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Large Deviations for dynamical fluctuations of Open Markov processes,
with application to random cascades on trees

Cécile Monthus
Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France

The large deviations at ’Level 2.5 in time’ for time-dependent ensemble-empirical-observables,
introduced by C. Maes, K. Netocny and B. Wynants [Markov Proc. Rel. Fields. 14, 445 (2008)] for
the case of N independent Markov jump processes, are extended to the case of open Markov processes
with reservoirs : explicit formulas are given for the joint probability of empirical occupation numbers
and empirical flows, both for discrete-time dynamics and for continuous-time jump dynamics, with
possibly time-dependent dynamical rules and/or time-dependent driving of the reservoirs. This
general formalism is then applied to random cascades on trees, where particles are injected at the
root via a ’source reservoir’, while the particles are removed at the leaves of the last generation of
the tree via ’sink reservoirs’.

I. INTRODUCTION

While the standard classification of Large Deviations (see the reviews [1, 2] and references therein) involves three
Levels, with Level 1 for empirical observables, Level 2 for the empirical measure, and Level 3 for the empirical process,
the new ’Level 2.5’ concerning the joint distribution of the time-empirical-densities and the time-empirical-flows over
some large time interval T has turned out to be the appropriate Level for Markov processes : the rate function for the
Large Deviations with respect to T can be then written as a very general explicit local-in-space functional for a single
Markov chain [2–4] (see the reminder in Appendix A 1), for a single Markov jump process [3, 5–11] (see the reminder
in Appendix A 2) and for a single diffusion process [8, 9, 12, 13]. In addition, this ’Level 2.5’ formulation allows to
reconstruct any time-additive observable of the dynamical trajectory via its decomposition in terms of the empirical
densities and of the empirical flows. As a consequence, this ’Level 2.5’ framework gives an interesting alternative point
of view with respect to the studies focusing on the generating functions of time-additive observables via deformed
Markov operators that have attracted a lot of interest recently in various models [14–27].

In Ref. [7], another step further has been introduced that could be called ’Level 2.5 in time’ : this name will
become clear below with Eq. 5, where the rate function contains an integral over time of time-dependent-observables.
Instead of focusing on a single Markov process as above, one considers a large number N of independent Markov Jump
processes with trajectories x(k)(t) with k = 1, 2, .., N constructed from the same transition rates w(y, x) and from the
same initial condition Pini(x). The idea is to analyze the dynamical fluctuations of the ensemble-empirical-density at
configuration x at time t

ρt(x) =
1

N

N∑
k=1

δ
(
x(k)(t)− x

)
(1)

and of the ensemble-empirical-transition-rates kt(y, x) defined as the ratios between the empirical number of jumps
from x to y at time t and the number of particles that are present at x at time t

kt(y, x) =

N∑
k=1

δ
(
x(k)(t+)− y

)
δ
(
x(k)(t)− x

)
N∑
k=1

δ
(
x(k)(t)− x

) (2)

By consistency, these empirical observables should satisfy the empirical-master-equation

∂tρt(x) =
∑
y 6=x

(kt(x, y)ρt(y)− kt(y, x)ρt(x)) (3)

The probability to observe the time-dependent ensemble-empirical-densities ρ0≤t≤T (.) and the time-dependent
ensemble-empirical-transition-rates k0≤t≤T (., .) then follows the large deviation form with respect to N → +∞

P [ρ0≤t≤T (.), k0≤t≤T (., .)] = e−NI[ρ0≤t≤T (.),k0≤t≤T (.,.)] (4)
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with the explicit rate function (Eqs 4.1, 4.2 and 4.3 of [7] written with our present notations)

I [ρ0≤t≤T (.), k0≤t≤T (., .)] =
∑
x

ρ0(x) ln

(
ρ0(x)

Pini(x)

)
+

∫ T

0

dt
∑
x

∑
y 6=x

[
kt(y, x) ln

(
kt(y, x)

w(y, x)

)
− kt(y, x) + w(y, x)

]
ρt(x) (5)

The first term is a boundary contribution coming from the initial condition, while the second term is an integral over
the time-interval T of a functional of the time-dependent-empirical-observables that is local both in space and time.
Moreover, the special case of stationary ensemble-empirical observables ρt(x) = ρ(x) and kt(y, x) = k(y, x) [7] allows
to recover the standard ’Level 2.5’ formula for time-empirical-observables recalled in Eq. A21, while the empirical
dynamics of Eq. 3 reduces to the standard stationarity constraint of Eq. A22.

The ’Level 2.5 in time’ result of Eq. 5 has been derived in [7] for N independent Markov Jump processes with
trajectories x(k)(t) by the method of change of measure on the trajectories. The goal of the present paper is to extend
this ’Level 2.5 in time’ approach to open Markov processes with reservoirs, where the total number N of Markov
processes is not fixed anymore, so that the ensemble-empirical-density at configuration x at time t of Eq. 1 will be
replaced by the ensemble-empirical-occupation-numbers

Nt(x) =
∑
k

δ
(
x(k)(t)− x

)
(6)

that should be large enough to consider the large deviations with respect to Nt(x) for each x and t.
The paper is organized as follows. We first analyze the large deviations at ’Level 2.5 in time’ for general open Markov

processes involving reservoirs with possibly time-dependent dynamical rules, both for discrete time dynamics in section
II and for continuous time dynamics in section III. We then describe the application of this general approach to the
specific case of random cascades on trees between a ’source reservoir’ at the root and ’sink reservoirs’ on the leaves of
the last generation, again both for discrete time dynamics in section IV and for continuous time dynamics in section
V. Our conclusions are summarized in VI. The Appendix A contains a brief reminder on the Large deviations ’at
Level 2.5’ for the time-empirical-observables of a single Markov chain and a single Markov jump process respectively,
in order to make comparisons with equations of the text.

II. DISCRETE TIME MARKOV PROCESSES WITH RESERVOIRS

At time t, the state of the system is defined by the empirical numbers Nt(x) of particles on each discrete position
x = 1, ..,Ω of the system, while the state of the reservoirs is defined by the numbers Next

t (r) of particles on each
reservoir site r = 1, 2, .., R. The reservoirs numbers Next

t (r) are fixed by the external protocol and do not depend
on the system variables, for instance they can be fixed to be time-independent Next

t (r) = Next(r) or to follow some
time-dependence.

A. Model and notations

At time t, the state of the system is defined by the empirical numbers Nt(x) of particles on each discrete position
x = 1, ..,Ω of the system, while the state of the reservoirs is defined by the numbers Next

t (r) of particles on each
reservoir site r = 1, 2, .., R. The reservoirs numbers Next

t (r) are fixed by the external protocol and do not depend
on the system variables, for instance they can be fixed to be time-independent Next

t (r) = Next(r) or to follow some
time-dependence.

The dynamics is defined as follows. All particles can move independently.
Between t and (t+ 1), a particle that was on site x of the system at time t can :
(i) either move towards a position y = 1, 2, ..,Ω of the system with probabilities Wt(y, x) (including y = x corre-

sponding to the case where the particle remains on site x with probability Wt(x, x)).
(ii) or move towards one of the reservoirs r = 1, 2, .., R with probabilities Wt(r, x)
These probabilities are normalized to unity for each x and for each t

1 =

Ω∑
y=1

Wt(y, x) +

R∑
r=1

Wt(r, x) (7)



3

Between t and (t + 1), a particle on reservoir r at time t can move towards one of the sites of the system y with
probabilities Wt(y, r) or remain on the reservoir r with probability Wt(r, r) with the normalization of probabilities

1 =

Ω∑
y=1

Wt(y, r) +Wt(r, r) (8)

B. Large deviation analysis of the empirical transition probabilities out of a given site x at time t

The number Nt(x) of particles on each position x at time t is assumed to be large enough in order to consider large
deviation with respect to Nt(x).

1. Direct analysis in terms of the multinomial distribution of the outgoing flows

Among these Nt(x) independent particles on site x at time t, one considers the empirical numbers Qt(y, x) of
particles that jump towards y = 1, ..,Ω, and the numbers Qt(r, x) of particles that jump towards the reservoirs
r = 1, .., R with the normalization

Nt(x) =

Ω∑
y=1

Qt(y, x) +

R∑
r=1

Qt(r, x) (9)

Since the dynamics for each independent particle is drawn with the transition probabilities of Eq. 7, the joint
distribution of the flows Qt(y, x) and Qt(r, x) is simply the multinomial distribution

P [Qt(., x)|Nt(x)] =

Nt(x)!
Ω∏
y=1

Qt(y, x)!

R∏
r=1

Qt(r, x)!

Ω∏
y=1

[Wt(y, x)]Qt(y,x)
R∏
r=1

[Wt(r, x)]Qt(r,x)δNt(x),
∑Ω
y=1 Qt(y,x)+

∑R
r=1 Qt(r,x) (10)

Using the Stirling’s approximation for the factorials m! '
√

2πm mme−m, one obtains that the probability of the
empirical transition probabilities

Kt(y, x) =
Qt(y, x)

Nt(x)

Kt(r, x) =
Qt(r, x)

Nt(x)
(11)

normalized to

1 =

Ω∑
y=1

Kt(y, x) +

R∑
r=1

Kt(r, x) (12)

follows the large deviation form with respect to Nt(x)

P [Kt(., x)|Nt(x)] '
Nt(x)→+∞

e−Nt(x)I[Kt(.,x)]δ1,
∑Ω
y=1 Kt(y,x)+

∑R
r=1 Kt(r,x) (13)

where the rate function I[Kt(., x)] corresponds to the relative entropy of the empirical transition probabilities Kt(., x)
with respect to the true transition probabilities Wt(., x)

I[Kt(., x)] =

Ω∑
y=1

Kt(y, x) ln

(
Kt(y, x)

Wt(y, x)

)
+

R∑
r=1

Kt(r, x) ln

(
Kt(r, x)

Wt(r, x)

)
(14)

This type of result based on the application of the Stirling’s approximation to the multinomial distribution of Eq. 10
goes back to Boltzmann [28] but is usually called Sanov Theorem in the large deviation language [1, 2, 28].
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2. Alternative analysis in terms of the generating function of the outgoing flows

Equivalently, one can consider the generating function of the flows Qt(y, x) and Qt(r, x) out of x at time t

Z[νt(., x)|Nt(x)] ≡
∑

Qt(.,x)

P [Qt(., x)] e

Ω∑
y=1

νt(y, x)Qt(y, x) +

R∑
r=1

νt(r, x)Qt(r, x)

≡
∑

Kt(.,x)

P [Kt(., x)] e

Nt(x)


Ω∑
y=1

νt(y, x)Kt(y, x) +

R∑
r=1

νt(r, x)Kt(r, x)


(15)

whose explicit expression for Nt(x) independent particles is directly

Z[νt(., x)|Nt(x)] =

[
Ω∑
y=1

Wt(y, x)eνt(y,x) +

R∑
r=1

Wt(r, x)eνt(r,x)

]Nt(x)

= eNt(x)Φ[νt(.,x)] (16)

where

Φ[νt(., x)] = ln

[
Ω∑
y=1

Wt(y, x)eνt(y,x) +

R∑
r=1

Wt(r, x)eνt(r,x)

]
(17)

is the Legendre transform of the rate function of Eq. 14 submitted to the normalization of Eq. 12

Φ[νt(., x)] = max
Kt(.,x):1=

∑
y Kt(y,x)+

∑
r Kt(r,x)

[
Ω∑
y=1

νt(y, x)Kt(y, x) +

R∑
r=1

νt(r, x)Kt(r, x)− I[Kt(., x)]

]
(18)

as a consequence of the saddle-point evaluation for large Nt(x) of Eq. 15. The reciprocal Legendre transform

I[Kt(., x)] = max
νt(.,x)

[
Ω∑
y=1

νt(y, x)Kt(y, x) +

R∑
r=1

νt(r, x)Kt(r, x)− Φ[νt(., x)]

]
(19)

allows to recover the result of Eq. 14 by this Legendre transform of Eq. 17.

3. Alternative analysis in terms of a change of measure

A third derivation of Eq. 14 consists in considering a change of measure : the empirical flows Qt(., x) would be
typical if one replaces the true transition probabilities Wt(., x) by the empirical transition probabilities Kt(., x) of Eq.
11, so that the corresponding modified multinomial distribution of Eq. 10 becomes

Pmod[Qt(., x)|Nt(x)]

=
Nt(x)!

Ω∏
y=1

Qt(y, x)!

R∏
r=1

Qt(r, x)!

Ω∏
y=1

[Kt(y, x)]Qt(y,x)
R∏
r=1

[Kt(r, x)]Qt(r,x)δNt(x),
∑Ω
y=1 Qt(y,x)+

∑R
r=1 Qt(r,x) (20)

As a consequence, the large-deviation form can be also obtained directly from the ratio

P [Qt(., x)|Nt(x)]

Pmod[Qt(., x)|Nt(x)]
=

Ω∏
y=1

[
Wt(y, x)

Kt(y, x)

]Qt(y,x) R∏
r=1

[
Wt(r, x)

Kt(r, x)

]Qt(r,x)

δNt(x),
∑Ω
y=1 Qt(y,x)+

∑R
r=1 Qt(r,x)

= e

−

Ω∑
y=1

Qt(y, x) ln

[
Qt(y, x)

Wt(y, x)Nt(x)

]
−

R∑
r=1

Qt(r, x) ln

[
Qt(r, x)

Wt(r, x)Nt(x)

]
δNt(x),

∑Ω
y=1 Qt(y,x)+

∑R
r=1 Qt(r,x) (21)

that corresponds to Eq. 13 and 14 when translated into the empirical transition probabilities Kt(., x) = Qt(.,x)
Nt(x) .
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4. Discussion of the hypothesis of large Nt(x)

As stated after Eq. 6 in the Introduction, the main hypothesis is that Nt(x) should be large enough for all x and
all t in order to be able to write the large deviation form with respect to Nt(x) for the outgoing flows out of site x
at time t (Eq. 13). It is interesting to compare how this hypothesis appears more precisely in the three arguments
above :

(i) in the first direct analysis, it appears via the Stirling’s approximation needed to go from the multinomial
distribution of Eq. 10 to the rate function of Eq. 14.

(ii) in the second alternative analysis, the generating function of Eq. 16 is actually valid for any finite Nt(x), so
that the condition of large Nt(x) only appears when one wishes to perform the inverse Legendre transform via the
saddle-point approximation (Eqs 18 and 19).

(iii) in the third alternative analysis, the hypothesis of large Nt(x) is somewhat hidden in the fact that one should

be able to define the empirical transition probabilities Kt(., x) = Qt(.,x)
Nt(x) (for instance they would loose their meaning

if some empirical occupations Nt(x) can vanish), and one should be able to consider that the comparison with the
modified process of Eq. 20 via the ratio of Eq. 21 is enough to obtain the correct result in the exponential.

As a final remark, we should stress that in the present paper, in order to have a more straighforward physical
interpretation, we have chosen to interpret Nt(x) as the empirical number of independent particles really present
at some position x at time t. But the ensemble-empirical-framework introduced in Ref. [7] is of course much more
general, since x can label more general configuration spaces, and the notion of ensemble can be interpreted in the
traditional sense of statistical physics as a very large number of virtual copies of the elementary dynamical system
one is interested in.

C. Large deviation analysis of the empirical transition probabilities out of a given reservoir r at time t

The same analysis for the empirical transition probabilities Kt(x, r) out of the reservoir r yields the large deviation
form with respect to Next

t (r)

P [Kt(., r)|Next
t (r)] '

Nextt (r)→+∞
e−N

ext
t (x)I[Kt(.,r)]δ1,

∑Ω
y=1 Kt(y,r)+Kt(r,r)

(22)

where the rate function I[Kt(., r)] corresponds to the relative entropy of the empirical transition probabilities Kt(., r)
with respect to the true transition probabilities Wt(., r)

I[Kt(., r)] =

Ω∑
y=1

Kt(y, r) ln

(
Kt(y, r)

Wt(y, r)

)
+Kt(r, r) ln

(
Kt(r, r)

Wt(r, r)

)
(23)

D. Analysis of the state of the system at time t + 1

For the reservoirs, the new numbers Next
t+1(r) are imposed by the external protocol.

In the system, the empirical number Nt+1(x) of particles on site x at time (t+ 1) is completely determined by the
empirical flows Qt(x, .) of particles towards x between t and t+ 1

Nt+1(x) =

Ω∑
y=1

Qt(x, y) +

R∑
r=1

Qt(x, r) =

Ω∑
y=1

Kt(x, y)Nt(y) +

R∑
r=1

Kt(x, r)N
ext
t (r) (24)

Note the difference with Nt(x) of Eq. 9 involving the flows Qt(., x) out of x.

E. Probability of an empirical history of the occupation numbers Nt(.) and flows Qt(., .)

Putting everything together, one obtains that once the empirical occupation numbers Nt(.) at time t are known,
the joint probability of the empirical flows Qt(., .) between t and (t + 1) and of the empirical occupation numbers
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Nt+1(.) at time (t+ 1) reads

P [Nt+1(.);Qt(., .)|Nt(.)] '

e

−

Ω∑
x=1

[
Ω∑
y=1

Qt(y, x) ln

(
Qt(y, x)

Wt(y, x)Nt(x)

)
+

R∑
r=1

Qt(r, x) ln

(
Qt(r, x)

Wt(r, x)Nt(x)

)]
Ω∏
x=1

δNt(x),
∑Ω
y=1 Qt(y,x)+

∑R
r=1 Qt(r,x)

e

−

R∑
r=1

[
Ω∑
y=1

Qt(y, r) ln

(
Qt(y, r)

Wt(y, r)Next
t (r)

)
+Qt(r, r) ln

(
Qt(r, r)

Wt(r, r)Next
t (r)

)]
R∏
r=1

δNextt (r),
∑Ω
y=1 Qt(y,r)+Qt(r,r)

Ω∏
x=1

δNt+1(x),
∑Ω
y=1 Qt(x,y)+

∑R
r=1 Qt(x,r)

(25)

where the second line corresponds to the statistics of the outgoing flows Qt(., x) = Kt(., x)Nt(x) out of the system sites
x (Eqs 13 and 14), where the third line corresponds to the statistics of the outgoing flows Qt(., r) = Kt(., r)N

ext
t (r)

out of the reservoirs r (Eqs 22 and 23), and where the fourth line corresponds to the empirical dynamics of Eq. 24.
From this elementary Markov propagator, one obtains via iteration the joint probability of the empirical flows

Q0≤t≤T−1(., .) and of the empirical occupation numbers N1≤t≤T (.) given the empirical occupation numbers Nt=0(.)
at time t = 0

P[N1≤t≤T (.);Q0≤t≤T−1(., .)|N0(.)]

= P [NT (.);QT−1(., .)|NT−1(.)]P [NT−1(.);QT−2(., .)|NT−2(.)]......P [N2(.);Q1(., .)|N1(.)]P [N1(.);Q0(., .)|N0(.)] =

e

−

T−1∑
t=0

Ω∑
x=1

[
Ω∑
y=1

Qt(y, x) ln

(
Qt(y, x)

Wt(y, x)Nt(x)

)
+

R∑
r=1

Qt(r, x) ln

(
Qt(r, x)

Wt(r, x)Nt(x)

)]
T−1∏
t=0

Ω∏
x=1

δNt(x),
∑Ω
y=1 Qt(y,x)+

∑R
r=1 Qt(r,x)

e

−

T−1∑
t=0

R∑
r=1

[
Ω∑
y=1

Qt(y, r) ln

(
Qt(y, r)

Wt(y, r)Next
t (r)

)
+Qt(r, r) ln

(
Qt(r, r)

Wt(r, r)Next
t (r)

)]
T−1∏
t=0

R∏
r=1

δNextt (r),
∑Ω
y=1 Qt(y,r)+Qt(r,r)

T−1∏
t=0

Ω∏
x=1

δNt+1(x),
∑Ω
y=1 Qt(x,y)+

∑R
r=1 Qt(x,r)

(26)

This result concerning the probability of an empirical history of the occupation numbers Nt(.) and flows Qt(., .) is the
most general formula of the present paper, and the remainder of the paper will be devoted to the analysis of various
specific cases.

F. Application to time-independent dynamics during a large time interval T → +∞

When the dynamics corresponds to time-independent transition probabilities Wt(., .) = W (., .) and time-
independent reservoirs occupation numbers Next

t (r) = Next(r) , it is natural to consider the probability to observe
some stationary occupation numbers Nt(.) = N(.) and flows Qt(., .) = Q(., .) during a large time interval T → +∞
(so that the initial condition is not important anymore). Eq. 26 then yields the following large deviation form with
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respect to T → +∞

Pstatio[N(.);Q(., .)] '
T→+∞

e

−T

Ω∑
x=1

[
Ω∑
y=1

Q(y, x) ln

(
Q(y, x)

W (y, x)N(x)

)
+

R∑
r=1

Q(r, x) ln

(
Q(r, x)

W (r, x)N(x)

)]
Ω∏
x=1

δN(x),
∑Ω
y=1 Q(y,x)+

∑R
r=1 Q(r,x)

e

−T

R∑
r=1

[
Ω∑
y=1

Q(y, r) ln

(
Q(y, r)

W (y, r)Next(r)

)
+Q(r, r) ln

(
Q(r, r)

W (r, r)Next(r)

)]
R∏
r=1

δNext(r),
∑Ω
y=1 Q(y,r)+Q(r,r)

Ω∏
x=1

δN(x),
∑Ω
y=1 Q(x,y)+

∑R
r=1 Q(x,r) (27)

Within the present derivation, this result inherits from Eq. 26 the condition that the occupation numbers N(x) should
be large enough for all x, since this is the general hypothesis of the present paper, as stressed in section II B 4.

As already mentioned after Eq. 5, the case of stationary ensemble-empirical observables is related to the case of
time-empirical observables [7]. For our present case, this means that the formula for Pstatio[N(.);Q(., .)] also describes
the probability Pte[N te(.);Qte(., .)] to observe the time-empirical observables

N te(x) ≡ 1

T

T∑
t=1

Nt(x)

Qte(., .) ≡ 1

T

T−1∑
t=0

Qt(., .) (28)

since the easiest way to realize these time-empirical values in the dynamical formula of Eq. 26 corresponds to the
dynamical histories that remain stationary (Nt(x) = N te(x);Qt(., .) = Qte(., .)) on the time-interval [0, T ] [7]

Pte[N te(.);Qte(., .)] = Pstatio[N te(.);Qte(., .)] (29)

As a consequence, Eq. 27 can be considered as the generalization in the presence of reservoirs to the ’Level 2.5’
rate function of Eq. A8 with the constraint of Eq. A9 concerning time-empirical observables for a single stationary
Markov chain [2–4] (for more details see the reminder in Appendix A 1).

G. Application to periodic dynamics

Since there has been recent studies on the large deviation properties of periodically driven systems [29–32], it
is interesting to consider the case where the dynamical rules alternate periodically between transition probabilities
W2t(., .) = We(., .) and reservoirs occupation numbers Next

2t (r) = Next
e (r) at even times (2t), and transition probabili-

ties W2t+1(., .) = Wo(., .) and reservoirs occupation numbers Next
2t+1(r) = Next

o (r) at odd times (2t+ 1). It is then nat-
ural to consider the probability to observe some alternating occupation numbers N2t(.) = Ne(.) and N2t+1(.) = No(.)
and alternating flows Q2t(., .) = Qe(., .) and Q2t+1(., .) = Qo(., .) during a large time interval T → +∞ (so that the
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initial condition is not important anymore) : Eq. 26 then yields the following large deviation form with respect to T

Pperiodic[Ne(.), No;Qe(., .), Qo(., .)] '
T→+∞

e

−T2

Ω∑
x=1

[
Ω∑
y=1

Qe(y, x) ln

(
Qe(y, x)

We(y, x)Ne(x)

)
+

R∑
r=1

Qe(r, x) ln

(
Qe(r, x)

We(r, x)Ne(x)

)]
Ω∏
x=1

δNe(x),
∑Ω
y=1 Qe(y,x)+

∑R
r=1 Qe(r,x)

e

−T2

Ω∑
x=1

[
Ω∑
y=1

Qo(y, x) ln

(
Qo(y, x)

Wo(y, x)No(x)

)
+

R∑
r=1

Qo(r, x) ln

(
Qo(r, x)

Wo(r, x)No(x)

)]
Ω∏
x=1

δNo(x),
∑Ω
y=1 Qo(y,x)+

∑R
r=1 Qo(r,x)

e

−T2

R∑
r=1

[
Ω∑
y=1

Qe(y, r) ln

(
Qe(y, r)

We(y, r)Next
e (r)

)
+Qe(r, r) ln

(
Qe(r, r)

We(r, r)Next
e (r)

)]
R∏
r=1

δNexte (r),
∑Ω
y=1 Qe(y,r)+Qe(r,r)

e

−T2

R∑
r=1

[
Ω∑
y=1

Qo(y, r) ln

(
Qo(y, r)

Wo(y, r)Next
o (r)

)
+Qo(r, r) ln

(
Qo(r, r)

Wo(r, r)Next
o (r)

)]
R∏
r=1

δNexto (r),
∑Ω
y=1 Qo(y,r)+Qo(r,r)

Ω∏
x=1

δNo(x),
∑Ω
y=1 Qe(x,y)+

∑R
r=1 Qe(x,r)

Ω∏
x=1

δNe(x),
∑Ω
y=1 Qo(x,y)+

∑R
r=1 Qo(x,r) (30)

This formula is somewhat lengthy but the various contributions have a very clear physical meaning : the second line
corresponds to the statistics of the outgoing flows Qe(., x) from sites x of the system at even times, the third line
corresponds to the statistics of the outgoing flows Qo(., x) from sites x of the system at odd times, the fourth line
corresponds to the statistics of the outgoing flows Qe(., r) from reservoirs r at even times, the fifth line corresponds
to the statistics of the outgoing flows Qo(., r) from reservoirs r at odd times, while the last line corresponds to the
dynamical constraints on the incoming flows towards sites x of the system at even and odd times respectively.

III. CONTINUOUS TIME MARKOV PROCESSES WITH RESERVOIRS

A. Models and notations

To see more clearly the similarities and differences with the previous section, it is more convenient here to consider
that the continuous-time jump Markov dynamics is obtained as the limit of the discrete-time Markov dynamics
described in II A, where the time interval (t, t + 1) is replaced by (t, t + dt) with infinitesimal dt. The transition
probabilities of Eq. 7 towards reservoirs r and towards other sites y 6= x of the system become of order (dt) with
corresponding transition rates wt(r, x) and wt(y, x)

Wt(r, x)'wt(r, x)dt

Wt(y, x)'wt(y, x)dt (31)

while the conservation of probabilities of Eq. 7 imposes that the probability to remain on site x reads

Wt(x, x) ' 1− dt

∑
y 6=x

wt(y, x) +
∑
r

wt(r, x)

 (32)

Similarly, the transition probabilities of Eq. 8 out of the reservoir r are of the form

Wt(x, r) 'wt(x, r)dt

Wt(r, r) ' 1− dt

[∑
y

wt(y, r)

]
(33)
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B. Large deviation for the empirical transition rates out of a given site x at time t

The empirical transition probabilities Kt(y 6= x, x) and Kt(r, x) of Eq. 11 normalized to Eq. 12 will be also
infinitesimal with transitions rates kt(y, x) and kt(r, x)

Kt(y, x)' kt(y, x)dt

Kt(r, x)' kt(y, x)dt (34)

while the probability to remain on x reads

Kt(x, x) ' 1− dt

∑
y 6=x

kt(y, x) +
∑
r

kt(r, x)

 (35)

Eq. 13 then gives the following contribution in terms of the transition rates kt(., x) out of x

Pdt[kt(., x)|Nt(x)]→ e−dtNt(x)I[kt(.,x)] (36)

where the rate function I[kt(., x)] obtained from Eq. 14

I[kt(., x)] =
∑
y 6=x

[
kt(y, x) ln

(
kt(y, x)

wt(y, x)

)
− kt(y, x) + wt(y, x)

]
+

R∑
r=1

[
kt(r, x) ln

(
kt(r, x)

wt(r, x)

)
− kt(r, x) + wt(r, x)

]
(37)

corresponds to Poisson processes.

C. Large deviation for the empirical transition rates out of a reservoir r at time t

Similarly, Eq. 22 gives the following contribution in terms of the transition rates kt(., r) out of the reservoir r at
time t

Pdt[kt(., r)|Next
t (r)]→ e−dtN

ext
t (x)I[kt(.,r)] (38)

with the rate function I[kt(., r)] obtained from Eq. 23

I[kt(., r)] =
∑
y

[
kt(y, r) ln

(
kt(y, r)

wt(y, r)

)
− kt(y, r) + wt(y, r)

]
(39)

D. Constraint from the empirical dynamics

The empirical dynamics of Eq. 24 becomes the differential equation

dNt(x)

dt
=

Ω∑
y 6=x

(kt(x, y)Nt(y)− kt(y, x)Nt(x)) +

R∑
r=1

(
kt(x, r)N

ext
t (r)− kt(r, x)Nt(x)

)
(40)

As a consequence, it is more convenient to replace the empirical transition rates kt(., .) by the empirical flows per
unit time

qt(x, y) ≡ kt(x, y)Nt(y)

qt(x, r) ≡ kt(x, r)Next
t (r)

qt(r, x) ≡ kt(r, x)Nt(x) (41)

to rewrite the dynamics of Eq. 40 as

dNt(x)

dt
=

Ω∑
y 6=x

(qt(x, y)− qt(y, x)) +

R∑
r=1

(qt(x, r)− qt(r, x)) (42)
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E. Probability of an empirical history of the occupation numbers Nt(.) and flows qt(., .)

Eq. 26 yields that the probability to observe the empirical occupation numbers N0≤t≤T (.) and the empirical flows
q0≤t≤T (., .) reads

P[N0≤t≤T (.); q0≤t≤T (., .)|N0(.)] = e

−

∫ T

0

dt

Ω∑
x=1

∑
y 6=x

[
qt(y, x) ln

(
qt(y, x)

wt(y, x)Nt(x)

)
− qt(y, x) + wt(y, x)Nt(x)

]

e

−

∫ T

0

dt

Ω∑
x=1

R∑
r=1

[
qt(r, x) ln

(
qt(r, x)

wt(r, x)Nt(x)

)
− qt(r, x) + wt(r, x)Nt(x)

]

e

−

∫ T

0

dt

R∑
r=1

Ω∑
y=1

[
qt(y, r) ln

(
qt(y, r)

wt(y, r)Next
t (r)

)
− qt(y, r) + wt(y, r)N

ext
t (r)

]
(43)

provided the empirical dynamics of Eq. 42 is satisfied on the time interval t ∈ [0, T ] for all sites x of the system. This
is the generalization in the presence of reservoirs of Eqs 3 , 4 and 5 quoted in the Introduction.

F. Application to time-independent dynamics during a large time interval T → +∞

When the dynamics corresponds to time-independent transition rates wt(., .) = w(., .) and time-independent reser-
voirs occupation numbers Next

t (r) = Next(r), one obtains that the probability to observe some stationary occupation
numbers Nt(.) = N(.) and flows qt(., .) = q(., .) during a large time interval T → +∞ follows the large deviation form
with respect to T

Pstatio[N(.); q(., .)] '
T→+∞

e

−T

Ω∑
x=1

∑
y 6=x

[
q(y, x) ln

(
q(y, x)

w(y, x)N(x)

)
− q(y, x) + w(y, x)N(x)

]

e

−T

Ω∑
x=1

R∑
r=1

[
q(r, x) ln

(
q(r, x)

w(r, x)N(x)

)
− q(r, x) + w(r, x)N(x)

]

e

−T

R∑
r=1

Ω∑
y=1

[
q(y, r) ln

(
q(y, r)

w(y, r)Next(r)

)
− q(y, r) + w(y, r)Next

t (r)

]
Ω∏
x=1

δ

 Ω∑
y 6=x

(q(x, y)− q(y, x)) +

R∑
r=1

(q(x, r)− q(r, x))

 (44)

where the last line ensures that the empirical stationary dynamics dNt(x)
dt = 0 of Eq. 42 is satisfied for all sites x of

the system.
As already discussed in the discrete case in Eqs 28 and 29, this formula for Pstatio[N(.); q(., .)] also describes the

probability Pte[N te(.); qte(., .)] to observe the time-empirical observables [7]

N te(x) ≡ 1

T

∫ T

0

dtNt(x)

qte(., .) ≡ 1

T

∫ T

0

dtqt(., .) (45)

since the easiest way to realize these time-empirical values in the dynamical formula of Eq. 43 corresponds to the
dynamical histories that remain stationary (Nt(x) = N te(x); qt(., .) = qte(., .)) on the time-interval [0, T ] [7]

Pte[N te(.); qte(., .)] = Pstatio[N te(.); qte(., .)] (46)

So the formula 44 can be considered as the generalization in the presence of reservoirs to the ’Level 2.5’ rate function
of Eq. A18 with the constraint of Eq. A19 concerning the time-empirical observables of a single stationary Markov
jump process [3, 5–11].
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IV. APPLICATION TO DISCRETE TIME MARKOVIAN CASCADES ON TREES

In the field of turbulence (see the book [33] and references therein), random cascade models have attracted a lot
of interest to describe how the energy injected at the largest scale flows towards smaller and smaller scales up to
the smallest scale where it is dissipated by the viscosity. The corresponding multifractal properties depend on the
choice of the statistics of the cascade generators W (.), and many different choices have actually been considered in
the literature, including log-normal [34], bimodal [35], log-stable [36, 37], log-Poisson [38–40], log-infinitely-divisible
[41]. Here we will thus consider that the cascade generators W (.) are given, and we will focus on the dynamical
fluctuations of the empirical dynamics.

Of course besides turbulence, many other applications involve flows on trees with injection at the root, so that we
will keep a general terminology.

A. Open Markov dynamics in discrete time on the tree

We consider a tree of branching b, starting at the root (0), with b sites (i1) with i1 = 1, 2, .., b at the first generation
m = 1, b2 sites (i1, i2) at the second generation m = 2, etc, up to bM sites (i1, i2, .., iM ) at the last generation m = M .

The open Markov dynamics on this tree is directed between the root (0) representing a ’source reservoir’, where
the occupation number Next

t (0) is fixed by the external protocol, and the bM sites (i1, i2, .., iM ) of the last generation
m = M that represent ’sink reservoirs’ that absorb all arriving particles. The system corresponds to the sites belonging
to generations 1 ≤ m ≤M − 1.

Between t and (t+ 1), a particle on the root reservoir (0) at time t can move towards one of the b sites i1 = 1, .., b
of the first generation m = 1 with probabilities Wt(x = i1, r = 0) ≡Wt(i1) normalized to

1 =

b∑
i1=1

Wt(i1) (47)

Between t and (t+1), a particle on the system site (i1, .., im) of generation m at time t can move towards one of the
b sites (i1, .., im, im+1) of the next generation (m+1) with probabilities Wt((i1, im, im+1); (i1, ...im)) ≡Wt(i1, .., im+1)
normalized to

1 =

b∑
im+1=1

Wt(i1, ..., im, im+1) (48)

B. Probability of an empirical history of the occupation numbers Nt(.) and flows Qt(.)

The application of Eq. 26 to the open Markov dynamics described above yields that the joint probability of the
empirical occupation numbers Nt(i1, .., im) for the generations belonging to the system 1 ≤ m ≤ M − 1 and of the
empirical flows Qt((i1, im, im+1); (i1, ...im)) ≡ Qt(i1, .., im+1) for 0 ≤ m ≤M − 1 reads

P[N1≤t≤T (.);Q0≤t≤T−1(.)|N0(.)] = e

−

T−1∑
t=0

b∑
i1=1

Qt(i1) ln

(
Qt(i1)

Wt(i1)Next
t (0)

)
T−1∏
t=0

δNextt (0),
∑b
i1=1 Qt(i1)

e

−

T−1∑
t=0

M−1∑
m=1

b∑
i1=1

...

b∑
im=1

b∑
im+1=1

Qt(i1, .., im+1) ln

(
Qt(i1, .., im+1)

Wt(i1, .., im+1)Nt(i1, .., im)

)
T−1∏
t=0

M−1∏
m=1

b∏
i1=1

...

b∏
im=1

δNt(i1,..,im),
∑b
im+1=1 Qt(i1,..,im+1)

T−1∏
t=0

M−1∏
m=1

b∏
i1=1

...

b∏
im=1

δNt+1(i1,..,im),Qt(i1,..,im) (49)
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C. Probability of an empirical history of the flows Qt(.) alone

The last line of Eq. 49 simply means that in this directed model, the occupation number Nt+1(i1, .., im) of a system
site of generation 1 ≤ m ≤M − 1 coincides with the incoming flow Qt(i1, .., im) from its ancestor. As a consequence,
these constraints can be used to eliminate the occupation numbers to obtain the probability of an empirical history
of the flows Qt(.) alone

P[Q0≤t≤T−1(.)|N0(.)] = e

−

T−1∑
t=0

b∑
i1=1

Qt(i1) ln

(
Qt(i1)

Wt(i1)Next
t (0)

)
T−1∏
t=0

δNextt (0),
∑b
i1=1 Qt(i1)

e

−

M−1∑
m=1

b∑
i1=1

...

b∑
im=1

b∑
im+1=1

Q0(i1, .., im+1) ln

(
Q0(i1, .., im+1)

W0(i1, .., im+1)N0(i1, .., im)

)
M−1∏
m=1

b∏
i1=1

...

b∏
im=1

δN0(i1,..,im),
∑b
im+1=1 Q0(i1,..,im+1)

e

−

T−1∑
t=1

M−1∑
m=1

b∑
i1=1

...

b∑
im=1

b∑
im+1=1

Qt(i1, .., im+1) ln

(
Qt(i1, .., im+1)

Wt(i1, .., im+1)Qt−1(i1, .., im)

)
T−1∏
t=1

M−1∏
m=1

b∏
i1=1

...

b∏
im=1

δQt−1(i1,..,im),
∑b
im+1=1 Qt(i1,..,im+1) (50)

D. Application to time-independent dynamics during a large time interval T → +∞

1. Large deviations for the flows

When the dynamics corresponds to time-independent transition probabilities Wt(.) = W (.) and time-independent
reservoir occupation number at the root Next

t (0) = Next(0), Eq. 50 yields that the probability to observe some
stationary flows Qt(.) = Q(., .) during a large time interval T → +∞ follows the large deviation form with respect to
T

Pstatio[Q(.)] '
T→+∞

e

−T

[
b∑

i1=1

Q(i1) ln

(
Q(i1)

W (i1)Next(0)

)]

e

−T
M−1∑
m=1

b∑
i1=1

...
b∑

im=1

 b∑
im+1=1

Q(i1, .., im+1) ln

(
Q(i1, .., im+1)

W (i1, .., im+1)Q(i1, .., im)

)
δNext(0),

∑b
i1=1 Q(i1)

M−1∏
m=1

b∏
i1=1

...

b∏
im=1

δQ(i1,..,im),
∑b
im+1=1 Q(i1,..,im+1) (51)

2. Generating function of the flows

Equivalently, if one consider the generating function of all the flows Q(.) of the tree

Zstatio[ν(.)] ≡
∑
Q(.)

P statio[Q(.)] e

T

M∑
m=1

b∑
i1=1

...

b∑
im=1

ν(i1, .., im)Q(i1, .., im)

(52)
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the explicit expression analog to Eq. 16 for the multinomial distribution at each node can be used iteratively to obtain
the final result

Zstatio[ν(.)] =

[
b∑

i1=1

W (i1)eν(i1)
b∑

i2=1

W (i1i2)eν(i1i2)...

b∑
iM=1

W (i1...iM )eν(i1...iM )

]TNext(0)

(53)

In particular, the joint distribution of the bM outgoing flows Q(i1, .., iM ) at the last generation m = M of the tree
has for generating function

Zstatio[ν(i1, .., iM )] ≡
∑
Q(.)

P statio[Q(.)] e

T

b∑
i1=1

...

b∑
iM=1

ν(i1, .., iM )Q(i1, .., iM )

=

 b∑
i1=1

b∑
i2=1

...

b∑
iM−1=1

b∑
iM=1

W (i1)W (i1i2)...W (i1...iM−1)W (i1...iM )eν(i1...iM )

TN
ext(0)

(54)

corresponding to a Bernoulli distribution with the bM parameters given by the strings of probabilities along each
branch

W(i1...iM ) ≡W (i1)W (i1i2)...W (i1...iM−1)W (i1...iM ) (55)

As a consequence, the probability distribution of a single outgoing flow Q(i1 = 1, i2 = 1, .., iM = 1) at the last
generation m = M of the tree has for generating function

Zstatio[ν] ≡
∑
Q(.)

P statio[Q(.)] eTνQ(i1 = 1, i2 = 1.., iM = 1)

= [1 +W(1, 1, .., 1, 1)(eν − 1)]
TNext(0)

= eTN
ext(0) ln[1+W(1,1,..,1,1)(eν−1)] (56)

will become the generating function of a Poisson variable in the limit of large M where W(1, 1, .., 1, 1) is sufficiently
small to linearize the logarithm

Zstatio[ν] ' eTN
ext(0)W(1,1,..,1,1)(eν−1) (57)

3. Large deviations for the empirical transition probabilities

As a final remark, let us mention that, if instead of the extensive flows Q(.), one wishes to consider the empirical
transition probabilities (Eq. 11)

K(i1) ≡ Q(i1)

Next(0)

K(i1, .., im+1) ≡ Q(i1, .., im+1)

Q(i1, .., im)
(58)

Eq. 51 translates into the large deviation form

Pstatio[K(.)] '
T→+∞

e

−TNext(0)

[
b∑

i1=1

K(i1) ln

(
K(i1)

W (i1)

)]

e

−TNext(0)

M−1∑
m=1

b∑
i1=1

...

b∑
im=1

 b∑
im+1=1

K(i1)K(i1, i2)...K(i1, .., im+1) ln

(
K(i1, .., im+1)

W (i1, .., im+1)

)
M∏
m=1

b∏
i1=1

...

b∏
im=1

δ1,
∑b
im=1 K(i1,..,im) (59)
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E. Application to periodic dynamics

It is interesting to write Eq. 30 for the random cascade on the tree : one obtains that the probability distribution
of the empirical flows Qe(.) at even times and Qo(.) at odd times follows the large deviation form

Pperiodic[Qe(.), Qo(.)] '
T→+∞

(60)

e

−
T

2

[
b∑

i1=1

Qe(i1) ln

(
Qe(i1)

We(i1)Next
e (0)

)]
δNexte (0),

∑b
i1=1 Qe(i1)

e

−
T

2

[
b∑

i1=1

Qo(i1) ln

(
Qo(i1)

Wo(i1)Next
o (0)

)]
δNexto (0),

∑b
i1=1 Qo(i1)

e

−
T

2

M−1∑
m=1

b∑
i1=1

...

b∑
im=1

 b∑
im+1=1

Qe(i1, .., im+1) ln

(
Qe(i1, .., im+1)

We(i1, .., im+1)Qo(i1, .., im)

)
δQo(i1,..,im),

∑b
im+1=1 Qe(i1,..,im+1)

e

−
T

2

M−1∑
m=1

b∑
i1=1

...

b∑
im=1

 b∑
im+1=1

Qo(i1, .., im+1) ln

(
Qo(i1, .., im+1)

Wo(i1, .., im+1)Qe(i1, .., im)

)
δQe(i1,..,im),

∑b
im+1=1 Qo(i1,..,im+1)

which is thus very similar to Eq. 51 with the additional decomposition into even and odd contributions.
Equivalently, the analog of the generating function of Eq. 52 of all the flows Qe(.) and Qo(.) of the tree

Zperiodic[νe(.), νo(.)] ≡

∑
Qe(.),Qo(.)

Pperiodic[Qe(.), Qo(.)] e

T

2

M∑
m=1

b∑
i1=1

...

b∑
im=1

(νe(i1, .., im)Qe(i1, .., im) + νo(i1, .., im)Qo(i1, .., im))

(61)

can be written in the following form generalizing Eq. 53, assuming that M is even for definiteness

Zperiodic[νe(.), νo(.)] = b∑
i1=1

We(i1)eνe(i1)
b∑

i2=1

Wo(i1i2)eνo(i1i2)...

b∑
iM−1=1

We(i1...iM−1)eνe(i1...iM−1)
b∑

iM=1

Wo(i1...iM )eνo(i1...iM )

T
2 N

ext
e (0)

 b∑
i1=1

Wo(i1)eνo(i1)
b∑

i2=1

We(i1i2)eνe(i1i2)...

b∑
iM−1=1

Wo(i1...iM−1)eνo(i1...iM−1)
b∑

iM=1

We(i1...iM )eνe(i1...iM )

T
2 N

ext
o (0)

(62)

V. APPLICATION TO CONTINUOUS TIME MARKOVIAN CASCADES ON TREES

As a comparison to the discrete-time cascade model analyzed in the previous section, it is now interesting to consider
the analogous continuous-time cascade model.

A. Open Markov dynamics in continuous time on the tree

We consider the same tree structure as in IV A, but the directed dynamics from the root towards the leaves is now
defined in continuous time with transition rates wt((i1, .., im), (i1, .., im−1)) ≡ wt(i1, .., im) per unit time as in section
III.
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B. Probability of an empirical history of the occupation numbers Nt(.) and flows qt(., .)

The application of Eq. 43 to the directed dynamics on the tree yields that the probability to observe the empirical
occupation numbers N0≤t≤T (.) and the empirical flows q0≤t≤T (., .) reads

P[N0≤t≤T (.); q0≤t≤T (., .)|N0(.)] = e

−

∫ T

0

dt

b∑
i1=1

[
qt(i1) ln

(
qt(i1)

wt(i1)Next
t (0)

)
− qt(i1) + wt(i1)Next

t (0)

]

e

−

∫ T

0

dt

M∑
m=2

b∑
i1=1

...

b∑
im=1

[
qt(i1, .., im) ln

(
qt(i1, .., im)

wt(i1, .., im)Nt(i1, ..., im−1)

)
− qt(i1, .., im) + wt(i1, .., im)Nt(i1, ..., im−1)

]
(63)

provided the empirical dynamics of Eq. 42 is satisfied on the time interval t ∈ [0, T ] for all sites (i1, .., im) of generations
1 ≤ m ≤M − 1 of the system

dNt(i1, .., im)

dt
= qt(i1, .., im)−

b∑
im+1=1

qt(i1, .., im+1) (64)

C. Application to time-independent dynamics during a large time interval T → +∞

1. Large deviations for occupations and flows

When the dynamics corresponds to time-independent transition rates wt(.) = w(.) and time-independent reservoir
occupation number at the root Next

t (0) = Next(0), Eq. 63 and 64 yield that the probability to observe some stationary
occupation numbers Nt(.) = N(.) and flows per unit time qt(.) = q(., .) during a large time interval T → +∞ follows
the large deviation form with respect to T

Pstatio[N(.); q(., .)] = e

−T

b∑
i1=1

[
q(i1) ln

(
q(i1)

w(i1)Next(0)

)
− q(i1) + w(i1)Next(0)

]

e

−T

M∑
m=2

b∑
i1=1

...

b∑
im=1

[
q(i1, .., im) ln

(
q(i1, .., im)

w(i1, .., im)N(i1, ..., im−1)

)
− q(i1, .., im) + w(i1, .., im)N(i1, ..., im−1)

]
M−1∏
m=1

b∏
i1=1

...

b∏
im=1

δ

q(i1, .., im)−
b∑

im+1=1

q(i1, .., im+1)

 (65)

If instead of the extensive flows per unit time q(.) one wishes to consider the empirical transition rates

k(i1) =
q(i1)

Next(0)

k(i1, .., im+1) ≡ q(i1, .., im+1)

N(i1, .., im)
(66)

Eq. 65 translates into the large deviation form

Pstatio[N(.); k(., .)] = e

−TNext(0)

b∑
i1=1

[
k(i1) ln

(
k(i1)

w(i1)

)
− k(i1) + w(i1)

]

e

−T

M∑
m=2

b∑
i1=1

...

b∑
im=1

N(i1, ..., im−1)

[
k(i1, .., im) ln

(
k(i1, .., im)

w(i1, .., im)

)
− k(i1, .., im) + w(i1, .., im)

]
M−1∏
m=1

b∏
i1=1

...

b∏
im=1

δ

k(i1, .., im)N(i1, ..., im−1)−
b∑

im+1=1

k(i1, .., im+1)N(i1, ..., im)

 (67)

but since the empirical dynamics constraints of the last line involve both N(.) and k(.), it is more convenient to work
with Eq. 65 where the empirical dynamics constraints of the last line involve only the flows.
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2. Large deviations for the flows alone

To obtain the large deviation properties of the flows per unit time q(.) alone, one needs to optimize Eq. 65 over
the occupation numbers N(.) : plugging the optimal values

Nopt(i1, .., im−1) =

∑b
jm=1 q(i1, .., jm)∑b
jm=1 w(i1, .., jm)

(68)

into Eq. 65 yields that the probability to observe the stationary flows per unit time q(.) reads

Pstatio[q(., .)] = e

−T

b∑
i1=1

[
q(i1) ln

(
q(i1)

w(i1)Next(0)

)
− q(i1) + w(i1)Next(0)

]

e

−T

M∑
m=2

b∑
i1=1

...

b∑
im=1

[
q(i1, .., im) ln

(
q(i1, .., im)

∑b
jm=1 w(i1, .., jm)

w(i1, .., im)
∑b
jm=1 q(i1, .., jm)

)
− q(i1, .., im) + w(i1, .., im)

∑b
jm=1 q(i1, .., jm)∑b
jm=1 w(i1, .., jm)

]
M−1∏
m=1

b∏
i1=1

...

b∏
im=1

δ

q(i1, .., im)−
b∑

im+1=1

q(i1, .., im+1)

 (69)

3. Large deviations for the occupations alone

To obtain the large deviation properties of the occupation numbers N(.) alone, one needs to optimize Eq. 65 over
the flows q(.) : the iterative optimization starting from the last generation yields that the probability to observe the
stationary occupations numbers N(.) takes the following form

Pstatio[N(.)] = e

−T

[
M∑
m=1

b∑
i1=1

...

b∑
im=1

λi1,...,im −M
b∑

i1=1

c(i1)

]
(70)

in terms of the typical flows associated to the occupation numbers N(.)

λi1,...,im ≡ N(i1, ..., im−1)w(i1, .., im) (71)

and of the numbers c(i1) that should be computed by the following recurrence starting at the last generation m = M

ci1,...,iM ≡ λi1,...,iM

ci1,...,iM−1
≡

[
λi1,...,iM−1

(
b∑

iM=1

ci1,...,iM

)] 1
2

ci1,...,iM−2
≡

λi1,...,iM−2

 b∑
iM−1=1

ci1,...,iM−1

2


1
3

..................... ..................................................................................

ci1,i2 ≡

λi1,i2
(

b∑
i3=1

ci1,i2,i3

)M−2


1
M−1

ci1 ≡

λi1
(

b∑
i2=1

ci1,i2

)M−1


1
M

(72)

Note that the typical occupation numbers

N typ(i1, ..., im) = Next(0)

(
wi1∑
j2
wi1,j2

)(
wi1∑
j2
wi1,j2

)
...

(
wi1,...,im∑

jm+1
wi1,...,jm+1

)
(73)
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where the large deviation rate function of Eq. 70 vanishes, corresponds to the case where the associated λtypi1,...,im of
Eq. 71 satisfy the sum rules ∑

im

λtypi1,...,im = λtypi1,...,im−1
(74)

so that the corresponding numbers ctyp(i1, .., im) of the recurrence of Eq. 72 then coincide with the λtyp(i1, .., im).
For non-typical occupation numbers N(.) 6= N typ(.), the rate function of Eq. 70 is not completely explicit in terms of
the N(.) since one should first solve the recurrence of Eq 72 on the tree.

D. Special case b = 1 for the one-dimensional random directed model between a source and a sink

For the special case of branching ratio b = 1, the tree reduces to the one-dimensional lattice of (M−1) sites labelled
by the generation m = 1, 2, ..,M − 1 [instead of the previous tree notation (i1 = 1, i2 = 1, .., im = 1)] characterized
by occupation numbers N(m) and incoming flow q(m,m − 1) between the ’source reservoir’ at m = 0 and the ’sink
reservoir’ at m = M . The constraints of the empirical dynamics written on the last line of Eq. 65 impose that all
these flow takes the same value j

j = q(1, 0) = q(2, 1) = .. = q(M,M − 1) = j (75)

So Eq. 65 yields that the probability to observe some stationary occupation numbers N(.) and the current j follows
the large deviation form with respect to T

Pstatio[N(.); j] = e
−T

[
j ln

(
j

w(1, 0)Next(0)

)
− j + w(1, 0)Next(0)

]

e

−T

M−1∑
m=1

[
j ln

(
j

w(m+ 1,m)N(m)

)
− j + w(m+ 1,m)N(m)

]
(76)

that can be compared with the rate function of Eq (36) in Ref. [42] concerning the rate function of the same directed
one-dimensional model defined on a ring geometry that conserves the number of particles, with the correspondence
w(m+ 1,m) = 1

τm
with the random trapping times τm used in Ref. [42] .

The optimization of Eq. 76 with respect to the occupation numbers N(.) yields

Nopt(m) =
j

w(m+ 1,m)
(77)

so that the probability of the current j alone is reduced to the first term involving the source

Pstatio[j] = e
−T

[
j ln

(
j

w(1, 0)Next(0)

)
− j + w(1, 0)Next(0)

]
(78)

and is thus completely different from the corresponding result for the ring geometry [42] where the conservation of
the total number of particles requires the introduction of a Lagrange multiplier in the optimization.

The optimization of Eq. 76 with respect to the current j yields

jopt =

(
w(1, 0)Next(0)

M−1∏
m=1

w(m+ 1,m)N(m)

) 1
M

(79)

so that the probability of the occupation numbers N(.)

Pstatio[N(.)] = e

−T

w(1, 0)Next(0) +

M−1∑
m=1

w(m+ 1,m)N(m)−M

(
w(1, 0)Next(0)

M−1∏
m=1

w(m+ 1,m)N(m)

) 1
M


(80)

is very similar to the result found for ring geometry [42].
More details on the large deviation properties of the random trap model on the ring can be found in Refs [42, 43]

(see also [11] where it is called the ’random watch’ model), since here our purpose was only to stress the differences
induced by the presence of reservoirs.
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VI. CONCLUSION

In this paper, we have extended the large deviations at ’Level 2.5 in time’ for time-dependent ensemble-empirical-
observables, introduced in Ref [7] for the case of a fixed number N of independent Markov jump processes, to the
case of open Markov processes with reservoirs : we have derived explicit formulas for the joint probability of empirical
occupation numbers and empirical flows, both for discrete-time dynamics and for continuous-time jump dynamics,
with possibly time-dependent dynamical rules and/or time-dependent driving of the reservoirs. We have then applied
this general formalism to random cascades on trees, where particles are injected at the root via a ’source reservoir’,
while the particles are removed at the leaves of the last generation of the tree via ’sink reservoirs’, again both for
discrete-time dynamics and for continuous-time jump dynamics. Finally, we have also mentioned the results for the
one-dimensional trap model between a source and a sink, in order to compare with the large deviations obtained for
the same model defined on a ring geometry where the total number of particles is conserved [42]. In the future, it
would be thus interesting to apply this general formalism to other interesting open Markov processes.

As a final remark, let us mention that the present approach has been generalized further to the presence of inter-
actions in the recent preprint [44].

Appendix A: Reminder on the ’Level 2.5’ for the time-empirical-observables of a single Markov process

In this Appendix, we briefly recall the Large deviations ’at Level 2.5’ for the time-empirical-observables of a single
Markov chain and a single Markov jump process respectively, in order to make comparisons with equations of the
text.

1. Case of a single Markov Chain [2–4]

The probability Pt(x) to be in configuration x at time t evolves according to the discrete-time Markov Chain

Pt+1(x) =
∑
y

W (x, y)Pt(y) (A1)

where the transition probabilities W (x, y) ≥ 0 from y to x satisfy the normalization for each y∑
x

W (x, y) = 1 (A2)

If one starts at time t = 0 with some initial distribution state Pt=0(x0), the probability of the whole trajectory
(x0, x1, x2, .., xT )

P[x0≤t≤T ] = W (xT , xT−1)....W (x2, x1)W (x1, x0)P0(x0) = e

T∑
t=1

lnW (xt, xt−1)

P0(x0) (A3)

can be rewritten in terms of the time-empirical flows

Qte(y, x) ≡ 1

T

T−1∑
t=0

δx(t+1),yδx(t),x (A4)

as

P[x0≤t≤T ] = e

T
∑
x

∑
y

Qte(x, y) lnW (x, y)

P0(x0) (A5)

From Qte(y, x) introduced in Eq. A4, the time-empirical density ρte(x) can be reconstructed via the sum over the
final point y

ρte(x) ≡ 1

T

T−1∑
t=0

δx(t),x =
∑
y

Qte(y, x) (A6)
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or via the sum over the initial point x, up to boundary terms that become negligible in the limit of large time T → +∞

∑
x

Qte(y, x) =
1

T

T−1∑
t=0

δx(t+1),y = ρte(y) +
δx(T ),y − δx(0),y

T
(A7)

Here the ’Level 2.5’ statement [2–4] is that the probability to observe the time-empirical flows Qte(., .) follows the
Large Deviation Form with respect to the large time T → +∞

PT [Qte(., .)] ∝
T→+∞

e

−T
∑
x

∑
y

Qte(y, x) ln

(
Qte(y, x)

W (y, x)ρte(x)

)
(A8)

where Qte(x, y) satisfies the stationarity constraint in relation with the time-empirical density ρte(x)∑
y

Qte(x, y) =
∑
y

Qte(y, x) = ρte(x) (A9)

Eq. A8 can be translated for the empirical transition probabilities

Kte(y, x) =
Qte(y, x)

ρte(x)
(A10)

into

PT [Kte(., .)] ∝
T→+∞

e

−T
∑
x

∑
y

Kte(y, x)ρte(x) ln

(
Kte(y, x)

W (y, x)

)
(A11)

where Eq. A9 yields the constraints ∑
y

Kte(y, x) = 1

∑
y

Kte(x, y)ρte(y) = ρte(x) (A12)

2. Case of a single Markov Jump process [3, 5–11]

The probability Pt(x) to be in configuration x at time t evolves according to the continuous-time Master Equation

∂tPt(x) =
∑
y 6=x

w(x, y)Pt(y)−
∑
y 6=x

w(y, x)Pt(x) (A13)

The probability of the whole trajectory (xt)0≤t≤T

P ([x(t)]0≤t≤T ) = e

∑
t:x(t−)6=x(t+)

lnw(x(t+), x(t−))−
∫ T

0

dt
∑
y 6=x

w(y, x(t))

P0(x0) (A14)

can be rewritten in terms of the time-empirical density

ρte(x) ≡ 1

T

∫ T

0

dtδx(t),x (A15)

and of the time-empirical jump density

qte(y, x) ≡ 1

T

∑
t:x(t)6=x(t+)

δx(t+),yδx(t),x (A16)
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as

P ([x(t)]0≤t≤T ) = e

T
∑
x

∑
y 6=x

[
qte(y, x) lnw(y, x)− w(y, x)ρte(x)

]
P0(x0) (A17)

Here the ’Level 2.5’ statement [3, 5–11] is that the probability to observe the time-empirical density ρte(.) and the
time-empirical jump density qte(., .) follows the Large Deviation form with respect to the large time T → +∞

PT [ρ(.); q(., .)] ∝
T→+∞

e

−T
∑
x

∑
y 6=x

[
qte(y, x) ln

(
qte(y, x)

w(y, x)ρte(x)

)
− qte(y, x) + w(y, x)ρte(x)

]
(A18)

where qte(y, x) should satisfy the stationarity constraint∑
y 6=x

qte(y, x) =
∑
y 6=x

qte(x, y) (A19)

In terms of the time-empirical transition rates

kte(y, x) =
qte(y, x)

ρte(x)
(A20)

Eq. A18 can be translated into

PT [ρ(.); k(., .)] ∝
T→+∞

e

−T
∑
x

∑
y 6=x

[
kte(y, x) ln

(
kte(y, x)

w(y, x)

)
− kte(y, x) + w(y, x)

]
ρte(x)

(A21)

where the stationarity constraint of Eq. A19 becomes∑
y 6=x

kte(y, x)ρte(x) =
∑
y 6=x

kte(x, y)ρte(y) (A22)
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