256 pro-
cessing cores and 32 management cores on a chip, communicating through a
shared NoC. Before embedding critical real-time application on such an archi-
tecture, one needs some method to bound the communication latency introduced
by the NoC resource sharing between communication flows.

In this paper, we have presented different ways to model the MPPA NoC
using the deterministic network calculus framework: the explicit linear model,
with flow burstiness as the main variables; the general purpose LP method,
developed to get the exact worst case in case of FIFO network with piecewise-
linear arrival functions and service curves; the SFA and TFA approaches, that
have been adapted to per queue round-robin and per flow FIFO policies, and
enhanced in the specific case of flows with constant packet sizes.

They have been compared, first on small already published examples, to
get a comprehensive view on their differences, and to compare new methods
with the previous one on known examples. They also have been compared with
the Recursive Calculus approach on one example. Thereafter, they have been
compared on a larger case study, with 128 and 256 data flows.
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All experiments confirm a well known fact: when the flow burstiness is
limited by link capacity, modeling this shaping has a major impact on results.
Moreover, when all packets in a flow have the same size, modeling this also
improves the bounds, especially in the case of the round-robin policy. And
modeling these aspects of the system can outperform exact approaches that
do not. In other words, there always is a trade-off between the accuracy of
the model and the tightness of the approach. In the case of the MPPA NoC,
shaping by the link capacity and the effects of the packet sizes are major parts
that must be modeled to get good bounds.

Moreover, as claimed in Bondorf and Schmitt (2016), “there is a job for ev-
eryone”: even if all methods give similar average results on the large case study,
no method always have the best bound. But in case of packets of constant size,
the TFA algorithms with “packet-accurate” arrival and service curve currently
gives bounds 20%-25% smaller than any other, on average.

However, it does not mean that the TFA approach is, inherently, better than
other approaches. The TFA approach is somehow the simplest analysis, and this
is perhaps the reason why it was easier to model shaping and constant packet
size in TFA.

Computing better bounds with the SFA approach will face two challenges.
The first is the computation of a good residual service with FIFO multiplexing,
i.e. the choice of a good θji parameter for each flow i in each crossed queue j (as
discussed in Section 7.2). Some machine learning techniques may be applied, like
in Geyer and Bondorf (2019). The second one is the computation of convolutions
with non convex residual service functions, which is currently too costly. One
solution could be to compute only a finite prefix, like in Guan and Yi (2013);
Lampka et al. (2016).

Computing better bounds with the LP method will require to encode in the
MILP the shaping introduced by the link and the non-convex curves. Since the
shaping of the link is just another linear constraint, we expect that it may be
added without introducing new variables, as presented in Section 8.4, and with
limited impact on resolution time. On the opposite, the encoding of non con-
cave/convex constraint will certainly imply the introduction of several Boolean
variables. And this will likely negatively impact the resolution time.
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A Residual service of weighted round robin

This appendix is devoted to the modeling of the Weighted Round Robin (WRR)
policy in the network calculus framework. The MPPA arbiters only apply a
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round robin (RR) policy, but the generalization to the weighted round robin is
straightforward, so is presented the generalization.

In WRR, a parameter wi P N, the weight, is associated to each queue. The
set of queues is logically seen as a ring, and each queues is selected one after the
other, in the ring order, starting again once a complete turn is done. Each time
a queue i is selected, up to wi packets are sent, as presented in algorithm 1.

Input: Per flow weight: w1..wn (Integer)
Data: Counter: k (Integer)

1 while True do
2 for i= 1 to n do
3 print (“session start”, now(), i) ;
4 k Ð 1 ;
5 while (not empty(i)) and (k ď wi) do
6 send(head(i)) ;
7 removeHead(i) ;
8 k Ð k ` 1 ;

9 end

10 end

11 end
Algorithm 1: WRR algorithm. print is a pseudo instruction, used to sim-
plify the proof.

Also note that it exists two variants of the WRR policy.
The most commonly accepted behavior is the one presented here, cf. Ito et al.

(2002),Georges et al. (2011), whereas the initial paper was slightly different. In
Katevenis et al. (1991), which is to your knowledge the first paper on a weighted
version of round robin, a counter c is incremented at each new turn, from 1 up to
w “ maxi wi. In a given turn, only the queues with wi ě c are allowed to send
only one packet. This policy avoids long bursts from a single queue, and have
better worst-case performance. But this is not the one kept by the community.

Here comes the main result, given as a lemma to decompose the proof. Note
that the condition on the backlog period really looks like the definition of a strict
service, but in this lemma, only an existential quantification is used, whereas
the strict service requires a universal quantification.

Lemma 1 (WRR output share). Let S be a server shared by n flows, denoted

by pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq, applying a weighted round robin policy of

w1, . . . , wn P N. For any i P r1, ns, let lmin
i , lmax

i be some lower and upper bound
on the packet size the i-flow.

Let i P r1, ns be one flow. Then, if it exists s, t P R` such that ps, ts is a
backlog period for the flow i, and

n
ÿ

k“1

Dkptq ´
n
ÿ

k“1

Dkpsq ě βpt´ sq,
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Figure 39: Alternation of service sessions.

then

Diptq ´Dipsq ě pλ1 ˚ νqi,qi`Qi
q pβpt´ sq ´Qiq (42)

Diptq ´Dipsq ě
qi

qi `Qi
pβpt´ sq ´Qiq (43)

with qi “ wil
min
i and Qi “

ř

j‰i wj l
max
j .

The idea of the proof is the following: considering the interval rs, tq, the
number of turns of the main loop during this interval is denoted p. If the flow
of interest has index i, they are at least pwi packets of this flow, and at most
p
ř

j‰i wj of the other flows. Combining both allows to eliminate p, leading to
equation (48) which can be written fpDiptq ´ Dipsqq ě βpt ´ sq where f is a
increasing function. Then, it admits an inverse, leading to eq. (42), which can
be under-approximated by eq. (43).

Proof. Let define a full service session for any flow j a (possibly empty) time
interval px, ys such there is in the trace a “session start” of index j and instant
x and the next “session start” is of index ppj` 1q mod nq` 1 and at instant y.

Then, for each full service session of any flow j, at most wj packets are sent,
and for a sequence of k full services session, they are at most kwj packets sent.

Now, let ps, ts be a backlog period of the flow of interest, i.
Let p denote the number of full service sessions of the flow of interest i in

the interval ps, ts. In this interval, there were at most pp`1q full service sessions
of each other flow, leading to

@j : Djptq ´Djpsq ď pp` 1qwj l
max
j (44)

Moreover, since ps, ts is a backlog period for the i-th flow, they always are packets
of the i-th flow to send, leading to

Diptq ´Dipsq ě pwil
min
i (45)

Now, these results can be injected in the initial assumption:

n
ÿ

k“1

Dkptq ´
n
ÿ

k“1

Dkpsq ě βpt´ sq

(44)
ùñ Diptq ´Dipsq `

ÿ

j‰i

pp` 1qwj l
max
j ě βpt´ sq (46)

ðñ Diptq ´Dipsq `Qipp` 1q ě βpt´ sq (47)
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\

and its inverse λ1 ˚ νb,a`b.

From eq. (45), an upper bound on p can be deduced: p ď Diptq´Dipsq

wilmin
i

“

Diptq´Dipsq
qi

. Moreover, p is a natural number, so p ď
Y

Diptq´Dipsq
qi

]

, leading

to

Diptq ´Dipsq `Qi

Z

1`
Diptq ´Dipsq

qi

^

ě βpt´ sq (48)

Using the relation 1`txu “ t1` xu, the expression can also be slightly simplified

into Diptq ´Dipsq `Qi

Y

Diptq´Dipsq
qi

]

ě βpt´ sq ´Qi.

Let define f : R` Ñ R by fpxq “ x ` Qi

Y

x
qi

]

. This function is increasing

(the function t¨u is non-decreasing, and the identity is increasing), and admits
an inverse. The previous relation can be written

fpDiptq ´Dipsqq ě βpt´ sq ´Qi

ùñ Diptq ´Dipsq ě f´1pβpt´ sq ´Qiq.

The inverse of a function x ÞÑ x` a
X

x
b

\

is λ1 ˚ νb,a`b (see Figure 40). Then,
eq. (42) holds.

The eq. (43) is derived from the fact that λ1 ˚ νb,a`b ě λ a
a`b

.

Now comes the proof of Theorem 5. This is a direct application of Lemma 1,
but Lemma 1 can be used for other kind of service, like weakly strict service
Bouillard (2011). Such generalization is out of the scope of this paper, but the
Lemma has been introduced to let it possible in future work.

Proof of Theorem 5. Let ps, ts be a backlog period for the flow i. Then, it also
is a backlog period for the aggregate flow, and since S is offers a strict service,
the relation

řn
i“1Diptq ´

řn
i“1Dipsq ě βpt ´ sq holds. Applying Lemma 1
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leads to Diptq ´ Dipsq ě pλ1 ˚ νqi,qi`Qi
q pβpt´ sq ´Qiq and Diptq ´ Dipsq ě

qi
qi`Qi

pβpt´ sq ´Qiq, which is the condition of a strict service.
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