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1 Introduction

The globalization of exchanges coupled with containerization have considerably increased maritime
traffic these last decades. Thanks to the standardization of containers, goods can be transported
on long distances by container-ships, trains and trucks, without any change in the conditioning.
Containers represent universal transportation boxes that ease the mechanization of the handling
system, thus, today, the main part of world trade is carried by sea and most of the goods are carried
by container ships.

This globalization has been accompanied by rapid changes in port infrastructures, in shipping
companies organization and consequently in the global shipping network. The strategy of major
companies has led to a multilevel structure of the network. At the higher level, this global network
is now composed of multi-port calling networks (kind of mesh between main ports, linked by mega-
containerships) that coexist with hub-and-spoke networks (star networks at the regional level).

Motivated by these changes an increasing amount of works have been conducted on various
subjects related to this evolution. Network optimization problems have been widely studied [27] in
particular problems of network design, route optimization, or hub location combined or not with
the problem of allocation of nodes to hubs [23], [, 15, I1]. The analysis and the study of the
evolution of the shipping network, at worldwide or regional scales, have also received much attention
[9, 141, (30, 20}, 24], 28].

For a majority of these researches, in complement to statistical analyses, tools and metrics from
graph theory have been used. Such an approach is not a novelty [I8, 10, [16], however, with the pop-
ularization of complex networks theory [31) 22], studies resorting to these methods have multiplied.

In many of these works some properties come back in a recurrent way. Thus, according to the
considered periods and data, it has been proved that the distribution of port degrees follows a power
law or is an exponential-like distribution. Small world property and the scale free nature of the ship-
ping network is also often mentioned. In addition to these properties, many works also propose some
interpretations from the values of centralities, clustering coefficients, average nearest neighbours de-
grees, and many other graph metrics [I7]. From these measures, they draw some conclusions about,
the performances of ports [32], changes in their hierarchy [3], evolution of the topological structure
of the network [2§], that may have several complementary causes: the hub-and-spoke strategies of
ports and carriers that leads to a rich-club phenomenon [14] 5, 4], or the world trade situation [20], 24].

In all these works, the studied graphs are obtained from all ship’s movements. Indeed, unlike
continental transport networks, where the traffic paths rely on existing and real infrastructures (roads,
channels, railways, waterways), the maritime network is not characterized by physical links [18], but
by links corresponding to "the reality of regular lines defined by container ships’ movements” [16]



and ”information about the itineraries of [...] cargo ships [are used] to construct a network of links
between ports” [I7]. These movements can be obtained from various sources like databases [14],
web sites of major shipping companies [32], annual reports (like the Containerisation International
Yearbooks) [28], Automatic Identification System (AIS) [I7] (AIS is a radio-based system located on
ships, that provides information about the position, the course and the speed of the ship, however
its usage is limited to the transmission range of the radio (less than 30 nautical miles)) or Lloyd’s
reports [4]. The models and results presented in this chapter were obtained using data coming from
these reports: the Lloyd’s List Periodicals. The Lloyd’s company collects regularly (on a daily basis)
information about ships and more than 90% of container ships are tracked by the company. These
registers, called Lloyd’s List Periodicals (LLP), report many information about ports-ships events
like the date at which a ship enters a port, the date at which it leaves this port, its next destination
and its previous port.

In most papers from literature, graphs representing shipping networks are built from all ships’
movements for the whole considered period (usually one year), whatever their number between two
given ports and whatever the dates of departures from these ports. This may be explained by the
regularity of maritime routes used by the main carriers. Thus we can say that the temporal granularity
of the studied graphs corresponds to a coarse grain. However, if the quality and the accuracy of the
data allows it, it is possible to consider a finer temporal granularity. In the sequel we propose to
take into account this granularity in two different ways, leading to two different graph models.

Instead of building the graph from all the events occurring during one year, in our first model,
we propose to build graphs from events occurring during a given fixed period of time. This period
of time corresponds to a temporal granularity J, where J is the number of consecutive days of a
time-window. The graph, called a TG-Graph, results from the events occurring during this time
window. We then build the time series of such graphs of temporal granularity J for the whole year
(365 — J graphs). From these series we compute and study a set of simple metrics like the number
of nodes, the average degree, the size of the giant connected component and some other measures
detailed later in the chapter. We have noticed that during the year some metrics present particular
shapes and are sometimes linked, opening the way to some interpretations.

For the second model we have considered, given the data, the smallest temporal granularity. We
propose the use of a model able to keep in its own structure all the events changing its topology.
Temporal networks [13] and evolving graphs [§] are two examples of families of graphs allowing such
a representation. We will see that keeping all these events in the structure allows an analysis of the
shipping networks using the container point of view.

The rest of the chapter is made of three main parts. In the first next section, a complete analysis
of the commonly used model of graph is performed. In section [3, a new model is introduced for
studying the evolution of the shipping networks based on the analysis of time series of TG-Graphs.
In the last main section Temporal Networks are described and resulting shipping networks analysed.
A conclusion and graphics, gathered in the appendix, end this chapter.

2 Static Graphs

From the data several static graph models can be derived. Nodes are always associated to ports
and only the links have a different semantic. Some models are built from maritime routes defined
by main carriers companies. A maritime route is an oriented cycle, starting from one port A, to a
destination port B with several calls along the way, and coming back to the original port A.

A first graph model can be built in which the arcs correspond to the travel of the ships from
one port to the next one on the route. This model corresponds to the space L topology described
in [25] or to the GDL (graph of direct links) mentionned in [4]. This graph is generally the model
considered in the majority of the study about the evolution of maritime networks. The Global Cargo
Ship Network (GCSN) described in [I7] is built according to the same principles but without being
restricted to container ships.



Measure

| Year 1996 | Year 2006

Nodes 872 1137
Arcs 7778 13704
Connected Components 2 2
Connected Components > 1 2 2
Giant Component Size 869 1134
Giant Component Ratio | 99.66% 99.74%
Strongly Connected Components 36 30
Strongly Connected Components > 1 2 2
Giant Strongly Component Size 835 1106
Giant Strongly Component Ratio | 95.76% 97.27%
Average Degree 17.84 24.11
Average Clustering Coefficient 0.53 0.53
Diameter 7 7
Radius 4 4
Path Length 3.22 3.06
Average Eccentricity | 5.6018 5.3201

Table 1: Common Graph Measures on the two static networks (year 1996 and 2006)

From the same set of data and still based on the notion of maritime route, another graph can be
built by joining all the ports belonging to the same route. This corresponds to the space P topology
[25] or to the GAL (graph of all links) [4]. This second graph model highlights the connectivity
between ports relying on ships movements. A path requiring more than one link for reaching port
B from port A implies that transshipments are needed.

If there exist some studies that take into consideration both models [25] 32 [14], most of analyses
of shipping networks emphasize the space L topology or GDL model. In this section we focus on the
analysis of such a graph built from the data extracted from 1996 and 2006 Lloyd’s List Periodicals.
In the obtained graphs (one per year), one node represents one port and the set of nodes represents
all ports that were active at least once during the year (1996 or 2006). A port is said to be active if
a ship left or arrived in that port during the year. One arc is added between two nodes s (a source
node) and d (a destination node) if and only if there exists in the data at least one record indicating
that one ship made a direct journey from s to d.

Different kinds of analysis can be carried out on this static network, at different scales. The
network can be measured as a whole, with global measures that would give a general overview of
the dataset or at a lower scale, at the node level for instance. Global measures usually are scalar
values like, the average degree of the network, its radius or its diameter (Table 1| gathers some global
measures for the two datasets (year 1996 and 2006)), while the degree of all nodes, or their clustering
coefficients are local measures providing vectors of values often analysed as distributions.

The focus is first given to global measures with the study of Connected Components and of the
Small World Property. Then node-level measures are investigated with the Scale-Free Property.

2.1 Connected Components

A connected component is a subset of the network where each node of the set is somehow connected
(directly or indirectly) to all the other nodes of the subset. The direction of arcs is not considered
in connected components. In other words, there exits an undirected path between any pair of nodes
in that subset. The more restrictive type of subset that are strongly connected components impose
that any two nodes in the subset are somehow connected through a directed path (following actual
arcs directions). Table [I| advertises two connected components of respective sizes 869 and 3 in 1996
(respectively 1134 and 3 in 2006). This 3-nodes component is identical in both data sets and will be
ignored in the remaining. Apart from those 3 ports, the network is connected.

When it comes to strongly connected components, in 1996, 36 components are identified but only



Year ‘ L Ly and C Clart ‘ w
1996 | 3.226 2.662 0.527 0.700 | 0.0716
2006 | 3.062 2.558 0.527 0.717 | 0.1017

Table 2: Comparison with random and regular networks in order to point out small-world properties.

two are larger than 1 (components of size equal to 1 are isolated nodes). One of the 2 components is
again the 3-nodes component. This leaves 34 nodes out of the giant strongly connected component.
These nodes are leaves in the network: whether no path can reach them (only path initiated from
them is possible) or the opposite (they can be reached but have no departure). The same observation
can be done on the year 2006 dataset with 1106 strongly connected nodes and 28 leftovers.

2.2 Small World Property

When considering network path lengths (number of hops between nodes), in both networks, each
node’s most distant destination ranges between the network radius and its diameter (4 and 7) and
the average path length for any pair of nodes is 3.22 in year 1996 (resp. 3.06 in 2006). Moreover
the average clustering coefficient for both networks is relatively high. These measures suggest that a
small-world property [31] should be investigated. Following the w test [26] we compare the clustering
coefficient of our datasets to the one of an equivalent lattice network (a regular network with same
number of nodes and same average degree). We also compare the path length to an equivalent
random network (a network with same number of nodes and same average degree as our network
[7). Let L be the path length of our dataset and C'its clustering coefficient, L,4,q is the path length
of the random network and Cj,; is the clustering coefficient of the lattice. Then the small-world
measurement w proposed by Telesford et al. is as such:

Lrand . C
L C1latt

w =

Measures indicate an w value of 0.0716 for year 1996 (resp. 0.1017 for year 2006). See Table [2| for
details. Values close to zero are the witnesses of the small-world property. Positive values tend to
indicate that the networks have more random characteristics than regular ones. From these results
we conclude with w ~ 0.1, L > L,unq, and C' < Ciuy, that the 1996 and 2006 maritime networks
present a small-world property but with slightly more random characteristics due to a lower clustering
coefficient than the lattice equivalent graph.

2.3 Scale-Free Property

Additional information can be obtained from local measures when analysing the distributions of their
values. Networks with degree distributions following a power law are classically said to be Scale-Free
networks. Verifying such a property for maritime networks would help classify them and understand
their underlying mechanisms. However, deciding that a network is Scale-Free requires careful analysis
and comparisons. Basically Scale-Free networks have a degree distribution that follows a power law.

Plotting the degree distribution of a supposed Scale-Free network is however not very informative.
Indeed, since very few nodes in the network gather the highest degrees, the visual representation at
the right of the distribution gets statistically noisy as fewer samples express more values. This
phenomenon, also called fat tail prevents precise observation. It is thus desirable not to draw the
distribution (its probability density function) itself but its cumulative distribution function (CDF)
which also follows a power law if the original distribution follows one [21].

It is also rare that the degree distribution of the network can be identified as a power law on the
full range of the distribution. It is admitted [2] that there exists a threshold value z,,;, from which
a distribution obeys a power law.

If a power law can be matched to a real dataset, it is also desirable to try to match it against
other random distributions that might fit the data better.
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In this chapter guidelines from Clauset et al. [2] have been followed in order to analyse and fit
our two datasets. This method follows three main steps.

1.

Estimate the x,,;, threshold and the o parameter of the power law that would fit the real data.
The power law parameter, «, is estimated with the method of mazimum likelihood (MLE).
The lower bound x,,;, is estimated by minimizing the distance between the CDF and the data
using the Kolmogorov—Smirnov (KS) distance.

. Quantitatively estimate how good the fit is between the data and the power law. This method

generates synthetic data based on « and tries to recover the x,,;, lower bound with the MLE.
The result is mainly a standard deviation for the given value of x,,;,. The lower the deviation,
the better the fit. Also, the KS distance is used to estimate if those synthetic generated data
are closer or not to the theoretical power law than the data itself is. If the data outperforms
at lease 10% of the synthetic data (its p-value) then it is considered a plausible match for that
power law.

Compare the power law with other distributions. Indeed other random distributions might fit
the data. The two first steps can be applied to evaluate them. Finally a likelihood test ratio
can give a pairwise comparison between distributions.

Figure (1| displays the CDF of the degree distribution of the 1996 dataset along with estimates for
a power-law, a Log-normal, and and exponential distribution. Each distribution is drawn with its
own estimated value for the lower bound x,,;,. These results and the subsequent tables and figures
where all generated using the R package poweRlaw [12]. Distribution estimates for the year 2006
dataset, not shown here, advertise comparable behaviour.
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Figure 1: Degree Distribution’s cumulative density function estimated with various discrete proba-
bility distributions (year 1996). Each distribution has fitted parameters estimated with the method
of mazimum likelihood and lower bonds x,,;, optimised with the KS distance method.



Year | Law Tmin Nail p-value
1996 | Power Law | 81 £20 37437 0.89
Log-normal | 5+5 048 £ 458 0.53
Exponential | 28 =10 152+ 133 0.94
2006 | Power Law | 71 4+22 1024+ 108 0.32
Log-normal | 27+ 11 2954196 0.67
Exponential | 53 £ 17 1454+ 127 0.52

Table 3: Various discrete probability distributions fits with p-values for the two datasets. x,,;, is
the estimated lower bound on the considered law (with standard deviation). ny; is the quantity of
observations involved (with standard deviation). The p-value is the ratio of comparisons between the
real data and synthetic datasets that gives the real data a better fit for the considered distribution.
P-values above 0.1 are considered a plausible match for the considered distribution.

The estimation of parameters visually shows that the x,,;, estimated for the power law is very
high, making the distribution fit only a fraction of the dataset, while the log-normal distribution
has a lower x,,; estimated which fits more data. The quantitative estimate of those parameters
with a bootstrapping methods (Table [3)) shows that not only the power law has a very high z,,
estimate, making it fit less real observations (n:;), but the estimate is statistical unstable with high
standard deviation, meaning that the x,,;, value is barely estimated on synthetic datasets with same
characteristics. The log-normal distribution, on the other hand behaves well on both datasets fitting
the largest quantity of observation.

P-values, that indicate how close the data is to the distributions compared to generated synthetic
datasets, are all above the 0.1 threshold which indicates that the three distribution, independently,
are a plausible fit to the dataset.

Distributions are then compared one against the other. The sign of the likelihood ratio test [2]
indicates which distribution is the best fit for the dataset and Vuong’s test indicates the reliability
of the likelihood ratio test based on its standard deviation. In order to test distribution together, the
lower bound z,,;, must be equal for both. Figure [2| shows pairwise comparison between the three
considered laws depending on the value of x,,;, for the 1996 dataset. The power law fit is always
ruled out by the two other distributions, especially for small values of the x,,;, lower bound. The
log-normal distribution overpasses the exponential however the Vuong’s test gives no credit to that
last assumption. Comparable comments can be made on the year 2006 dataset (not shown here).

A first conclusion could be that the MLE estimation for a power law to fit the dataset is not
ruled out. Their exists a power law for the data and we can qualify the networks as Scale-Free.
However, further analysis show that other distributions, especially log-normal are a better candidate
to fit these data. For more comparison with sub-exponential distributions, and comparable datasets,
the reader is invited to refer to Gastner and Ducruet in this same book.
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Figure 2: Distributions comparison with likelihood ratio test and estimation of reliability with Vuong’s
test. The power law fit is always ruled out by the two other distributions, especially for small values
of the x,,;, lower bound. The Vuong’s tests does not allow any conclusion about the log-normal vs.
exponential comparison.



3 Graphs based on Time Granularity: TG-Graphs

Graph models described in the previous section are built from the whole set of ships’ movements
recorded on a long time period (usually one full year). However, if the quality and the accuracy of
the data allows it, it is possible to consider a smaller time granularity and to build graphs from a
restricted set of ships’ movements. This restriction can be spatial (restriction to a given region) or
temporal (restriction to a given time period). The latter interests us. The time window considered
can be of one day, up to several months. A TG-Graph (Time Granularity-based Graph) is defined
by a starting date ¢ and a time granularity J. ¢t and J define a time window W; ; of length J (days)
and starting at t. The TG-Graph TGG(t,J) is built from all ships’ departures (and not arrivals)
occurring during W; ;. An arc (s, d) is added to the graph if and only if one ship, at least, left the
port s to port d at a date belonging to the time interval [¢,¢ + J — 1] (or equivalently during W; ;).
Nodes are added to the graph accordingly: a node (port) p belongs to TGG(t, J) if and only if there
exists a ship departure in W; ; for which p is either the source port or the destination port.

Let us consider the set of departures given in Table below. T'GG(1,3) and TGG(3,3) are repre-
sented in Figure [3

Source port A/B|B|B|C|C|C|D|E
Destinationport | B| D | E|E|[B|D | D|C|D
Departure date 15124 (1]24|4]|3

TGG(1,3) TGG(3,3)

Figure 3: TGG(t,J) are graphs built from ships’ departures occurring during the time window
W (t, J), or equivalently during the time interval [¢,t+.J—1]. On the left side of the figure, TGG(1,3) is
the TG-Graph built from ships’ departures occurring at dates 1, 2 and 3. On the right side, TGG(3,3)
is the graph built from ships’ departures occurring at dates 3, 4 and 5.

3.1 Time Granularity and measures

Given a time granularity J we can build 365—J TG-graphs for 2006 and 366—J for 1996, with starting
dates from t = 1 to t = 365 —J (t = 366 — J for 1996), leading to time series of TG-graphs. For each
TG-graph we can determine classical graph measures: graph order, diameter, radius, eccentricity,
average degree, giant component size, and many other classical metrics and, from the time series, we
can study their evolution along the year, looking for tendencies or particular shapes of the graphics.
We denote by TGG(J,1996) the series of TG-Graphs with granularity J for year 1996 for starting
dates from ¢t =1 to t = 366 — J.

In this work we consider non-directed TG-Graphs and we focus mainly on the graph order (number
of nodes), the average node degree, the size of the giant connected component, the average eccentricity
and the path length. But, for studying time series of TG-Graphs we first have to choose time
granularities. How to choose a relevant set of time granularities is an open question, thus, we have
chosen, empirically, the following set of values: 1, 7, 14, 21 and 28 days. All graphics obtained for
the different measures are reported in appendix (the giant strongly connected component ratio was
the only measure obtained from directed TG-Graphs).



3.2 Observations and Analyses

One of the most interesting measures of the obtained results is the evolution of the number of nodes
for different values of time granularity. For TGG(1,1996) we can see on Figure 4| a Sunday effect,
that plays an important role in the variability of the number of nodes in the network on a daily basis.
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Figure 4: Day-per-day departures frequencies for all ports during year 1996. Dots indicate Sundays.

We can see that between 1996 and 2006 this effect has been levelled as illustrated by Figure
but we leave the interpretation of this effect to geographers or sociologists.
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Figure 5: Number of departures per day in 1996 (left) and in 2006 (right)

At this level of granularity (J = 1) the signal is noisy, however it is already possible to notice a
tendency for the whole year, an increase in the number of nodes involved in maritime traffic. This
tendency is verified for both 1996 and 2006. If we consider the growth rate in 1996, obtained by
linear regression, and if we assume that it remained unchanged between 1996 and 2006, the number
of nodes at the end of 2006 would have been about 480. The actual number is 350. This suggests a
slowdown in the number of ports involved in the shipping network (on a daily basis) between 1996
and 2006. This is verified, at least for 2006, since the value of the growth rate in 2006 is more
than three times smaller than the one of 1996, as illustrated by Figure [6] If the regularity of the
slowdown between 1996 and 2006 could be proved, which might be confirmed by additional data for



slope = 0.077

240 -

220 -

Nodes

slope = 0.021
) T '... ...' :-.'. ° o" EI I M A .".-:. T

. - K 3 .o o
350 - O s s elens % S e e S %% o ey AT
rem . o . . . PO e . .
TR S e R T et :

et e T . T — . < « |2006

300- °

1 1 1 1 1 1 1 1 1 1 1
Feb  Mar Apr  May Jun Jul Aug Sep Oct Nov  Dec

Figure 6: Rate of growth of the number of nodes for time granularity J = 1. In 1996 (up) and 2006
(down).

years between 1996 and 2006 and after 2006, this would suggest that the shipping network would
reach (quite quickly) a threshold on the number of ports involved in container shipping. Then, the
main evolution process of the network would be an enhancement of the connectivity of ports.

Most often if we increase the value of time granularity the impact on the graphics is evident.
However, the sensitivity of the metric to time granularity is not the same for all. Often, increasing
time granularity reduces the variability of the measures’ values and also changes those values. For
instance the number of nodes in TGG(1,1996) belongs to the interval [200,240] while this interval
is equal to [490, 540] for TGG(28,1996). Moreover, if we look at the graphics presented in Figure
some structures emerge in the graphics when time granularity increases. Patterns appear and become
more visible when sequentially observing time series of nodes’ evolution for graphs TGG(1,1996),
TGG(14,1996), TGG(21,1996) and TGG(28,1996) (the interpretation of such patterns is still under
investigation).

However, such a sensitivity is not a general rule. Indeed, the average eccentricity value belongs
to the interval [6, 8] for the vast majority of the measures for J > 7 in 2006 or J > 14 in 1996. We
can also notice that for J = 1 this value is much larger in 2006, as it is the case for J =1and J =7
in 1996. While a deeper analysis is still to be done, this could indicate that, for some metrics, there
exists a threshold value, for time granularity, from which the graph becomes stable for this measure.
For the average eccentricity this stability is reached in 2006 for lower values of J than in 1996, what
could be interpreted as an increase in the frequency of the maritime traffic.

Another way of analyzing time series of TG-Graphs is to compare the evolution of couples of
measures. Such comparisons can instigate some hypotheses on the corresponding graphs that could
help understanding shipping networks evolution. The most illustrative example for our data is given
by the compared evolution of the number of nodes and the average node degrees, for both years and
especially for J = 28. Figures [§ and [J] highlight this link.

Both graphics suggest that when the number of nodes increases the average degree decreases.
From a graph perspective this could indicate that all TG-Graphs have in common a set of always
present nodes characterized by a high degree. During the year, some low degree nodes are linked
to this common structure and leave it later. From the maritime network perspective, this could be
interpreted as a manifestation of the hub-and-spoke structuring of the shipping network.
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Figure 7: Evolution of the number of nodes in TG-Graphs according to the value of J (from 1 to 28)

window size: 28, year: 1996
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Figure 8: Compared evolution of the number of nodes of the TG-Graph and of its average nodes
degree for 1996.
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window size: 28, year: 2006
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Figure 9: Compared evolution of the number of nodes of the TG-Graph and of its average nodes
degree for 2006.

Another set of measures seems to be linked, the number of nodes and the average path length.
When studying the graphics it appears that, the faster the increase of the number of nodes, the
slower the decrease of the average path length as illustrated on Figure [10]
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Figure 10: The faster the increase of the number of nodes, the slower the decrease of the average
path length (for both years).

From a graph perspective, when new nodes are added to a graph, and if they are sparsely linked
to other nodes (low degrees), these arrivals entail an increase of the average path length. Conversely,
if new links are added to the graph, some paths between nodes are shorter which decreases the
average path length. We thus have two opposite processes participating in the network growth. The
comparison between 1996 and 2006 graphics suggests that the proportion of new nodes compared to
new links was more important for the shipping network of 1996 than it was for 2006. In other words
this means that in 1996 the main force driving the growth of the shipping network was the expansion
while in 2006 it was the densificaton. We should however warn the reader because the slope values
on which this interpretation is built are very small, but the tendencies were the same for every time
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granularity values.

4 Temporal Networks

The previous sections focused on the analysis of the maritime dataset when viewed as static graphs
or sets of static graphs, with nodes being the ports and arcs indicating a possible route between two
ports. Within such a static network time is not present. Useful timed information could feed the
network analysis. Indeed, from the Lloyd’s dataset, an arc could actually hold many information:
number and dates of departures on that arc, their distribution through time, arrival dates, as well
as measures related to the duration of the journeys on this arc (distribution, average, median, etc.).
Classical complex networks usually don’t contain time related information. In this section we intro-
duce temporal networks, a graph model that contains all time-related events of ships’” movements.

4.1 The temporal network model

The graphs considered in the two previous sections are 1-graphs, meaning that whatever the number
of ships moving from one port A to the next call C', there will be only one arc linking A to C'. If we
want to represent all the ships moving from A to C' we should model it using a multigraph. In [2§]
the authors consider a multigraph based on the notion of route, ”characterized by a predetermined
sequence of ports, arrival schedule, frequency and deployed ships”, and the combination of such
routes forms the directed maritime networks, but they restrict their analysis to the top 20 shipping
lines for the period 1995-2011. Olivier Joly also raised this question of multigraph modeling but as
he wrote, his study took place in a long-term perspective such that, adding one arc per ship, would
have been an unnecessary complication of the problem. Remains the question of time. As he noticed,
such a graph makes the assumption of synchronicity of ships’ movements and of the fact that ships
are moving together and simultaneously [16].

For tackling this problem we propose to consider a graph model able to carry time information:
the temporal networks (or evolving graphs). From the data, ships movements, we can build such a
graph by associating one node to each port and one arc between two ports A and C' as soon as at
least one ship, during the considered period of time, moved from port A to the next one C. If the
date of the departure from A was t, then the arc is valuated with ¢t. More generally, if there are n
dates of departures of ships from port A to C' during the period, then the arc (A, C') will be valuated
by the n dates.

The TG-Graphs presented in previous section can be considered as special cases of temporal
networks. Indeed, a TGG(t, J) is a non valuated sub-graph of a temporal network 7', a sub-graph
that only contains the set of arcs of T that are labelled by dates d € [t,t + J — 1], and, of course,
corresponding nodes.

Numerous models exist in the literature for time enable networks. These models are presented
under various names but the term Temporal Network tends to be the most accepted [13]. The general
idea behind temporal networks is that they have a classical network structure, except that each edge
(or arc) is labelled with a list of dates (or intervals) that indicate when that edge is active. The
labelling of edges is commonly used in distributed computing and is close to the idea of a weighted
graph where a value qualifies edges. When an edge (or arc) is active it behaves like a classical edge.
When it is not active it should be considered non-existing. Consider a node A connected to a node
B, and B connected to a node C. In a classical network, A and C' are indirectly connected through
B. In a temporal network time constraints apply on edges. It means that the link (A, B) needs to
be active first and then link (B, C) in order to consider that A and C' are indirectly connected. In
this case even if edges are undirected, a path existing from A to C' does not prevails a path from C
to A. Edges (A, B) and (B, C) must be active, for the path to exist. A path in a network with such
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time constraint is called a journey [33], a non-decreasing path or a time-respecting path [19].

Figure [11] illustrates a temporal network. A journey exists in this network from node A to node
E because time constraints are respected. Indeed the path {A, B,C, D, E} can be traversed with
respect to time (for instance, (A, B) at time 1, then (B,C) at time 1, then (C, D) at time 2, and
finally (D, F) at time 4). The exact opposite path is not a valid journey. Finally the whole concept
of path and subsequent measures (diameter, radius, eccentricity, and most centralities) are redefined
by temporal constraints.

2,5,6,7

Figure 11: An example of temporal network with labelled edges for time steps when they are active.

Note that in this example no stop on nodes is assumed, travelling times of edges are neglected,
and only the activity of the edges is considered. In the sequel, both stops on nodes and travelling
times of edges will be taken into account for the computation of the journeys.

4.2 Least Cost Journeys in Maritime Temporal Networks

We propose here to adopt a new point of view for studying maritime networks. Indeed, temporal
information and related graph algorithms allow the formulation of new problems. Instead of analyzing
shipping networks from the port or the vessels point of views, we can look at the network from the
container point of view. Let us consider that a given container located at a given place needs to reach
a destination. To that purpose it will be shipped through one or several vessels in order to reach
the destination. Under various assumptions multiple constraints can be considered. From Lloyd’s
dataset it is assumed that each arc of the network is labelled with the following information:

e the list of departure dates with each vessels’ departure on this arc (from source port to desti-
nation port);

e the list of travel duration associated with the mentioned departures on this arc;
e the average, standard deviation, and median travel duration on this arc.

Based on these elements it is possible to consider new problems for the shipment of one container
from one place to another.
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1. Minimisation of transshipments. The number of different calls and subsequent need for trans-
shipment has an inevitable economic cost that could be considered for minimisation, such that
a journey with a minimum number of transshipments could be more desirable, at the cost of
an overall longer journey.

2. Minimisation of the arrival date. If the wish it to ship the container as fast as possible, then
the overall duration from the moment we try to ship the cargo has to be minimised.

3. Minimisation of the time at sea. It corresponds to finding a fast journey but when the start
date does not matter. This case is useful for instance for renewable resources with a freshness
to be maximized.

Those three opened questions remain to be investigated using the temporal network framework
in the field for maritime networks analysis. The remainder of the section focuses on the minimization
of the arrival date.

4.3 Horizon and Foremost Journeys

Various adaptation of the classical shortest path problem have been widely investigated in the field
of temporal networks [33].

As stated, we consider here the list of departures on each arc as a constraint. For sake of statistical
relevance in regards to some extreme (and maybe erroneous) values with wide standard deviation, we
chose to consider the travel duration on an edge as the median value of the observed real durations.
Moreover the minimum stay at a location for a container is set to one day in order to account for
transshipment delay.

In the case of maritime network, before considering the optimisation of the arrival date we first
consider if an arrival is ever possible during this observation window. Since the datasets are available
for periods of one full year, then one year is the maximum accepted duration for a journey. We
define for each port, seen as a potential starting point for a container, the number of destinations
that it can reach in average throughout the duration of the observation (one year). Being able to
reach another port means that a journey (a path that respects time constraints) leading to this port
must exist.

We call horizon the average number of reachable destinations for a given port. When time is not
considered, the horizon of a port is expected to be large, probably on the order of the size of strongly
connected component this port is in. When time is considered, due to time constraints, this number
is expected to be less. Some ports have been identified in the previous section to be leaves in the
giant connected components. They are reachable but cannot reach any destinations. Those 32 ports
in 1996 (respectively 34 in year 2006) have no horizon and a potentially infinite journey duration to
any destination.

Moreover the duration of journeys can also be investigated. Time and duration are usually con-
sidered (mixed-up) with weights such that a shortest path on a classical network with arcs durations
used as weights is computed. This gives an artificial value for the journey duration since actual
vessels departures are omitted. We compute here the actual Foremost journeys in the network and
compare them with this naive approach.

Figure [12| shows an important difference in average for the horizon when time is truly considered
for reaching destinations. On average, in 1996, the horizon is 820 nodes, which is close to the size of
the giant strong component (835), whereas it is on average 460 when time is considered with a wide
standard deviation (£130). A similar difference is noted on the 2006 dataset.

The difference between the temporal and atemporal approaches for average journey duration is
very important. While the naive weighted shortest path gives an average journey duration of 20 £47
days (resp. 17442 for year 2006), the time respecting foremost journey computation gives an average
of 112 £ 55 (resp. 96 & 54).

That difference between the supposed classical time consideration on the static network and
the effective computation of time dependent paths is of paramount importance for the analysis of
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Figure 12: Temporal versus Atemporal Analysis of average journey durations and ports horizon.
When atemporal, the horizon (in number of nodes/ports) is in the order of the size of the connected
component of each node and the average journey duration (in days) only considers arcs median
duration as a simple weight. When temporal, the horizon is inferior to the Atemporal and the
average journey duration is way more important than the naive weighted shortest path. Years 1996
and 2006 are investigated and show similar behaviour.
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maritime networks. While it is commonly believed that the maritime network is strongly connected
and that goods can cross the glob in about 20 days, this analysis shows a different point of view. If
indeed the network shows Scale-Free properties, ports that are not directly connected to the large
hubs are actually isolated.

5 Conclusion

Classical analyses of maritime networks neglect the temporal information contained within the data.
We put the focus on the introduction of these temporal information within the graph models that
can be built from ships’ movements recorded in data sources like the Lloyds’s Lists Periodicals.

We have considered three different graph models, starting from the classical static one that gather
all ships” movements into one unic graph. It has been shown that the network carries expected
properties like small-worldness and scale-freeness (to an extend).

The second model called TG-Graph, stands for Time Granularity-based Graph, is characterized
by a time granularity allowing to build time series of TG-Graphs for the study of the evolution of
many metrics during a given period of time. We have shown that the temporal evolution of simple
metrics like graph order or the compared evolution of couples of metrics can bring some interesting
insights for the understanding of the underlying shipping network.

The introduction of time granularity for building TG-graphs raises multiple questions, about
the choice of the granularity, about the existence of a best granularity value for studying some
phenomenon, about the sensitivity of metrics to granularity changes or about the consistence of
results obtained from different granularity values. At this stage of the study we are not able to
answer these questions and in this chapter we’'ve just opened the discussion about the relevance of
such a graph model. We focused on a few different time granularities (1, 7, 14, 21 and 28 days)
and we have restricted our study to global metrics. However, similar studies can be driven for nodes
and edges. These analyses could lead to the comparison of the evolution, the stability, and the
robustness of a chosen subset of ports at different periods of time or for observing their response to
specific events like crises for instance.

Temporal network was our last model. It takes into account time more explicitly by including
time related data directly in the graph. This model allows a new point of view in the analysis of
the maritime networks. We can now formulate problems and answer questions related to how cargo
can be shipped through the maritime network, what path to use and when to use them in order
to optimise the transit of goods for different optimization functions. The analysis of these graphs
brought new results that change the way those networks should be considered. Despite its small-
world property and its hubs, when time is considered, the network shows average journey duration
that are 5 times longer than what a standard off-time network would have guessed.
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Appendix

experiments were conducted using GraphStream [6], a tool for designing, analysing and visualising

dynamic graphs.

The following figures illustrate graph measures with various granularity sizes for the two datasets.
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