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Introduction

Describing the relationship between a given weather or climate event and anthropogenic climate change is a growing area of activity in the field of climate science (National Academies of Sciences and Medicine 2016). Since the pioneering studies of [START_REF] Allen | Liability for climate change[END_REF][START_REF] Stott | Human contribution to the european heatwave of 2003[END_REF]), the concept of event attribution has been applied to a wide variety of events, as synthesized in the annual special issues of BAMS "Explaining extreme events in a climate perspective" (Peterson et al. 2012, and subsequent issues1 ).

Multiple approaches have been introduced to address this question. Beyond issues related to the definition of the event of interest, the most commonly used approach is probabilistic, and involves a comparison of the distributions of extreme events in the factual vs counterfactual worlds [START_REF] Stott | Human contribution to the european heatwave of 2003[END_REF]Pall et al. 2011, e.g.,). Particular attention is paid to changes in probability of the event associated with human influence. Various alternatives have been proposed in the literature; one of these involves focusing on the thermodynamic component of human influence [START_REF] Trenberth | Attribution of climate extreme events[END_REF]Cattiaux et al. 2010, e.g.,). However, this study will focus on the probabilistic approach and its statistical implementation, i.e. how estimating changes in occurrence frequency and the corresponding uncertainty.

At least two methods are commonly used to derive such probabilities.

First, large ensembles of simulations are used to sample the factual and counter-factual statistical distributions (Pall et al. 2011;[START_REF] Massey | weather@ homedevelopment and validation of a very large ensemble modelling system for probabilistic event attribution[END_REF][START_REF] Christidis | A new hadgem3-a-based system for attribution of weather-and climate-related extreme events[END_REF][START_REF] Ciavarella | Upgrade of the hadgem3-a based attribution system to high resolution and a new validation framework for probabilistic event attribution[END_REF]Wehner et al. 2018). Such ensembles are typically produced with atmospheric-only models forced by prescribed sea surface temperatures (SSTs); factual SSTs are usually taken from observations, while counterfactual SSTs are derived by subtracting an estimate of the anthropogenic influence. Such ensembles can be very large, typically from a few hundred to more than 10.000 simulations of one year or one season. One important advantage of using such large ensembles is that the signal to noise ratio is increased (sampling noise is reduced), and probabilities can be estimated very straightforwardly by counting exceedances, i.e. using a minimal statistical inference -although more complex treatments have also been proposed (Paciorek et al. 2018). Several disadvantages should also be mentioned: the computational cost is relatively high (large number of simulations, which have to be redone on an annual basis at least), processes involving ocean-atmosphere coupling are missing [START_REF] Dong | Attribution of forced decadal climate change in coupled and uncoupled ocean-atmosphere model experiments[END_REF], results are conditional on the particular pattern of SSTs considered (Risser et al. 2017), model bias or reliability issues can affect results [START_REF] Bellprat | Attribution of extreme weather and climate events overestimated by unreliable climate simulations[END_REF], and lastly, modelling uncertainty is usually not assessed comprehensively due to the lack of coordinated exercise (Wehner et al. 2018, is a noticeable exception).

Second, occurrence probabilities can be inferred from observations and observed trends, assuming that the trends are entirely related to human influence on climate (van Oldenborgh et al. 2015;Vautard et al. 2015, e.g.,). This approach eliminates all concerns related to model bias and/or error in representing climate change. However, one strong limitation is that the signal to noise ratio is usually limited in observations -climate change to date might be relatively small compared to internal variability. In many cases, observations do not provide evidence for any significant trend, while models do suggest sensitivity to anthropogenic forcings. Even if a significant trend is found, uncertainty in the trend estimate might lead to very wide uncertainty in the risk ratio or other diagnoses of the human influence. Further, this techinque is highly dependent on the availability of a long, homogeneous historical record -and such data are not always available.

A few attempts have been made to consider these two approaches simultaneously [START_REF] Uhe | Comparison of methods: Attributing the 2014 record european temperatures to human influences[END_REF][START_REF] Eden | Multi-method attribution analysis of extreme precipitation in boulder, colorado[END_REF][START_REF] Hauser | Methods and model dependency of extreme event attribution: the 2015 european drought[END_REF]. These studies provide very helpful comparisons of methods for selected case studies. However, to the best of our knowledge, there has been no real attempt to combine the two available sources of information together (i.e. models and observations) in order to provide one single estimate of human influence.

In this paper, we tackle several of these issues. First, we propose to base event attribution on transient CMIP-style simulations -typically a combination of historical and RCP scenarios. This is done through the use of non-stationary statistics (Section 3). Second, we propose a statistical procedure to create a rigorous multi-model synthesis. This question has not been fully addressed in previous event attribution literature, primarily because no large multi-model ensemble was available. We show that, if such an ensemble were available, the assumptions and techniques used to construct multi-model syntheses for large scale mean variables could be extented to event attribution (Section 4). Third, we introduce a statistical framework for merging information from models and observations. The proposed method is essentially Bayesian, in the sense that available observations are used to constrain the model range further (Section 5).

Using transient CMIP-style simulations for event attribution is not a new idea [START_REF] Lewis | Anthropogenic contributions to australia's record summer temperatures of 2013[END_REF]King et al. 2015). The main issue with such simulations is that the sample size is limited -usually to no more than 10 members. This is at least partly compensated by the fact that these simulations include a period of time (near the end of the 21st century) in which the human influence is much more pronounced than in the current climate, resulting in a higher signal to noise ratio. Another potential concern is related to the capacity of CMIP models to simulate extreme events adequately -a point that we carefully discuss below. Regardless, there are tremenduous advantages in using such simulations: they are already available (dragging the computational cost down to almost zero), performed with fully-coupled models (i.e. accounting for coupled processes, and also not conditional on a specific oceanic state), and available for many models (allowing the possibility to account for modelling uncertainty in a comprehensive way, consistent with IPCC practice).

In addition to the statistical inference itself, we promote the use of two additional diagnoses in describing the relationship between a particular event and climate change. First, the human influence is quantified both in terms of probability and intensity of the event. Although highlighting this duality is not new, using one point of view or the other may have contributed to past controversies (Otto et al. 2012;[START_REF] Trenberth | Attribution of climate extreme events[END_REF], although both quantities can be derived from the same statistical analysis. Second, we describe how the characteristics of the event (frequency, intensity) evolve with time. This allows us to describe not only the human influence to date -the main diagnosis of event attribution studies -but also how a similar event will be affected by climate change in the future [START_REF] Christidis | Dramatically increasing chance of extremely hot summers since the 2003 european heatwave[END_REF], took a first step in this direction). This type of outcome is another benefit of using transient simulations, and might be very helpful for communicating the relationship between an event and climate change in a comprehensive way.

The main goal of this paper is to describe the entire proposed statistical method, and to provide a first illustration of its potential. The proposed algorithm is flexible and could be improved in several ways, without significantly affecting its general structure. Such improvements could be considered in future work.

Framing and data

a. Event definition and indicators of the human influence

Although a relatively wide biodiversity of events (or classes of events) has been considered in event attribution, in this study we focus on simple events such as

E = y > s , ( 1 
)
where y is a univariate random climate variable -typically temperature, rainfall or wind speed, averaged over a given time window and spatial domain -and s a predetermined threshold. We assume that this event has happened at a time t e in the factual (F) world2 . The attribution analysis involves describing the characteristics of a similar event happening in the counterfactual (C) world3 . As we consider transient simulations where climate changes with time, describing how the characteristics of the event vary with time, e.g. in the factual world, is also of interest.

Changes in occurrence frequency / probability can be assessed by comparing the probability of the event E happening in (F) vs (C), considering the same threshold s. Denoting F F,t and F C,t the cumulative distribution functions of y at time t in the factual and counterfactual worlds, respectively, we define

p F (t) = P F,t (E) = 1 -F F,t (s), p C (t) = P C,t (E) = 1 -F C,t (s). ( 2 
)
Human influence is then typically characterized through the risk-ratio (RR) and the fraction of attributable risk (FAR, [START_REF] Stott | Human contribution to the european heatwave of 2003[END_REF])

RR(t) = p F (t) p C (t) , FAR(t) = p F (t) -p C (t) p F (t) = 1 - 1 RR(t) . (3) 
As they are of critical importance, we will denote p F = p F (t e ), and p C = p C (t e ) the probabilities at time t e .

Changes in intensity are assessed by comparing the magnitude of events with the same occurrence probability; this value is set to p F , consistent with the observed event:

i C (t) = F -1 F,t (1 -p F ), i C (t) = F -1 C,t (1 -p F ), then δ i(t) = i F (t) -i C (t). (4) 
In other words, i F and i C are the quantiles of order p F of F F,t and F C,t , respectively. The definition of p F implies that i F (t e ) = s. δ i tells how much more/less intense the event with exactly the same frequency would have been in the counterfactual world. Note that, according to the climate variable considered, using a relative difference, rather than absolute difference, in δ i might be appropriate.

Two important remarks can be added. First, conventional attribution studies only calculate RR, FAR or δ i at time t e , i.e. the exact date at which the event was observed. Calculation of RR, FAR

or δ i at a different date allows us to quantify the human influence, had the event occurred at that date. Second, describing how the characteristics of the event are changing through time, e.g. in the factual world, is also helpful (see e.g. [START_REF] Christidis | Dramatically increasing chance of extremely hot summers since the 2003 european heatwave[END_REF]. This can be done using relative indices, e.g.

RR rel (t) = p F (t) p F (t e ) , or δ i rel (t) = i F (t) -i F (t e ). (5) 
All these diagnoses are calculated and illustrated subsequently.

b. Case study: 2003 European Heatwave

In order to illustrate the method presented in this paper, we focus on the 2003 European Heat-Wave (EHW03), an event which has long been scrutinized in event attribution studies [START_REF] Stott | Human contribution to the european heatwave of 2003[END_REF]Schär et al. 2004;[START_REF] Christidis | Dramatically increasing chance of extremely hot summers since the 2003 european heatwave[END_REF]. We define EHW03 (variable y) as a 1-month event occurring in August 2003 near Paris, France. The spatial domain considered is a 5 choice in order to involve as many CMIP5 models as possible, and illustrate their (dis-)agreement.

The threshold used, s, corresponds to a 5 As further discussed below, our technique also requires the use of a covariate x, which is assumed to be representative of climate change magnitude over time. We consider the summer mean tempreature over Western Europe ([35N-70N] and [10W-30E]) in this respect.

c. Data

We use data from a collection of climate models from the 5 th Coupled Model Intercomparison Project (CMIP5) -all 24 models considered are listed in Figure 5. For each model, we combine historical simulations (1850-2005) and RCP8.5 simulations . We use all available runs in cases where ensembles have been performed -using a different number of historical and RCP8.5 simulations is not problematic. Pre-industrial control simulations are also used at some point to quantify internal variability and derive confidence intervals.

Our method also requires using observed data. We use HadCRUT4 

Statistical analysis of transient simulations

In this section, we consider data from one single climate model, and describe how changes in risk can be calculated from such data. By construction, transient simulations exhibit a non-stationary climate, so using non-stationary statistics is a key component of our approach. Therefore, we consider a covariate x which is assumed to be representative of climate change magnitude over time. The covariate will typically be a temperature, averaged either globally or over a large region, on a seasonal or annual basis. Several studies already used the global mean temperature as such a covariate (van Oldenborgh et al. 2015;[START_REF] Van Der Wiel | Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change[END_REF]). Here we use summer mean

European average temperature, and refer to 6 for further discussion on this choice. Once this covariate x has been selected, our procedure is as follows.

a. ANT and NAT contributions to changes in x

As a first step, we need to estimate the forced responses in the covariate x, and in particular the contributions of natural vs anthropogenic forcings to changes in x. This is typically the purpose of detection and attribution techniques. However, these techniques are not usually designed to provide smooth time-series as a result. We therefore propose a hybrid approach using Generalised Additive Models (GAM).

We assume that

x t = µ x + β e t + f (t) + ε t , (6) 
= x nat t + x ant t + ε t , (7) 
where µ x is a constant, e t is an EBM (Energy Balance Model, see [START_REF] Held | Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing[END_REF]) response to natural forcings only at the global scale, β is an unknown scaling factor, f (t) is a smooth temporal function, and ε t is a random term describing internal variability.

Within this framework, estimation of the response to natural forcing is quite consistent with usual D&A practice, as it involves the estimation of an unknown scaling factor β . The main innovation is the consideration of the response e t derived from an EBM, rather than a more complex model. In doing this, we take advantage of the information provided by forcing time-series, and avoid involving additional noise (i.e. internal variability) from a climate model run. As a result, the estimated response to natural forcings is much more constrained; for instance, the impact of major volcanic eruptions is clearly noticeable. A similar variant was previously used by [START_REF] Huber | Anthropogenic and natural warming inferred from changes in earth/'s energy balance[END_REF]. In practice, we calculate the EBM solution following [START_REF] Geoffroy | Transient climate response in a two-layer energy-balance model. part i: Analytical solution and parameter calibration using cmip5 aogcm experiments[END_REF].

Our best estimate is derived using a multi-model mean of EBM parameters. Other combinations of these parameters are used to quantify uncertainty in a resampling approach.

Estimation of the response to anthropogenic forcing relies on the assumption that the time response to anthropogenic forcing is smooth over time. This can be regarded as a sensible assumption, as greenhouse gas and aerosols, i.e. the two dominant drivers, vary quite slowly over time.

In addition, anthropogenic influence has been shown to be largely dominant on mean temperature changes over recent decades (Bindoff et al. 2013). Anthropogenically induced changes are computed with respect to a reference date t re f , implying that f (t re f ) = 0; we consider t re f = 1850, consistent with CMIP protocol, but another reference could be used. As the shape of f is not further constrained, our estimate might be influenced by low-frequency internal variability; it will be necessary to account for this component in the uncertainty analysis.

Estimation within model ( 6) can be made using standard GAM tools. Here we chose to estimate f using smoothing splines with 6 equivalent degrees of freedom -this number was tuned using cross-validation.

Quantifying uncertainty in this decomposition is more difficult, since it is important to account for dependencies in ε t . It is assumed that ε t ∼ N(0, Σ), where Σ is known (derived from preindustrial control simulations, as usual in D&A) but not equal to identity. Uncertainties on x nat t and x ant t are assessed by using (i) perturbed values of e t (using EBM parameters fitted to individual CMIP models), and (ii) parametric uncertainty on β (resp. f ()) given ( f (), e t ) (resp. (β , e t )).

This decomposition procedure is illustrated in Figure 1 for one particular CMIP5 model (CNRM-CM5). Response to major volcanic eruptions can be easily identified in both the factual world (all forcings combined) and the counter-factual world (natural forcings only). The human influence emerges from noise near 1970 in this model. This is not necessarily contradictory with the fact that human influence is not attributable at that date in the instrumental record -10 model runs are used, while only one observed realization is available, implying different signal to noise ratios.

This decomposition produces two major outputs: the estimated response to natural forcings only,

x nat t , corresponding to the expected value of x in the counterfactual world, and x all t = x ant t + x nat t , describing the state of x in the factual world.

b. Fitting a non-stationary distribution to y t

As a second step, a non-stationary distribution is fitted to the variable of interest y. x all t is used as a covariate in this non-stationary fit. Two types of distributions are considered:

• Gaussian distribution:

y t ∼ N µ 0 + µ 1 x all t , σ 0 (1 + σ 1 x all t ) . (8) 
The parameters γ = (µ 0 , µ 1 , σ 0 , σ 1 ) can be estimated via maximum likelihood. However, no closed formula is available in this case, and an optimization algorithm is needed. We used the nlminb R routine, chosen from other possible options. Confidence regions on γ can be derived by bootstrapping (x all t , y t ) and simultaneously considering uncertainty on x all t , derived from the previous step.

• Non-parametric distributions, assuming that the quantile of order α at time t, q α t , satisfies:

q α t = µ α 0 + µ α 1 x all t . (9) 
In this case, the parameters γ = (µ α 0 , µ α 1 ) can be estimated, for a collection of α, using quantile regression [START_REF] Koenker | Regression quantiles[END_REF][START_REF] Koenker | Quantile regression[END_REF]. Given typical sample sizes (a few hundreds to thousands of data) and the computational cost of resampling, a fast algorithm is needed, and we used the Frisch-Newton approach after preprocessing (see Portnoy et al. 1997, implemented in R under "pfn"). Another potential issue comes from the use of quantile regression for a set of values of α. Quantile regression is done separately for each α, and there is no guarantee that the obtained quantiles are properly sorted over the entire considered range of x all t . We deal with this issue by re-arranging the obtained quantiles [START_REF] Dette | Non-crossing non-parametric estimates of quantile curves[END_REF]. Searching for a regularised quantile regression able to cope with this issue, e.g. where µ α 0 and µ α 1 are smooth functions of α, would be very attractive but is beyond the scope of this paper. As in the Gaussian case, uncertainty on (µ α 0 , µ α 1 ) is assessed through a bootstrap procedure.

This list of distributions is obviously not exhaustive, and other families might be used. For instance, Generalized Extreme Value (GEV) distributions could be of interest when the focus is on annual maxima. The use of non-parametric distribution still offers a lot of flexibility. As an example, Generalized Pareto Distribution (GPD) can be adjusted to the tails of such distributions in order to improve estimation of rare values4 . In the remainder of this paper, we focus on nonstationnary Gaussian distribution only for illustrating our method. Non-parametric distributions were also used with success to analyze transient simulations, and they provided results consistent with the Gaussian case for our case study. However, their use in subsequent steps (such as multimodel synthesis and observational constraints, see Sections 4 and 5) is beyond the scope of this paper.

The fit of a non-stationary Gaussian distribution is illustrated in Figure 2. This figure suggests that x all t is an appropriate covariate for y t , as the linear relationship is well-supported by the data.

More generally, this type of diagnosis can be used to check if the choice of the covariate is appro-priate. The fact that the three regression lines (corresponding to mean and quantiles) are almost parallel indicates that there is almost no changes in variance for these particular model and variable.

In the following, γ will be split into (γ 0 , γ 1 ), where γ 0 are parameters describing the distribution of y at a reference time (or in a stationary climate), while γ 1 are parameters describing how y is sensitive to changes in x. For instance, in the Gaussian case, γ 0 = (µ 0 , σ 0 ) and γ 1 = (µ 1 , σ 1 ).

c. Estimating changes in probability / intensity

Once a non-stationary distribution has been fitted on y, all attribution diagnoses introduced in Section 2 can be derived easily. In particular, frequency (i.e. probability) and intensity can be calculated in the factual and counterfactual world at time t e , and RR and δ i can be derived from there.

Changes in frequency and intensity, as estimated from one particular CMIP5 model, are illustrated in Figures 3 and4, respectively. The event frequency moves from about 10 -4 in 1850 to more than 1/2 in 2100 in the factual world. These numbers differ, but are not inconsistent with [START_REF] Stott | Human contribution to the european heatwave of 2003[END_REF], as we consider a smaller space-time domain, implying a much smaller signal-tonoise ratio. Over the same period, the magnitude of the event increases by about 6 Human influence becomes huge during the 21st century, with RR higher than 10 4 in 2100. Overall, confidence intervals might be found to be relatively narrow, but they are consistent with the estimated changes in x (which exibits limited uncertainty, Figure 1), and the fact that there is a clear relationship between x and y (Figure 2). The latter implies that any significant change in x translates into a significant change in y.

4. Multi-model perspective and synthesis a. Results from CMIP5 models

In order to give a broader picture, this procedure can then be applied to other CMIP models (Figure 5). This reveals that model uncertainty is large -unlike estimation (or sampling) uncertainty which remains very limited. Models' best estimates of RR vary from 1.8 to more than 400 at the date of the event. The lower bound goes down to 1 considering estimation uncertainty (i.e. confidence intervals). Discrepancies among models are also very large in terms of δ i, from .2 to 3 • C in 2003. Similar findings are made on the other parameters involved: p C , p F , i C , i F -keeping in mind that model biases contribute substantially to discrepancies in i C , i F .

Unlike CNRM-CM5, some individual models exhibit a singificant cooling trend (e.g. FGOALS-g2, ACCESS1-3, all versions of MIROC and CMCC) or warming trend (e.g. BCC-CSM1-1-M, INMCM4, GISS-E2-R) in x all t prior to 1950 (Figure 6a) -a period over which the anthropogenic forcings are limited. Most of this trend is interpreted as resulting from human influence (i.e., falls into x ant t ) according to the simple decomposition described in Sub-section 3a. Such trends typically result in RR (resp. δ i) becoming significantly different from 1 (resp. 0) soon after 1850 (Figure 6d,g). At this stage it is unclear whether these trends (i) are related to low frequency internal variability inappropriately taken into account, (ii) can be explained by a long-term regional drift in (imbalanced) pre-industrial control simulations, or (iii) highlight an early onset of the anthropogenic influence (i.e. appropriately taken into account), either dominated by aerosols (inducing a cooling) or GHG (inducing a warming) at the regional scale. This will require further investigations which go beyond the methodological scope of this paper.

Though large, discrepancies among models, e.g. in terms of RR and δ i estimates in 2003, can be easily understood. Models disagree on the magnitude of the changes in the covariate x (different global or local sensitivity), the variance of y (which strongly influences the probability to exceed a high threshold), and the strength of the relationship between y and x. Each model exhibits some bias in one of these characteristics. This highlights the need for a multi-model synthesis.

b. Building a multi-model synthesis

Techniques for building a multi-model synthesis have received much attention in both the literature and IPCC review, due to their importance in providing climate change projections for the next century, including an assessment of uncertainty [START_REF] Collins | Long-term climate change: Projections, commitments and irreversibility[END_REF]. Literature on the subject of how to use an ensemble of opportunity such as the CMIP ensemble, i.e. where no particular design effort is made to cover the range of uncertainty [START_REF] Tebaldi | The use of the multi-model ensemble in probabilistic climate projections[END_REF]Knutti et al. 2010a,b), is particularly abundant. These attempts to combine several models into one single uncertainty range have not been translated into event attribution thus far. In this section we introduce one possible method for conducting such a synthesis in the context of the statistical framework described above. The proposed technique is similar to that outlined in Ribes et al. ( 2017); we review the main concepts here, but refer to that publication for a more detailed discussion.

Following Section 3, the parameters describing the response of one single model are: θ = (x all t , x nat t , γ) -all diagnoses can be derived from θ . The key idea behind the multi-model synthesis is to assume that (θ i ) i=1,...,m (where m is the number of models) are realizations of one multi-model distribution. Then, it is further assumed that the truth, say θ * , is also a realization of this multi-model distribution -a paradigm known as models are statistically indistinguishable from the truth [START_REF] Annan | Reliability of the cmip3 ensemble[END_REF]. It is necessary to estimate this distribution in order to derive multi-model statistics such as confidence regions. In the following, this distribution is assumed to be Gaussian, but the procedure could be extended to other types of distributions.

In more detail, we assume that:

θ i ∼ N µ, Σ m , and θ i |θ i ∼ N θ i , Σ θ ,i , (10) 
leading to:

θ i ∼ N µ, Σ m + Σ θ ,i , (11) 
where θ i is the value of θ for model i, θ i its estimate, µ and Σ m are the mean and variance of the multi-model population (i.e. Σ m respresents modelling uncertainty on θ ), and Σ θ ,i describes the uncertainty related to internal variability in the estimation of θ i . For each model, θ i can be derived from the estimation procedure described in Section 3. Estimates of Σ θ ,i can also be derived from the uncertainty analysis conducted there -the resampling was intended to explore uncertainty related to internal variability. It is important to account for this uncertainty component because, for some class of extreme events, the signal-to-noise ratio is low, which makes the estimate θ i relatively inaccurate. In such a case, the estimation uncertainty (i.e. Σ θ ,i ) can substantially contribute to the spread in the estimated values θ i (in addition to the spread in θ i ). The next step is to estimate µ, Σ m from the available sample of θ i -we refer to (Ribes et al. 2017) for this technical step.

Lastly, confidence regions for the truth θ * can be derived from µ, Σ m .

Given a collection of CMIP models such as in Figure 5, our procedure can be used to derive multi-model statistics and confidence regions (Figure 6, and 'MULTI' confidence ranges in Figure 5). The fitted multi-model distribution can also be used to sample new realizations (using Monte-Carlo simulations) corresponding to virtual climate models (Figure 6) -this is a way to check that the fitted distribution is consistent with the model sample.

Multi-model uncertainty is found to be much larger than the sampling uncertainty related to internal variability in one given model. This is not surprising for a month-long temperature event such as the one investigated here, and is consistent with many other studies (e.g. [START_REF] Hawkins | The potential to narrow uncertainty in regional climate predictions[END_REF]. The multi-model confidence range for RR is about The uncertainties reported above appear larger than in previous studies. In particular, our confidence range for RR is larger than reported by [START_REF] Stott | Human contribution to the european heatwave of 2003[END_REF]. Discrepancies in the methods and event definitions can explain or contribute to this gap. Among these, two important features of our approaches should be highlighted. First, the ensemble of models considered here is larger than in any other attribution study, enabling a more comprehensive exploration of uncertainties. Second, the attribution performed here is less constrained than other approaches. The most widespread event attribution procedure relies on prescribed SSTs where an estimate of the anthropogenic influence is removed (Pall et al. 2011). The latter usually involves observations to some extent, leading to a climate change signal in SSTs which is more constrained than that simulated by (unconstrained) coupled models. This highlights the benefit of incorporating observed information in our procedure -a path explored in the next section. However, a large part of the model spread shown in Figure 5 cannot be explained by the use of coupled rather than atmospheric-only models. For instance, the reported spread in p F is almost entirely related to spread in the variance of y, which also strongly contributes to the spread in RR. Therefore, our results suggest that it is critical to consider a large ensemble of models, with a careful assessment of uncertainty, for event attribution -as for assessing many other features of climate change.

Merging models and observations

In this section we introduce two options which can be used to combine observations and information provided by climate models, using the multi-model synthesis as a starting point. Among other possible approaches, we focus on using observations to constrain changes in x and estimate the distribution of y. Other options are briefly discussed in Section 6.

a. Observed changes in x

Detection and attribution studies have long illustrated that observations might be used to derive information on, e.g., human induced warming to date (Bindoff et al. 2013), in particular in cases where the investigated variable exhibits a high signal to noise ratio (SNR, i.e. response to anthropogenic forcings with respect to the magnitude of internal variability). As the selected covariate x typically exhibits high SNR, historical records of x are likely to be insightful with respect to both past and future changes in x. Taking our case study as an example, in Figure 6a-b, models exhibit large differences in the simulated regional warming to date (0.5 to 2 • C in 2015). Observations available over the same period of time suggest that the uncertainty range in the past warming is in fact much smaller (Figure 7). It is thus natural to investigate which changes in x are consistent with available observations.

In mathematical terms, real observations of covariable x, say x, can be written as

x t = x all t * + ε t , (12) 
where x all t * is the real world response to external forcings and ε t is the contribution of internal variability, considered to be random. Using a Bayesian perspective, multi-model uncertainty on x all (derived from the multi-model synthesis, e.g., Figure 6b) can be considered as a prior distribution for x all t * , say π(x all t * ). If both this prior distribution and the distribution of ε t are known (sensible assumption), then it is possible to derive the posterior distribution of x all t * | x, using a conventional Bayesian technique. This derivation is particularly easy under the assumption made in Section 4, as all distributions involved (i.e. π(x all t * ) and the distribution of ε) are assumed to be Gaussian.

In fact the same technique can be employed to derive the distribution of θ * | x (θ * is the value of θ in the real world; θ * contains x all * but is larger). Then, this distribution (i.e. constrained by observations) can be used instead of that of θ * (unconstrained) to derive all results, following the same procedure as in Section 4.

Application of this procedure to summer mean temperature over Europe (i.e. our covariate

x) suggests that some model responses to historical forcings are inconsistent with observations (Figure 7). This phenomenon can be explained as follows. Intuitively, x all t * is the expectation of x t at time t, so observed values x t should be distributed around x all t * . An x all t * is not quite plausible if it lies far away from most observed values x t . In Figure 7 The impact on event attribution dignoses is also very clear, with a sharp reduction of uncertainties in RR or δ i (Figure 9). etc), which can make the simulated p F (and, more generally, the entire probability distribution)

erroneous [START_REF] Bellprat | Attribution of extreme weather and climate events overestimated by unreliable climate simulations[END_REF]. Figure 5 shows that estimates of p F vary widely, and are inconsistent among models. In many cases, even a limited observational record can be sufficient to estimate p F more accurately than using the multimodel synthesis. In practice, most national weather services do rely on observations rather than climate model simulations in order to estimate the return period of a specific event (and return periods in general, see e.g. [START_REF] Tank | Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation[END_REF]).

Here, we illustrate how observations of the investigated variable y, say y, can be used to infer p F and, more generally, the distribution of y at time t e . We assume that both changes in the covariate x and the non-stationary coefficients γ 1 are known from climate models, with some uncertainty. Observations are therefore only used to estimate γ 0 , taking into account the influence of climate change on the observational record. Note that this treatment is distinct from (and potentially more appropriate than) a common practice in which occurrence probability is estimated using observations, but ignoring their climate change component. In the proposed procedure, γ 0 is fully determined by observations, i.e. there is no use of models' prior distribution of γ 0 ; in this respect, the proposed treatment cannot be considerd as an observational constraint. But this is still a combination of models and observations, as models are used to estimate some parameters (x all and γ 1 ) while observations are used to estimate others (γ 0 ).

Under the Gaussian assumption, the parameters (µ 0 , σ 0 ) of Eq. ( 8) have to be estimated. Given estimates of γ 1 and x all t , µ 0 can be naturally estimated by

µ 0 = y t -µ 1 x all t , (13) 
where z denotes the average of z, y t are the available observations of y, and y t , µ 1 and x all t are all known. Then, σ 0 can be estimated by

σ 0 = sd y t -µ 1 x all t -µ 0 1 + σ 1 x all t , ( 14 
)
where sd is the sample standard deviation, denoting again that every term in the right hand side is known, and that ( y tµ 1 x all tµ 0 ) ∼ N 0, σ 0 (1 + σ 1 x all t ) . Note that these estimators ( µ 0 , σ 0 ) do not necessarily coincide with the Maximum Likelihood Estimators, but are however quite natural and attractive for computational reasons. Uncertainty on these parameters can be assessed by extending the bootstrap procedure to y t (i.e. resampling observations y t , as would be done in a stationary context), and considering simultaneously uncertainty in µ 1 , σ 1 and x all t , as derived from the multimodel synthesis.

Our procedure is illustrated in Figure 8. As the CanESM2 model simulates a larger change µ 1 x all t than CNRM-CM5, the 2003 event is relatively less abnormal according to that model, resulting in a much larger estimate of p F . Note that changes in variance are small and do not substantially influence the results in this particular example. Model discrepancies in estimating p A are therefore largely related to spread in the non-stationary term µ 1 x all t in this approach.

Applying this procedure to all single models and/or to the multi-model synthesis leads to much reduced uncertainties in the estimate of p F , which might be attractive for several purposes (Figure 9). This makes sense, as γ 0 contains the key parameters of the distribution of y, and p F is just one feature of that distribution. Estimates of p C are similary improved. However, the impact on attribution diagnoses, i.e. RR and δ i, is very limited. In fact, the proposed procedure refines the estimation of the y-distribution, but does not affect the estimation of human influence, and so coefficients measuring that influence are only marginally impacted.

c. Applying the two constraints together

The two constraints presented above can also be applied simultaneously. If so, observations are used to constrain changes in x first; then parameters γ 0 are estimated using observations of y, given (x, γ 1 ). Therefore, observed information is used in both x and γ 0 , in addition to model information.

As they combine all sources of information, results obtained in this way can be considered as the final results of the attribution procedure described in this paper (Figures 9 and 10 for the multimodel synthesis only; results obtained applying these constraints with single-model estimates of x and/or γ 1 are shown in Supplementary Material).

Applying the two constraints simultaneously leads to a real narrowing of uncertainties in estimating probabilities p F or p C (where estimation of γ 0 is critical), but also the standard human influence diagnoses RR and δ i (where constraining x is critical), if compared to the unconstrained multi-model estimates (Figure 9). In terms of attribution diagnoses, uncertainty in RR shrinks from [1.4, 230] (multimode synthesis, no use of observations) to [4,95] (applying the two constraints). Uncertainty in δ i is also strongly reduced, from [+0.1

• C,+2.3 • C] to [+0.5 • C,+1.5 • C] (i.e.
roughly by a factor of 2). Similar findings are made for p C and p F . In all cases considered, applying the two constraints together reduces model spread further than using one single constraint or no observations at all.

Remarkably, time series of attribution dignoses, RR and δ i, can still be derived after applying these constraints (Figure 10). Beyond estimates of RR and δ i in 2003, several conclusions can be derived from there. First, human influence on an event like EWH03 has been significant since the mid 1980's (Figure 10a,c). Second, the odds of observing an event such as EWV03 (in the sense of the same magnitude) have strongly increased since 2003; they were 3 to 9 times larger in 2018 than in 2003 (qualitatively consistent with [START_REF] Christidis | Dramatically increasing chance of extremely hot summers since the 2003 european heatwave[END_REF]. Third, an event similar to EHW03 (in the sense of the same frequency) occurring in 2100 under an RCP8.5 scenario would imply a human contribution as large as +7.7 • C [+4.7, +11.1] (Figure 10c). Lastly, a very large fraction of this human-induced warming is expected to take place after 2003: +6.8

• C [+4, +9.8].
Overall, these results suggest that our approach, in addition to covering a wide range of uncertainties through the use of a large ensemble of models, can lead to relatively constrained attribution results. They also suggest that, in the particular case under consideration, the unconstrained parameters γ 1 do not exhibit a large spread among models.

Discussion

In this section we reivew several aspects of our proposed method which deserve particular attention.

(i) Choice of the covariate x Selecting an appropriate covariate x is a key step in our method. Obviously, the choice of this covariate is at least partly subjective, and can impact the final results. In our view, using a global or regional temperature may be appropriate, as changes in many variables have been described to scale with temperature (e.g. [START_REF] Collins | Long-term climate change: Projections, commitments and irreversibility[END_REF][START_REF] Tebaldi | Pattern scaling: Its strengths and limitations, and an update on the latest model simulations[END_REF]. Pattern scaling, however, works better if only the GHG forcing is playing. In practice, other forcings, and anthropogenic aerosols in particular, also contributed to recent changes. As the strength of the aerosols forcing varies considerably over space, using a regional temperature as a covariate might better reflect the regional balance between various external forcings. In any case, relying on a covariate x is a strong assumption of our method, which much be properly acknowledged. Replicating the analysis with a different covariate might be one way to explore sensitivity to this choice. Incorporating a covariate uncertainty to the overall algortihm might be attractive as well, but goes beyond the scope of this paper.

(ii) Limitations in using non-stationary statistics The use of non-stationary statistics is central in this approach, and some limitations must be pointed out. First, a sufficiently large SNR is needed in model data in order to allow fitting of the non-stationary model. The entire procedure can fail if non-stationnary coefficients cannot be estimated properly. In this respect, the temperature event considered in this study was an easy one. The method will have to be tested on other events / variables (e.g. precipitation, wind), to determine the extent of its field of application.

Second, further statistical developments might improve the fit of the statistical model. In the current analysis, y-data were limited to a specific space-time domain -we ignore any information available outside this domain. Using further spatial (e.g. a borader region than that of the event) or temporal (e.g. modelling the an entire seasonal cycle) information might be particularly attractive, but would involve a sharp increase in the complexity of the statistical model and inference.

(iii) Climate model evaluation and reliability Using CMIP models, the resolution of which is typically limited, brings into question the model's reliability in simulating events comparable to the one under scrutiny -given that model biases do impact event attribution results [START_REF] Bellprat | Attribution of extreme weather and climate events overestimated by unreliable climate simulations[END_REF]. The model reliability issue has sometimes been tackled through implement-ing model selection (e.g. King et al. 2015) -an approach which could become ineffective for non-temperature small-scale events. A common and more general recommendation is to use highresolution models (National Academies of Sciences and Medicine 2016, and references therein).

However, in both cases, limiting the analysis to a small number of models can have undesirable effects on the uncertainty analysis.

In our study, we did not perform any model evaluation nor selection. However, at least two options can be mentioned to cope with this issue. First, our method could be easily applied to Cordex-style experiments, offering the possiblity of exploring the modelling uncertainty using higher-resolution models. Second, bias correction techniques could be applied to model outputs before implementing the statistical analysis. Some very simple bias correction is in fact already applied in our method -although not explicitly stated -through defining the event as an anomaly with respect to a given reference period. In our view, using more formal bias correction techniques might reconcile event attribution with the use of coarse resolution CMIP-style models.

(iv) Uncertainty quantification and modelling uncertainty One key outcome of our analysis is that considering modelling uncertainty is critical in event attribution. Uncertainty ranges vary greatly in size if derived using one model only vs a multi-model ensemble, with ranges far too narrow in the former case. The technique used to build the multi-model synthesis is very simple and could be improved in many ways, e.g. by using a link function for some parameters in θ , a non-Gaussian dependence structure, another paradigm than the model truth exchangeability, etc.

In the current form, the uncertainty derived from the multi-model synthesis is typically relatively large, but it might still be necessary to check that it is consistent with observations -no such check was implemented here.

(v) Role of observations In the case of the EHW03, observations are found to substantially reduce uncertainties in RR and δ i estimates (Section 5). However, this case might be quite unusual because (i) a long observational record is available, and (ii) SNR is relatively large. In many other cases, observational constraints will have much less impact on the final results. Attribution results might even be made artificially sensitive to the region where the event occurred through the influence of the length of the historical record.

(vi) Additional observational constraints Section 5 explored two possible ways to use observations to constrain attribution results. With respect to y, observations are only used to estimate the stationary parameters γ 0 . A natural extension of this work would be to constrain both γ 0 and γ 1 , i.e. to use observational information to constrain the magnitude of changes in y. Among other possible implementations, this could be done using a Bayesian approach, in which the mutli-model uncertainty on γ is used as a prior distribution. Other strategies for blending model information with observations could also be valid.

(vii) Consistency with other approaches Assessing the consistency of our results with previous studies which also focused on the EWH03 event is not easy, primarily because variations in the event definition can contribute to discrepancies in the results [START_REF] Cattiaux | Defining single extreme weather events in a climate perspective[END_REF]. Roughly speaking, our results in terms of RR lie somewhere between [START_REF] Stott | Human contribution to the european heatwave of 2003[END_REF] and [START_REF] Christidis | Dramatically increasing chance of extremely hot summers since the 2003 european heatwave[END_REF] -two studies which used similar methods but led to quite different results. Results in terms of δ i seems consistent with the figures in [START_REF] Christidis | Dramatically increasing chance of extremely hot summers since the 2003 european heatwave[END_REF], although this diagnosis was not given explicitly. Providing closer comparisons between our approach and other event attribution methods, potentially single model results, will be of primary interest in the future.

(viii) Consistency with IPCC reports Several similarities between our approach and typical IPCC practice can be noted. Indeed, our results are based on a collection of CMIP models, and the treat-ment of modelling uncertainty is consistent with [START_REF] Collins | Long-term climate change: Projections, commitments and irreversibility[END_REF]. Furthermore, uncertainty plumes describing future changes under a given emission scenario, such as shown in Figure 6h, are qualitatively similar to typical IPCC projections. In this respect, this approach could be considered to be an adaptation of IPCC projections for a singular weather or climate event. It is also important to note that the model information used after applying observational constraints, i.e. γ 1 , is very similar to that used in [START_REF] Collins | Long-term climate change: Projections, commitments and irreversibility[END_REF] see, e.g., their Figure 12.27 for precipitation extremes) to describe long-term changes in extremes.

Conclusion

This study describes and illustrates a new statistical method for event attribution which can be decomposed into three steps. First, event attribution diagnoses are derived from transient CMIPstyle experiments using non-stationary statistics and an approriate covariate. Single model results derived from this step typically exhibit large discrepancies. Second, a multi-model synthesis is performed, assuming model / truth exchangeability. Evidence suggests that this synthesis might represent uncertainty better than single model analyses. Third, multi-model information is combined with historical observations in order to account for all sources of information available. This blending typically reduces uncertainty in the final attribution diagnoses, while providing a more comprehensive description of the event and human influence on it.

This study illustrates that it is possible to perform event attribution using available CMIP-style simulations, although this goal might have been considered challenging at first glance. This is an important result because the use of such experiments offers several advantages. In particular, it offers the possiblity of characterizing the human influence on a singular event in a way that is consistent with long-term projections, i.e. using the same data and a similar quantification of uncertainty. The calculation of uncertainty plumes covering both the past and future also provides a new perspective on the human influence on a singular event. And, obviously, re-using available simulations could save much of computation time and efforts.
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  [1.4, 230] in 2003, which better reflects the overall uncertainty than single model estimates. It is worth noting that the reported multi-model confidence regions are not equal to the range of single model results. Some models can be excluded from the final confidence region if they are outliers in terms of θ . And, in the presence of a very large sample of models, the bounds of the multi-model confidence region would converge to the corresponding quantiles of the model sample.

  , the upper and lower bounds of the multi-model distribution π(x all t * ) fall almost outside the set of observations over the beginning (before 1900) or the end (after 2000) of the observed period, suggesting some inconsistency. Using observational information therefore leads to a substantial reduction of the multi-model uncertainty in changes in x. This reduction is particularly clear over the historical period: the multi-model 5-95% confidence range of total 1850-2015 warming is [0.50 • C, 2.00 • C] without the use of any observations (i.e. in π(x all t * )), but shrinks to [0.87 • C, 1.41 • C] after applying the observational constraint (i.e. in x all t * | x). But the spread in future warming is also substantially reduced -[3.82 • C, 7.69 • C] and [4.41 • C, 6.88 • C] for the corresponding 5-95% confidence ranges before and after applying the observational constraint, respectively. 20

Fig. 4 .Fig. 7 .Fig. 8 .Fig. 9 .

 4789 Fig. 4. Changes in Intensity. Changes in the intensity of the event, as diagnosed from the analysis of transient historical and RCP8.5 scenarios, in terms of intenisty in the factual world (i F , top panel), intensity in the counter-factual world (i C , middle top), difference between these two δ i = i F (t)i C (t), middle bottom , or difference in the factual world with respect to year 2003 δ i rel = i(t)i(t e ), bottom , i.e. the year on which the event occurred (vertical bar). Shaded areas correspond to 5%-95% confidence regions. All results are for the CNRM-CM5 model only. . . . . . . . . . . . . . . . . . . . . . 41 Fig. 5. Diagnoses in year 2003. . . . . . . . . . . . . . . . . . . . 42 Fig. 6. Multi-model statistics and synthesis. Results for the 23 individual CMIP5 models considered (left) are shown in terms of changes in covariate x (degrees with respect to the reference year 2003, top), risk ratio (RR, middle), and δ i (bottom). The multimodel distribution estimated from this sample of models is illustrated through: the mean and 90% confidence region (i.e. confidence region of θ * , or resulting diagnoses, using the "models are statistically indistinguishable from the truth" paradigm; center), or new realisations drawn from that distribution (which can be interpreted as virtual climate models; right). . . . . . . 43 Fig.7. Observational constraint on covariate x. Observation of covariate x (here European summer mean temperature since 1850, black points), are compared to the multi-model distribution of externally forced changes in x, i.e. π(x all t * ) (light pink, 5-95% confidence region, identical to Figure6b). Uncertainty in changes in x decreases after applying the observational constraint, i.e. x all t * | x (dark pink, 5-95% confidence region). Best estimates before (light brown) and after (brown) applying the observational constraint are almost indistinguishable in this case, as observations are consistent with the multi-model mean estimate.All values are temperature anomalies with respect to the1961-1990 period. . . . . . . 44 
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 4 FIG. 4. Changes in Intensity. Changes in the intensity of the event, as diagnosed from the analysis of transient historical and RCP8.5 scenarios, in terms of intenisty in the factual world (i F , top panel), intensity in the counter-factual world (i C , middle top), difference between these two δ i = i F (t)i C (t), middle bottom , or difference in the factual world with respect to year 2003 δ i rel = i(t)i(t e ), bottom , i.e. the year on which the event occurred (vertical bar). Shaded areas correspond to 5%-95% confidence regions. All results are for the CNRM-CM5 model only.
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 910 FIG. 8. Use of corrected observations to estimate p F . Top panel: observed record y t (black line) is compared to the changes in y (i.e. µ 1 x all t ) as simulated by two climate models (CNRM-CM5 and CanESM2, color lines).Temperatures are anomalies with respect to the 1961-1990 average. Other panels: Observed time-series after correction for the mean change simulated by the models, i.e. y tµ 1 x t . Correction is made such that the 2003 value is unchanged. p F denotes the probability of exceeding the threshold (dotted line), as estimated from these corrected records. Uncertainty analysis and correction for changes in variance are not represented.

  The lower bound of RR is particularly affected (3.1 after accounting for observations, as opposed to 1.4 without), because some model responses exhibit almost no humaninduced warming in 2003, while observations suggest that such weak responses are unlikely. The effect on δ i is even bigger: uncertainty reduces from [+0.1 • C,+2.3 • C] before accounting for observations to [+0.5 • C,+1.5 • C] after. Overall, these results suggest that taking observational information into account is very helpful, even if done only through the covariate x, i.e. at a large spatio-temporal scale.

b. Observed distribution of y

Another way of merging climate models outputs with real world observations is to estimate the distribution of y, e.g., at the time of the event. Climate models exhibit all sorts of biases (e.g. biases in the mean climate, biases in the variability, other biases affecting the tails of the distribution,
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  FIG. 2. Fit of a non-stationnary Gaussian distribution. Illustration of the non-stationnary fit for data from the CNRM-CM5 model, assuming Gaussian distribution. Black points: data (x all t , y t ), where x all t has been estimated following Section a, and y t is the raw y data. Several simulations are considered, leading to several values of y t at each time t. Many points lie in the bottom-left corner, corresponding to the quasi-stationnary climate of the period before 1980. Red lines: change in the mean of y t (solid) or 5% -95% quantiles (dashed lines) as estimated from the non-stationary fit.

see https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/explaining-e

The factual world, or world as it is, is the world where all external forcings, including the anthropogenic ones, have influenced climate.

The counterfactual world, or world that might have been, is the world where anthropogenic influence is removed, while natural forcings still vary through time.

Non-stationary GPD-distribution could be used as such to modelize threshold exceedances. However, in many practical situations, it might be useful to obtain an estimate of the entire distribution, not only the tail. In particular, in the case of temperature, an event in the tail of the distribution in the counter-factual world can become quite common in the course of the 21st century, requiring an estimation of the entire distribution in order to derive standard attribution statistics.
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