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microscopic Fluctuation Theory (mFT) for interacting Poisson processes

Cécile Monthus
Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France

While the Macroscopic Fluctuation Theory (MFT) is a renormalized theory in the hydrodynamic
limit based on a space-time local Lagrangian that is Gaussian with respect to the empirical current,
C. Maes, K. Netocny and B. Wynants [Markov Proc. Rel. Fields. 14, 445 (2008)] have derived a
microscopic Fluctuation Theory (mFT) for independent Markov jump processes based on a space-
time local Lagrangian that is Poissonian with respect to the empirical flow, in direct relation with
the general theory of large deviations at ’Level 2.5’ for Markovian processes. Here we describe how
this approach can be generalized to the presence of interactions, that can be either zero-range or
involve neighbors, either for closed systems or for open systems with reservoirs.

I. INTRODUCTION

Among the various approaches to describe non-equilibrium stochastic processes, the idea that one should character-
ize the probabilities of dynamical trajectories via the theory of large deviations (see the reviews [1–3] and references
therein) has been emphasized in various frameworks (see the reviews [4–9] and the PhD Theses [10–14] or HDR Thesis
masterpiece [15]). For many-particles dynamics that are local in space and time, the aim has been then to write the
action for dynamical trajectories as an integral over space and time of an elementary space-time local Lagrangian
involving the local densities and flows of the conserved quantities. This goal has been achieved on two different levels
(macroscopic and microscopic) with different perspectives as we now recall.

A. Macroscopic Fluctuation Theory (MFT) for interacting driven diffusive systems

The Macroscopic Fluctuation Theory (see the review [16] and references therein) is a renormalized theory in the
hydrodynamic limit where the measure over space-time trajectories is written as∫

Cx,t

Dρ(x, t)Dj(x, t)e−
∫
dt
∫
dxLGauss[ρ(x,t),j(x,t)] (1)

The integral is over the empirical density ρ(x, t) and the empirical current j(x, t) that are related by the constraint
Cx,t of the empirical continuity equation for all x and t

Cx,t : ∂tρ(x, t) +∇.j(x, t) = 0 (2)

The Lagrangian that is local in space and time follows the Gaussian form with respect to the empirical current j

LGauss[ρ, j] = [j − J(ρ)]χ−1(ρ)[j − J(ρ)] (3)

where the hydrodynamic current J(ρ) contains a diffusive term with some diffusion coefficient D(ρ) and a linear
response term to the external field E(x, t) that involves the mobility χ(ρ)

J(ρ) = −D(ρ)∇ρ+ χ(ρ)E (4)

So the empirical density ρ appears in the diffusion coefficient D(ρ) and in the mobility χ(ρ) that represent the
constitutive properties of the system. The interactions between particles is encoded in the density-dependence of
D(ρ) and χ(ρ) as explained in detail in [16] with various examples of microscopic lattice models including exclusion
processes and zero-range processes.

B. microscopic Fluctuation Theory (mFT) for independent Markov Jump processes

Since the standard classification of Large Deviations (see the reviews [1–3] and references therein) involves three
Levels, with Level 1 for empirical observables, Level 2 for the empirical density, and Level 3 for the empirical process,
the new name ’Level 2.5’ has been introduced later as an intermediate level between Levels 2 and 3, in order to
refer to the joint properties of the empirical density and of the empirical flows. For a single Markov process, these
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large deviations at ’Level 2.5’ for the joint distribution of the time-empirical-densities and the time-empirical-flows
have been written in terms of explicit local-in-space rate functionals within various frameworks, namely for discrete-
time and discrete-space Markov chains [3, 17, 18], for continuous-time and discrete-space Markov jump processes
[12, 17, 19–22] and for continuous-time and continuous-space diffusion processes [12, 22, 25, 26]. This ’Level 2.5’
formulation allows to reconstruct any time-additive observable of the dynamical trajectory via its decomposition in
terms of the empirical densities and of the empirical flows, and is thus closely related to the studies focusing on the
generating functions of time-additive observables via deformed Markov operators that have attracted a lot of interest
recently in various models [4, 8, 9, 27–37].

In Ref [21], this ’Level 2.5’ for the joint distribution of the time-empirical-densities and the time-empirical-flows
for a single Markov jump process has been extended to ’Level 2.5 in time’ for the joint distribution of the ensemble-
empirical-occupations Nt(x) and the ensemble-empirical-flows qt(y, x) for a large number of independent Markov jump
processes involving the transitions rates wt(y, x) from site x to site y at time t. The output is the following measure
on dynamical trajectories ∫

Cx,t

DNt(x)Dqt(y, x)e−
∫
dt
∑
x

∑
y 6=x L

Poisson[Nt(.),qt(y,x)] (5)

where we have slightly adapted the notations of Ref [21] in order to make more obvious the comparison with the
Macroscopic Fluctuation Theory described above. The constraint Cx,t is the empirical dynamics that relates the
empirical occupation numbers Nt(.) and the empirical flows qt[., .]

Cx,t :
dNt(x)

dt
+
∑
y 6=x

(qt(y, x)− qt(x, y)) = 0 (6)

This constraint thus represents the direct discrete-space analog of the continuity Eq. 2. The space-time local La-
grangian follows the Poissonian form for the positive flows qt(y, x) ≥ 0 (instead of the Gaussian form with respect to
the empirical current of Eq. 3)

LPoisson[Nt(.), qt(y, x)] = qt(y, x) ln

(
qt(y, x)

Qt[y, x;Nt(.)]

)
− qt(y, x) +Qt[y, x;Nt(.)] (7)

Here Qt[y, x;Nt(.)] is the typical flow that the empirical occupations N(.) are expected to produce, i.e. the Lagrangian
LPoisson[Nt(.), qt(y, x)] vanishes if the empirical flow qt(y, x) takes this value Qt[y, x;Nt(.)]. So the typical flow
Qt[y, x;Nt(.)] is the analog of the hydrodynamic current J(ρ) of Eq. 4 within the Macroscopic Fluctuation Theory,
and represents the constitutive properties of the dynamics under study. In particular, for independent particles that
jump with some rates wt(y, x), the typical flow Qt[y, x;Nt(.)] is simply the product of this rate wt(y, x) and of the
empirical number Nt(x) of independent particles that are present on site x at time t

Qindept [y, x;Nt(.)] = wt(y, x)Nt(x) (8)

This approach introduced in Ref [21] for closed systems with a fixed number of independent Markov processes has
been recently generalized to the case of open systems that can exchange particles with reservoirs [38]. Finally, the link
with the so-called ’GENERIC’ approach for non-equilibrium can be found in Refs [39, 40] but is outside the scope of
the present work.

C. Goal of the present paper : microscopic Fluctuation Theory (mFT) for interacting Poisson processes

In the present paper, the goal is to generalize the microscopic Fluctuation Theory just described (with or without
reservoirs) to the presence of interactions between the Markov Jump processes. The particles will interact in the
sense that the constitutive typical flow Qt[y, x;Nt(.)] from x to y at time t produced by the occupation N(.) will be
different from the independent case of Eq. 8

Qt[y, x;Nt(.)] 6= Qindept [y, x;Nt(.)] = wt(y, x)Nt(x) (9)

The simplest possible local interactions can be classified as follows :
(i) for Zero-Range Interactions, Qt[y, x;Nt(.)] only involves the occupation Nt(x) of the initial site x of the jump

QZRt [y, x;Nt(.)] = Qt[y, x;Nt(x)] (10)
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The non-equilibrium properties of Zero-Range processes have attracted a lot of interest for the past fifty years (see
the reviews [41, 42] and references therein), including recent works [43–47] on the open version with reservoirs at the
boundaries. For instance, Eq. 10 can follow a simple power-law with respect to the occupation Nt(x)

QZRt [y, x;Nt(.)] = λ(x)[Nt(x)]g (11)

With respect to the independent case of Eq. 8 that is linear with respect to Nt(x), the cases g > 1 represent the
systems where particles help each other to jump, while the cases 0 ≤ g < 1 represents the systems where particles
hinder each other.

(ii) the next simplest case is when Qt[y, x;Nt(.)] only involves the occupations Nt(x) and Nt(y) of the initial site x
and of the final site y of the jump

QIFt [y, x;Nt(.)] = Qt[y, x;Nt(y);Nt(x)] (12)

(iii) finally, the most general nearest-neighbor-interaction case would be that Qt[y, x;Nt(.)] depends not only on
Nt(x) and Nt(y) but also on the occupations of the nearest-neighbors of x and y.

For these interacting microscopic models defined on the lattice, the goal is thus to write the large deviations at
level 2.5 for the empirical numbers of particles Nt(x) and the empirical flows qt(y, x) defined on the lattice, i.e.
before the spatial coarse-graining analysis that leads to the Macroscopic Macroscopic Fluctuation Theory (MFT)
based on the Gaussian Lagrangian in continuous space, as recalled in section I A. Indeed, already for the well-known
problem of the sum of a large number of random variables, the continuous limit is always the Brownian motion,
but this gaussian universal limit is only an expansion around the typical value, while all the informations on the
large deviation properties of the initial problem, that depend on the details of the initial distribution, have been
lost in this continuous limit [3]. Similarly for the case of independent Markov processes recalled in section I B, the
Large deviations at level 2.5 have very different properties in discrete space (where the Poisson statistics of the jumps
plays an essential role) and in continuous space (where the Gaussian form for the empirical current j is the only
possibility), as stressed in particular in [48] on the example of the behavior at large current. As a consequence, for
interacting microscopic models defined on the lattice, it is natural to expect that some large deviation properties are
not contained in the coarse-grained Gaussian Macroscopic Macroscopic Fluctuation Theory (MFT), but will require
the large deviations at level 2.5 for the empirical observables defined on the lattice.

D. Organization of the paper

The paper is organized as follows. For interacting Poisson processes, the measure over dynamical trajectories is
written in terms of occupation Nt(.) and flows qt(., .) in section II, and in terms of occupation Nt(.) and currents
jt(., .) in section III. The simplest possible application concerning directed one-dimensional interacting models between
two reservoirs in described in section IV. The generalization to other types of interacting Poisson processes is briefly
discussed in section V. Our conclusions are summarized in VI.

II. LAGRANGIAN IN TERMS OF OCCUPATION Nt(.) AND FLOWS qt(., .)

A. Statistics of the elementary flow qt(y, x) from x to y at time t

The probability of the elementary empirical flow qt(y, x) from x to y at time t that describes the fluctuations around
the constitutive typical value Qt[y, x;Nt(.)] produced by the occupation N(.), involves some elementary Lagrangian
LQt[y,x;Nt(.)] [qt(y, x)]

P [qt(y, x)] ∝ e−dtLQt[y,x;Nt(.)][qt(y,x)] (13)

For a Poisson process, the increment qt(y, x)dt is one with probability Qt[y, x;Nt(.)]dt and zero with probability
(1−Qt[y, x;Nt(.)]dt), so the generation function of parameter ν of this increment qt(y, x)dt reads

< eνqt(y,x)dt > = eνQt[y, x;Nt(.)]dt+ (1−Qt[y, x;Nt(.)]dt) = e(e
ν−1)Qt[y,x;Nt(.)]dt (14)

In terms of the probability of Eq. 13, the generating function of Eq. 14 corresponds to the integral

< eνqt(y,x)dt > =

∫
dqt(y, x)P [qt(y, x)] eνqt(y,x)dt =

∫
dqt(y, x)edt[νqt(y,x)−LQt[y,x;Nt(.)][qt(y,x)]] (15)
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The saddle-point evaluation yields that the result for the generating function of Eq. 14 is the Legendre transform of
LQt[y,x;Nt(.)] [qt(y, x)], i.e. with simplified notations

νq − LQ(q) = (eν − 1)Q

∂q (νq − LQ(q)) = 0 (16)

The inversion of this Legendre transform

LQ(q) = νq − (eν − 1)Q

0 = ∂ν (νq − (eν − 1)Q) = q − eνQ (17)

yields ν(q) = ln q
Q and

LQ(q) = q ln

(
q

Q

)
− q +Q (18)

corresponding to the Poissonian form mentioned in Eq. 7 of the introduction.
We should now discuss the validity of this calculation. While Eq. 14 for the generating function can be considered as

the definition of a Poisson process, the result of Eq. 18 for the Lagrangian is obtained via the saddle-point evaluation
of the integral of Eq. 15, which is expected to be a good approximation for sufficiently large Qt[y, x;Nt(.)]. As a
consequence, it is useful to rewrite the Lagrangian of Eq. 18 as

LQ(q) = QI

(
q

Q

)
I(a) = a ln a− a+ 1 (19)

in order to make the link with large deviations language [1–3] : Q is then the large parameter, while I(a) is the rate
function that describes the large deviations of the flow q with respect to its typical value Q. The validity of this
condition can be thus summarized as follows :

(a) for the case of independent particles where the typical flow Qindept [y, x;Nt(.)] of Eq. 8 is proportinal to the
number Nt(x) of particles at position x at time t, this means that the numbers Nt(x) of particles on all sites x at all
times t should remain large enough in order to ensure the validity of the saddle-point evaluation described above, as
already stressed in [21, 38].

(b) for the case of interacting particles, the condition is similarly that the typical flow Qdept [y, x;Nt(.)] of Eq. 9
should remain large when the number of particles on all sites x at all times t remain large. For instance, for the
Zero-Range Process with the power-law dependence of Eq. 11, all positive powers g > 0 correspond to a growth
of QZRt [y, x;Nt(.)] with respect to Nt(x) and are thus in the scope of the large deviation analysis above, while the
case g = 0 corresponding to a finite typical flow QZRt [y, x;Nt(.)] is excluded. Another important examples that are
excluded are of course the exclusion processes where the numbers of particles are limited to the two values Nt(x) = 0, 1

so that the typical flows Qdept [y, x;Nt(.)] remain finite and do not allow the saddle-point evaluation above.

B. Measure on dynamical trajectories during [0, T ] for closed systems

For a given initial condition Nt=0(x), the probability to observe an empirical dynamical trajectory on the time
interval [0, T ] corresponding to the empirical occupations N0≤t≤T (.) and to the empirical flows q0≤t≤T (., .) related by
the empirical dynamics Cx,t of Eq. 6 is obtained by summing the elementary contribution of Eq. 18 over the time
t ∈ [0, T ] and over all the links (y, x) of the system

∫
Cx,t

DNt(x)Dqt(y, x)e

−

∫ T

0

dt
∑
x

∑
y 6=x

[
qt[y, x] ln

(
qt[y, x]

Qt[y, x;Nt(.)]

)
− qt[y, x] +Qt[y, x;Nt(.)]

]
(20)

It is exactly the same expression as in Eq. 5 for independent particles, the only difference being in the behavior of the
constitutive typical flows Qt[y, x;Nt(.)] different from the independent case of Eq. 8 as explained in detail in section
I C.



5

C. Generalization to open systems exchanging particles with reservoirs

For independent particles, the generalization of the approach of [21] concerning closed systems to the case of open
systems in contact with external reservoirs has been described in detail in [38]. The formulation in the presence of
interactions is straightforward within the present framework and can be summarized as follows.

When particles can be exchanged between the system sites x = 1, 2, ..,Ω and external reservoirs r = 1, .., R, the
empirical dynamics of Eq. 6 becomes for sites x of the system

CRx,t :
dNt(x)

dt
+
∑
y 6=x

(qt(y, x)− qt(x, y)) +
∑
r

(qt(r, x)− qt(x, r)) = 0 (21)

while the occupations Nt(r) of reservoirs r = 1, .., R are not free dynamical variables but are external control param-
eters that can be chosen to be fixed in time Nt(r) = N(r) or to depend on time depending the cases that one wishes
to study (see more details and examples in [38]).

One then needs to take into account the Lagrangian contributions concerning the flows of particles between the
system and the reservoirs. Although other choices are of course possible, we will consider as in [38], that the elementary
incoming flow qt(y, r) from a given reservoir r to a given site y at time t is a Poisson process of constitutive typical

value Qincomingt [y, r;Nt(.)], so that the corresponding Lagrangian follows the same Poissonian form as Eq. 7

Lincoming[Nt(.), qt(y, r)] = qt(y, r) ln

(
qt(y, r)

Qincomingt [y, r;Nt(.)]

)
− qt(y, r) +Qincomingt [y, r;Nt(.)] (22)

Similarly, the elementary outgoing flow qt(r, x) from a given site x to a given reservoir r at time t will be assumed to

be a Poisson process of constitutive typical value Qoutgoingt [r, x;Nt(.)], with the corresponding Lagrangian

Loutgoing[Nt(.), qt(r, x)] = qt(r, x) ln

(
qt(r, x)

Qoutgoingt [r, x;Nt(.)]

)
− qt(r, x) +Qoutgoingt [r, x;Nt(.)] (23)

Then the measure of Eq. 20 for closed systems become for open systems

∫
CRx,t

DNt(x)Dqt(y, x) e

−

∫ T

0

dt
∑
x

∑
y 6=x

[
qt[y, x] ln

(
qt[y, x]

Qt[y, x;Nt(.)]

)
− qt[y, x] +Qt[y, x;Nt(.)]

]

e

−

∫ T

0

dt
∑
y

∑
r

[
qt(y, r) ln

(
qt(y, r)

Qincomingt [y, r;Nt(.)]

)
− qt(y, r) +Qincomingt [y, r;Nt(.)]

]

e

−

∫ T

0

dt
∑
x

∑
r

[
qt(r, x) ln

(
qt(r, x)

Qoutgoingt [r, x;Nt(.)]

)
− qt(r, x) +Qoutgoingt [r, x;Nt(.)]

]
(24)

So for each specific application, one can choose as one wishes the constitutive typical values Qt[y, x;Nt(.)] of the

bulk flows, the constitutive typical values Qincomingt [y, r;Nt(.)] of the incoming flows, and the constitutive typical

values Qoutgoingt [r, x;Nt(.)] of the outgoing flows, in order to describe the interactions one is interested in.

III. LAGRANGIAN IN TERMS OF OCCUPATION Nt(.) AND CURRENTS jt(., .)

A. Statistics of the elementary current jt(y, x) from x to y at time t

For a given pair of sites, one can choose some order x < y, and decide to replace the two flows qt(y, x) and qt(x, y)
in the two directions of this link by the antisymmetric and symmetric parts called respectively the current jt(y, x)
and the activity at(y, x) [21]

jt(y, x) = qt(y, x)− qt(x, y) = −jt(x, y)

at(y, x) = qt(y, x) + qt(x, y) = at(x, y) (25)
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When one is not interested in the activity at(y, x), one wishes to write the probability to observe the empirical
current jt(y, x) alone with some elementary Lagrangian LQt[y,x;Nt(.)],Qt[x,y;Nt(.) [jt(y, x)]

P [jt(y, x)] ∝ e−dtLQt[y,x;Nt(.)],Qt[x,y;Nt(.)[jt(y,x)] (26)

It is instructive to consider two methods to derive the form of this Lagrangian as we now describe.

1. Derivation via optimization over the activity [21]

With simplified notations, the Lagrangian for the two flows qt(y, x) = q+ and qt(x, y) = q− on the same link x < y
is simply the sum of the two Poissonian lagrangians of Eq. 18

LQ+,Q−(q+, q−) = LQ+
(q+) + LQ−(q−) = q+ ln

(
q+
Q+

)
− q+ +Q+ + q− ln

(
q−
Q−

)
− q− +Q− (27)

Via the change of variable into the current j and the activity a (Eq. 25), this Lagrangian becomes

LQ+,Q−(j, a) = LQ+
(q+ =

a+ j

2
) + LQ−(q− =

a− j
2

)

=
a+ j

2
ln

(
a+ j

2Q+

)
− a+ j

2
+Q+ +

a− j
2

ln

(
a− j
2Q−

)
− a− j

2
+Q−

=
a

2
ln

(
a2 − j2

4Q+Q−

)
+
j

2
ln

(
a+ j

a− j
× Q−
Q+

)
− a+Q+ +Q− (28)

The optimization with respect to the activity a

0 = ∂aLQ+,Q−(j, a) =
1

2
ln

(
a2 − j2

4Q+Q−

)
(29)

yields the optimal activity

aopt(j) =
√
j2 + 4Q+Q− (30)

that one plugs into Eq. 28 to obtain the Lagrangian of the current alone [21]

LQ+,Q−(j) = LQ+,Q−(j, aopt(j)) =
aopt(j)

2
ln

(
a2opt(j)− j2

4Q+Q−

)
+
j

2
ln

(
aopt(j) + j

aopt(j)− j
× Q−
Q+

)
− aopt(j) +Q+ +Q−

= j ln

(
j +

√
j2 + 4Q+Q−
2Q+

)
−
√
j2 + 4Q+Q− +Q+ +Q− (31)

2. Alternative derivation via generating functions

Another way to understand how the form of Eq. 31 appears consists in rewriting the generating function of the
two Poissonian flows qt(y, x) = q+ and qt(x, y) = q− (Eq 14)

< e[ν+q++ν−q−]dt > = e[(e
ν+−1)Q++(eν−−1)Q−]dt (32)

as a generating function for the current j and the activity a of Eq. 25

< e[ν+q++ν−q−]dt > =< e

[
ν+−ν−

2 j+
ν++ν−

2 a
]
dt
> (33)

In particular, the choice ν− = −ν+ yields that the generating function of the current j alone reads

< eνjdt > = e[(e
ν−1)Q++(e−ν−1)Q−]dt (34)
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In terms of the probability to observe the empirical current j of Eq. 26, the generating function of Eq. 34
corresponds to the integral

< eνjdt > =

∫
djedt[νj−LQ+,Q− (j)] (35)

The saddle-point evaluation yields that the the generating function of Eq. 34 is the Legendre transform of LQ+,Q−(j)

νj − LQ+,Q−(q) = (eν − 1)Q+ + (e−ν − 1)Q−

∂j
(
νj − LQ+,Q−(j)

)
= 0 (36)

The inversion of this Legendre transform

LQ+,Q−(j) = νj − (eν − 1)Q+ − (e−ν − 1)Q−

0 = ∂ν
(
νj − (eν − 1)Q+ − (e−ν − 1)Q−

)
= j − eνQ+ + e−νQ− (37)

yields

ν(j) = ln

(
j +

√
j2 + 4Q+Q−
2Q+

)
(38)

and

LQ+,Q−(j) = j ln

(
j +

√
j2 + 4Q+Q−
2Q+

)
−
√
j2 + 4Q+Q− +Q+ +Q− (39)

in agreement with Eq. 31.

3. Properties of the Lagrangian for the current

Returning to the complete notations, the probability of Eq. 26 to observe the empirical current jt(y, x) from x to
y at time t involves the Lagrangian

LQt[y,x;Nt(.)],Qt[x,y;Nt(.) [jt(y, x)] = jt(y, x) ln

(
jt(y, x) +

√
j2t (y, x) + 4Qt[y, x;Nt(.)]Qt[x, y;Nt(.)]

2Qt[y, x;Nt(.)]

)

−
√
j2t (y, x) + 4Qt[y, x;Nt(.)]Qt[x, y;Nt(.)] +Qt[y, x;Nt(.)] +Qt[x, y;Nt(.)](40)

which is thus very different from the Gaussian form of Eq. 1 of the macroscopic fluctuation theory in the hydrodynamic
limit. A detailed discussion of the Gaussian approximation for small fluctuations around typical values can be found
in [21].

An important property of the form of Eq. 40 is that the ratio of the probabilities to observe the current jt(y, x) and
to observe the opposite current (−jt(y, x)) simplifies into a linear term with respect to the current in the exponential

P [jt(y, x)]

P [−jt(y, x)]
∝ e−dtLQt[y,x;Nt(.)],Qt[x,y;Nt(.)[jt(y,x)]

e−dtLQt[y,x;Nt(.)],Qt[x,y;Nt(.)[−jt(y,x)]
= e

dtjt(y,x) ln
(
Qt[y,x;Nt(.)]
Qt[x,y;Nt(.)]

)
(41)

As discussed in detail in Ref. [21], this is an example of the Gallavotti-Cohen symmetry [4–9, 11] that can be
interpreted in terms of the entropy production that measures the irreversibility. The link with various decompositions
of entropy contributions can be also found in Ref. [21].

B. Measure on dynamical trajectories during [0, T ] for closed systems

The empirical dynamics Cx,t of Eq. 6 can be rewritten in terms of the currents jt(y, x) only

Cx,t :
dNt(x)

dt
+
∑
y 6=x

jt(y, x) = 0 (42)
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For a given initial condition Nt=0(x), the probability to observe an empirical dynamical trajectory on the time interval
[0, T ] corresponding to the empirical occupation numbers N0≤t≤T (.) and to the empirical currents j0≤t≤T (.) related
by the empirical dynamics of Eq. 42 is obtained by summing the elementary Lagrangian of Eq. 40 over the time
t ∈ [0, T ] and over the ordered links x < y of the system∫

Cx,t

DNt(x)Djt(y, x)e−A[N0≤t≤T (.);j0≤t≤T [.,.]] (43)

with the action

A[N0≤t≤T (.); j0≤t≤T (., .)] = −
∫ T

0

dt
∑
x<y

(
jt(y, x) ln

(
jt(y, x) +

√
j2t (y, x) + 4Qt[y, x;Nt(.)]Qt[x, y;Nt(.)]

2Qt[y, x;Nt(.)]

)

−
√
j2t (y, x) + 4Qt[y, x;Nt(.)]Qt[x, y;Nt(.)] +Qt[y, x;Nt(.)] +Qt[x, y;Nt(.)]

)
(44)

Again, the expression is the same as for independent particles [21], the only difference being in the behavior of the
constitutive typical flows Qt[y, x;Nt(.)] different from the independent case of Eq. 8 as discussed in section I C.

C. Measure on dynamical trajectories during [0, T ] for open systems with reservoirs

Since we have already described the measure for open systems in terms of the flows qt(y, x) in section II C, it seems
enough to say here that one just needs to add the contributions of the Lagrangians concerning the currents between
the systems sites x = 1, 2, ..Ω and the reservoirs r = 1, 2, .., R.

IV. APPLICATION TO OPEN ONE-DIMENSIONAL DIRECTED INTERACTING MODELS

The simplest geometry where the general framework described above can be applied is a one-dimensional lattice
of L sites between two reservoirs. A further simplification consists in considering the directed version of interacting
Poisson models, where the flows occur only in the forward direction and not in the backward direction.

A. Models and notations

In this section, we consider that the system contains L sites x = 1, 2, .., L between two reservoirs at r = 0 and
r = L + 1. As explained in section II C, the occupations Nt(x) for the system sites x = 1, 2, .., L are dynamical
variables, while the occupations Nt(r = 0) and Nt(r = L+ 1) of the reservoirs r = 0 and r = L+ 1 are two external
control parameters.

Inside the system, the dynamics is defined by the constitutive typical values Qt[x+ 1, x;Nt(.)] of the bulk flows for
x = 1, .., L − 1 that will be denoted by the simplified notation of the constitutive typical currents Jt[x,Nt(.)] (since
there is no backward flows)

Qt[x+ 1, x;Nt(.)] ≡ Jt[x,Nt(.)] (45)

The constitutive typical values for incoming flow from the reservoir r = 0 to the first site x = 1 of the system and
of the outgoing flow from the last site L of the system towards the reservoir r = L + 1 will be also denoted by the
simplified notations of constitutive typical currents

Qincomingt [1, 0;Nt(.)] ≡ Jt[0, Nt(.)]
Qoutgoingt [L+ 1, L;Nt(.)] ≡ Jt[L,Nt(.)] (46)

B. Measure on dynamical trajectories during [0, T ]

The empirical flows will be denoted with the simplified notation of currents as in Eq. 45 (since again there is no
backward flows)

qt(x+ 1, x) ≡ jt(x) (47)
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For x = 1, 2, .., L the empirical dynamics of Eq. 21 reads

CRx,t :
dNt(x)

dt
+ jt(x)− jt(x− 1) = 0 (48)

For a given initial condition Nt=0(x), the measure of Eq. 24 on empirical dynamical trajectory on the time interval
[0, T ] corresponding to the empirical occupation numbers N0≤t≤T (.) for x = 1, .., L and to the empirical currents
j0≤t≤T (.) related by the empirical dynamics CRx,t of Eq. 48 reads

∫
CRx,t

DNt(x)Djt(x) e

−

∫ T

0

dt

L∑
x=0

[
jt(x) ln

(
jt(x)

Jt[x;Nt(.)]

)
− jt(x) + Jt[x;Nt(.)]

]
(49)

C. Measure for stationary occupations and currents during [0, T ]

When the dynamical rules of Eqs 45 and 46 do not depend explicitly on the time t, it is natural [21, 38] to consider
the probability to observe some stationary occupations Nt(x) = N(x) and some stationary currents jt(x) = j(x)
during some time interval [0, T ]. The empirical dynamics of Eq. 48 then reduces to the constraint that the stationary
current j(x) should take the same value j on each bond

j(x− 1) = j(x) = j (50)

As a consequence, the dynamical measure of Eq. 49 then reduces to the stationary measure

[
L∏
x=1

∫ +∞

0

dN(x)

]∫ +∞

0

dj e

−T

L∑
x=0

[
j ln

(
j

J [x;N(.)]

)
− j + J [x;N(.)]

]
(51)

D. Statistics of stationary occupations N(.) alone

To obtain the measure for the stationary occupations N(.) alone, one needs to optimize the action of Eq. 51 over
the current j

0 =
∂

∂j

(
L∑
x=0

[
j ln

(
j

J [x;N(.)]

)
− j + J [x;N(.)]

])
= (L+ 1) ln j −

L∑
x=0

ln (J [x;N(.)]) (52)

Plugging the corresponding optimal current

jopt[N(.)] = e

1

L+ 1

L∑
x=0

ln (J [x;N(.)])

(53)

into Eq. 51 yields the stationary measure for the occupations N(.) alone

[
L∏
x=1

∫ +∞

0

dN(x)

]
e

−T


L∑
x=0

J [x;N(.)]− (L+ 1)e

1

L+ 1

L∑
x=0

ln (J [x;N(.)])


(54)

This result is thus the direct generalization of the analogous result obtained for independent particles [38] (see also [48]
for the corresponding case of a ring without reservoirs), the only difference being in the dependence on the constitutive
typical values J [x;N(.)] on the occupations N(.), as explained in section I C.
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E. Statistics of the stationary current j alone

To obtain the measure for the stationary current j alone, one needs to optimize the action of Eq. 51 over the
occupations N(y) of the system sites y = 1, 2, .., L

0 =
∂

∂N(y)

(
L∑
x=0

[
j ln

(
j

J [x;N(.)]

)
− j + J [x;N(.)]

])
=

L∑
x=0

(
1− j

J [x;N(.)]

)
∂J [x;N(.)]

∂N(y)
(55)

So here to go further, one needs to state what precise interactions are present in J [x;N(.)].

1. Case of zero-range interactions

As mentioned in section I C, the simplest interactions are the so-called zero-range interactions where the constitutive
typical value J [x;N(.)] only involves the occupation Nt(x) of the initial site x of the jump (Eq. 10)

JZR[x;N(.)] = J [x;N(x)] (56)

Then the optimization of Eq. 55 reduces to the single term

0 =

(
1− j

J [x;N(x)]

)
∂J [x;N(x)]

∂N(x)
(57)

and we are not interested in cases where J [x;N(x)] does not depend on N(x). For each site x = 1, 2, .., L of the
system, the optimal occupation Nopt(x) is thus determined by the equation

J [x;Nopt(x)] = j (58)

This means that the occupations Nopt(x) in the whole system x = 1, 2, .., L are able to adapt themselves in order to
make J [x;Nopt(x)] coincide with the current j. As a consequence, the only remaining contribution in the Lagrangian
of Eq. 51 comes from the single link between the reservoir r = 0 and the site x = 1 of the system, i.e. the measure for
the current j alone only involves the Poisson Lagrangian with respect to the external incoming constitutive typical
current J [0;N(.)] from the reservoir r = 0

∫ +∞

0

dje
−T

[
j ln

(
j

J [0;N(.)]

)
− j + J [0;N(.)]

]
(59)

For instance, the case of the power-law dependence of Eq. 11

J [x,N(x)] = λ(x)[N(x)]g (60)

would corresponds to the optimal occupations (Eq 58)

Nopt(x) =

(
j

λ(x)

) 1
g

(61)

2. Case where J [x;N(.)] depends on the occupations of the initial site and the final site

As mentioned in I C, the next simplest case is when the constitutive typical value J [x;N(.)] only involves the
occupations N(x) and N(x+ 1) of the initial site x and of the final site (x+ 1) of the jump (Eq. 12)

JIFt [x;Nt(.)] = J [x;N(x+ 1);N(x)] (62)

Then the optimization of Eq. 55 reduces to two terms

0 =

(
1− j

J [x;N(x);N(x− 1)]

)
∂J [x;N(x);N(x− 1)]

∂N(x)
+

(
1− j

J [x;N(x+ 1);N(x)]

)
∂J [x;N(x+ 1);N(x)]

∂N(x)
(63)

that involves the three consecutive occupations N(x − 1), N(x) and N(x + 1). So here the occupation N(x) of the
system sites x = 1, 2, .., L will generically not be able to adapt themselves in order to make J [x;Nopt(x+ 1);Nopt(x)]
coincide with the current j. As a consequence, the Lagrangian of Eq. 51 will have contributions from the whole
system x = 1, 2, .., L in contrast to the zero-range case discussed above (Eq. 59).
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V. GENERALIZATION TO OTHER INTERACTING POISSON PROCESSES

In this paper, we have considered that
(i) the occupations Nt(x) were integer numbers of particles
(ii) each effective elementary transfer involved a single particle

Nt(x)→ Nt(x)− 1

Nt(y)→ Nt(y) + 1 (64)

even if particles interact via the constitutive typical flowQt[y, x;Nt(.)] from x to y at time t produced by the occupation
N(.) that was assumed to be different (Eq. 9) from the independent case of Eq. 8.

In this section, we briefly mention some possible generalizations within the Poissonian framework.

A. Allowing the joint-transfer of several particles

Here we keep the assumption (i) that the occupations Nt(x) are integer numbers of particles, but we allow the
joint-transfer of n = 1, 2, ..Nt(x) particles instead of a single one n = 1 (Eq 64)

Nt(x)→ Nt(x)− n
Nt(y)→ Nt(y) + n (65)

that will take place with the constitutive typical flow Qt[y, x;Nt(.);n] that now also depends on the number n of
particles that jump together. This case can be considered as a special quantized version of the next more relevant
case involving continuous variables.

B. Case where the conserved quantity is a continuous variable like the energy

Here, the occupation Nt(x) that were integer are replaced by continuous variables Et(x) that will be called energies.
The energy transfer ω from x to y at time t is then also a continuous variable ω ≥ 0

Et(x)→ Et(x)− ω
Et(y)→ Et(y) + ω (66)

and this transfer will take places with some constitutive typical flow Qt[y, x;Et(.);ω]. This means that the generating
function of Eq 14 is replaced by

< eνqt[y,x]dt > = edt
∫+∞
0

dωQt[y,x;Et(.);ω](e
νω−1) (67)

The Legendre transformation of Eq 16 becomes with simplified notations

νq − L(q) =

∫ +∞

0

dωQ[ω] (eνω − 1)

∂q (νq − L(q)) = 0 (68)

so that the inversion of Eq. 17 is replaced by

L(q) = νq −
∫ +∞

0

dωQ[ω] (eνω − 1)

0 = ∂ν

(
νq −

∫ +∞

0

dωQ[ω] (eνω − 1)

)
= q −

∫ +∞

0

dωQ[ω]ωeνω (69)

So depending on the choice of Qt[y, x;Et(.);ω], it will be possible to compute explicitly ν(q) and the Lagrangian L(q),
or it will not be possible to go beyond the parametric form of Eq. 69. Further work is needed to identify physical
interesting models where the Lagrangian L(q) is explicit.
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VI. CONCLUSIONS

In this paper, we have explained how the microscopic Fluctuation Theory (mFT) introduced in Ref. [21] for a closed
system of independent Markov jump processes and recently extended to the case of open systems with reservoirs [38]
could be further generalized to the presence of interactions that could be either zero-range or involve more neighbors.
We have described the space-time local Lagrangian either in terms of the flows or in terms of the currents. For the
directed version of one-dimensional interacting models between two reservoirs, we have discussed the consequences and
compare with the analogous results obtained previously for independent particles. Finally, we have briefly mentioned
how this approach could be generalized to other types of interacting Poisson processes involving continuous variables
like the energies, instead of integer numbers of particles.
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