
HAL Id: hal-02122776
https://hal.science/hal-02122776

Submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Sensors Activity in Wireless Sensor Networks
Antonina Tretyakova, Franciszek Seredynski, Frédéric Guinand

To cite this version:
Antonina Tretyakova, Franciszek Seredynski, Frédéric Guinand. Scheduling Sensors Activity in Wire-
less Sensor Networks. Computational Collective Intelligence: 9th International Conference, ICCCI
2017, Nicosia, Cyprus, September 27-29, 2017, Proceedings, Part I, pp.442-451, 2017, �10.1007/978-3-
319-67074-4�. �hal-02122776�

https://hal.science/hal-02122776
https://hal.archives-ouvertes.fr


Scheduling sensors activity in wireless sensor
networks

Antonina Tretyakova1, Franciszek Seredynski1, and Frederic Guinand12

1 Dep. of Mathematics and Natural Sciences
Cardinal Stefan Wyszynski University in Warsaw

Warsaw, Poland
a.tretyakova@uksw.edu.pl

2 LITIS Laboratory, University of Le Havre
Le Havre, France

Abstract. In this paper we consider Maximal Lifetime Coverage Prob-
lem in Wireless Sensor Networks which is formulated as a scheduling
problem related to activity of sensors equipped at battery units and
monitoring a two-dimensional space in time. The problem is known as
an NP-hard and to solve it we propose two heuristics which use specific
knowledge about the problem. The first one is proposed by us stochastic
greedy algorithm and the second one is metaheuristic known as Simu-
lated Annealing. The performance of both algorithms is verified by a
number of numerical experiments. Comparison of the results show that
while both algorithms provide results of similar quality, but greedy algo-
rithm is slightly better in the sense of computational time complexity.

Keywords: maximum lifetime coverage problem; metaheuristics; energy-efficient
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1 Introduction

Wireless Sensor Networks (WSNs) are one of the faster developing computer-
communication technologies currently involving in many spheres of human activ-
ities, like healthcare, agriculture, industry environment, military (see, e.g. [1] [2]),
etc. WSN is a set of a huge number of small devices, called sensors or sensor
nodes, enabling to monitor surroundings, gather information about environment
and perform many other tasks. For many missions, sensors are randomly dis-
tributed over the monitoring area in environments, where human access is limited
or impossible. Therefore, batteries of sensors cannot be usually rechargeable or
renewable. Such scenarios of WSN can be executed in deserts, forests, wilderness,
mountain terrains and etc. Exhaustion of battery charge implies the change in
topology of the WSN, quality of its work and reduction of its lifetime. In WSNs
energy-efficient management is intrinsically important task.

One of the main tasks posed before wireless sensor networks is an area moni-
toring. According to the area applications a WSN should perform different func-
tions, among which are sensing environmental characteristics, gathering data,



transmission data to a sink, etc. Due to their tiny construction WSN nodes
have limitations on energy power, computing power, sensing range, transmission
distance and bandwidth. These restrictions lead to a number of optimization
problems, goals of which are to maximize lifetime of the system via effective
managing the capabilities of the network. Limited energy sources of sensor de-
vices demand to equip them by energy - efficient coverage preserving protocol.
Such a kind of protocol: centralized or localized has to solve a variant of max-
imum lifetime coverage problem (MLCP) in WNSs. MLCP can be considered
as a specific deterministic scheduling problem, where it is necessary to schedule
sensors activity in time in a such way to maximize lifetime of the network main-
taing at the same time some quality parameter like e.g. amount of covered by
active sensors monitored area.

MLCP is known to be NP-hard problem [3] [4], therefore, one can relay on
delivering rather approximate solutions instead of exact ones. Recently, a number
of nature-inspired algorithms applied to optimization problems in WSNs have
appeared in the literature. Among them are genetic algorithms [5], evolution
strategies [6], particle-swarm optimization [7], etc. As we already mentioned, the
quality of solutions and computational complexity are not satisfactory. Coverage
problems were considered under different scenarios and types of WSNs, namely
wireless multimedia sensor networks in dynamic environment [6], directional
sensor networks [8]. These assumptions lead to different problems statement and,
therefore, each approach should be modified to enable to solve coverage problem
in another type of WSNs. Our research on a direct applying nature inspired
metaheuristics of general purpose to solve MLCP [9] shows that they are not
enough efficient. We believe that further improving the quality of approximate
solutions and computational time complexity can be achieved by incorporation
into a searching engine of an algorithm of a specific knowledge about the problem.
In this paper we propose two knowledge based algorithms to solve a variant of
MLCP. It is a greedy heuristic and an algorithm based on Simulated Annealing
(SA).

The rest of the paper is organized as follows. In the next section the problem
is stated. The two following sections present our greedy algorithm and SA-based
algorithm. Sections 5 and 6 contain results of simulation experiments and con-
clusion remarks.

2 Problem statement

Let us consider a homogeneous sensor network S = {s1, . . . , sN} consisting of N
sensor nodes randomly distributed over a given target field F, a two-dimensional
rectangular area of W × H m2. The target field F is uniformly divided on
points of interest (POIs) with a step g, sensors are responsible for detection of
an intruder (a target point) and sending an alarm message to the sink node. A
sensor sj is defined as a point of coordinates (xj , yj) in two-dimensional area,
sensing range Rs and battery capacity b. An example of a sensor network ran-
domly deployed over the target field is depicted in Figure 1. It is assumed that



Fig. 1. An example of sensor network deployed over the target field

each sensor can work in two modes: active mode and sleeping mode. In active
mode a sensor observes a circle area within its sensing range and can transmit
or receive a signal. Let us denote the mode of i-th sensor during j-th time inter-
val as state(si, tj), where state(si, tj) ∈ {ON, OFF}. The value of state(si, tj)
equals ON means that i-th sensor si during j-th time interval is in active mode,
otherwise, state(si, tj) = OFF.

Below we give a number of definitions concerning the problem statement.

Definition 1. A sensor si(xi, yi) covers a POI p(x, y) iff the Euclidean distance
d(si,p) between them is less than the sensing range Rs.

Let us denote a set of POIs covered by i-th sensor si as POIsobs(si) and call as
coverage area of i-th sensor. All POIs covered by an active network during j-th
time interval is denoted as POIsobs(tj), i.e.

POIsobs(tj) = ∪Ni=1POIsobs(si)|state(si,tj)=ON (1)

Definition 2. Coverage of a target field F at j − th time period tj denoted as
cov(tj) is a real number equal to a ratio of a number of POIs covered by an active
network during j-th time interval tj to all POIs, i.e.

cov(tj) =
|POIs|obs(tj)
|POIs|

(2)

Let us denote a number of POIs covered by i-th sensor as cov(si).
A sensor is assumed to consume energy for monitoring area and it depends

on its sensing range Rs. Consider a homogeneous sensor network, where all
sensors have the same sensing range, the energy consumption per time interval
is constant. A potential solution is a schedule of a network S deployed over a
target field prescribing states of activity for all sensors in the network during
the whole period of time of the network operation.

Definition 3. A schedule of a WSN is a binary Tmax × N matrix denoted as
Sol, i.e.

Sol(S) = {stateji}, where i = 1, ..., N and j = 1, ..., Tmax, (3)



where stateji ∈ [0,1] is a state of i-th sensor during j-th time interval, 0 corre-
sponds to OFF state and 1 is related to ON state.

Each row of the matrix is related to one of the sensors and represents its schedule
of activity over all period of network operation from t1 till tTmax . Let us assume
a sensor to spend one unit of energy during one time unit of its activity.

Definition 4. A schedule Sol(S) is a feasible solution if the following equality
is met:

(∀i)i=1,...,N |
Tmax∑
j=1

stateji = b (4)

Definition 5. Coverage string is a set of real values, each of which corresponds
to the coverage of a target field F during each time interval of the WSN operation,
i.e.

coverage string = {cov(t1), cov(t2), ..., cov(tTmax)} (5)

Definition 6. Lifetime of the WSN denoted as Lifetime(q) is defined as a sum
of time intervals, during which the coverage requirement is met,

Lifetime(q) =

Tmax∑
i=1

i|cov(i)≥q} (6)

Maximal time of network performance is restricted by the characteristics of
the network such as a number of sensors and their distribution, a distribution
of POIs over the target field, sensing range, battery capacity value and the level
of coverage required. The parameter Tmax is a predefined number and should
be set greater than the performance time Lifetime(q) and less than the upper
bound of network operation denoted as LifetimeUp.

We consider Maximum Lifetime Coverage Problem (MLCP) as a scheduling
problem applied to a WSN solving the area coverage problem in the discrete
two-dimensional space. MLCP has as an objective to prolong lifetime of a WSN
by minimizing a number of redundant sensors during each time interval in order
to minimize energy consumption. The function Lifetime(q) is maximized over
the space of all feasible solutions. Coverage requirement is given by a coverage
ratio q, which means that at least q-th part with small declination δ of all targets
is covered by at least one sensor.

MLCP - specific knowledge A searching process conducted by both a greedy
heuristic and SA-based algorithm (see, below) incorporates the MLCP specific
knowledge and is based on the following classification of columns in a sched-
ule. All columns of the schedule solution are divided on three groups called
three subsequences: Redundant Subsequence (RS), Excellent Subsequence (ES),
Unsatisfactory Subsequence (US). Each subsequence groups time intervals such
that a network of active sensors covers the target area with certain coverage
ratio, i.e.

ti ∈ RS, if cov(ti) > q + δ, (7)



ti ∈ ES, if |cov(ti)− q| ≤ δ (8)

ti ∈ US, if cov(ti) < q − δ (9)

Let us denote a number of elements in RS, ES and US as NR, NE and NU

respectively.

3 A greedy heuristic to solve MLCP

In this section, we present an iterative knowledge-based stochastic greedy heuris-
tic to solve MLCP. The algorithm is based on constructing a tree of solutions. A
root of the tree is a randomly created solution. In each iteration a solution called
a predecessor is changed under two steps described below to form one more solu-
tion called a successor. The next iteration continues from the node corresponding
to the best solution between a predecessor and its successor from the previous
iteration. The pseudocode of the algorithm is presented in algorithm 1. At each
iteration a schedule is a subject of two types procedures, pseudo codes of which
are sketched in Procedure 1 (algorithm 1, lines 6-12) and Procedure 2 (algo-
rithm 1, lines 18-21). The aim of procedure 1 is to improve a current solution

Algorithm 1 Pseudocode - Greedy algorithm for random initial solution.

1: Input : WSN, Target field, NI , q, δ, Tmax

2: initialize random solcur(N,Tmax)
3: k = 1
4: for i← 1 to NI do
5: compute US,
6: for i← 1 to NU - k + 1 do
7: for j ← 1 to k do
8: modify i and i+ j columns from US,
9: j = j + 1

10: end for
11: i = i +1
12: end for
13: compute Lifetime(q)
14: if Lifetime(q) of the predecessor > Lifetime(q) of the successor then
15: k = k + 1
16: end if
17: compute RS, US for the successor,
18: for i← 1 to NR do
19: modify the i− th column in RS in the solution,
20: i = i +1
21: end for
22: compute Lifetime(q) for the successor,
23: keep the best from the predecessor and its successor,
24: i = i+1
25: end for
26: return sol



via joining active subnetworks during time intervals when necessary coverage is
not achieved. This purpose can be obtained by multiple shifting several columns
from US toward ES or RS. A schedule is changed under the Procedure 1 as
follows. Two new columns are generated by applying boolean-valued functions
OR and AND to a pair of two values from same row from US columns. The new
first column contains the values resulted of OR operator, and the second column
contains the results of AND operator applied. As the algorithm proceeds it may
happen that a new solution is not improved in the sense of Lifetime(q). In that
case a parameter k (a number of use Procedure 1) is increased by 1. Initially, k
is equal to 1. The solution obtained by the first modification (Procedure 1) is
next changed by the Procedure 2. The aim of this stage is to reduce redundant
consumption of energy, i.e. a randomly chosen sensor in active state from RS
time interval is switched off and, next, is switched on during US time interval.

The Procedure 2 is executed on a current solution and consists of the two
steps. Firstly, from the i− th RS column a cell is randomly selected with prob-
ability pi, where n1 is a number of ”1” cells in the column. Let us denote a
row of the selected cell as j. Second, the ”0” cell in the in first US column in
j − th row is changed on ”1”. Therefore, the first selected cell is equal to 1. The
second selected cell is taken as the first ”0” cell from US and from the same row
as previous cell was. The selected cells swap their values. If there is not a cell
with the value ”0” in US, the predecessor solution coincides with its successor.
The above mentioned two steps are repeated consequently NR times for each RS
column.

The predecessor schedule and its successor are evaluated by Lifetime(q) met-
ric and the best one is saved as a current schedule for the next iteration to be
applied. These steps are repeated until stop condition is met. The last saved
schedule is a result of the algorithm.

4 Simulated annealing algorithm to solve MLCP

Simulated Annealing (SA) is one of the nature inspired metaheuristics based
on the physical annealing process observed in glass manufacturing process and
metallurgy.

The performance of SA depends on construction of a given solution neigh-
bourhood. Generating the sequential solutions is based on a swap of a pair of
opposite values in one row. A neighbouring solution is differed from the given
solution by a number of bits changing comparatively with the given solution.
Let us call this characteristic defined by a number of changing pairs of bits,
as neighbourhood size and denoted as kneigh - neighbourhood. In such a way,
in case of changing two random cells, we obtain a solution in 1-neighbourhood
from a given solution. The random neighbour is generated as follows: kneigh
times two opposite values chosen at random from the same row are swapped
(see, Algorithm 2, lines 8-16). The additional information about solution is com-
puted such as coverage of each time slot according which the time line is divided
on RS, ES and US. The idea of knowledge-wise neighbourhood generating pro-



cedure is to switch off an active sensor from redundant subsequence in order to
reduce a number of redundantly covered POIs and to switch it on in the first
unsatisfactory subsequence with the aim of increasing coverage at the additional
time interval. These steps may increase lifetime of the generated solution. The

Algorithm 2 Pseudocode of SA algorithm

1: Input : WSN, Target field, NI , q, δ, Tmax

2: Initialize unit Sol(N,Tmax)
3: Maximal temperature L
4: k
5: while termination condition is not fulfilled do
6: for i← 1 to L do
7: life = compute Lifetime(q) of Sol
8: for i← 1 to kneigh do
9: for j ← 1 to RS.size() do

10: choose a random cell of ”1” value from i− th RS column, the row of the
gene let us denote as l

11: find the first ”0” gene from US and l − th row
12: swap the values of the chosen pair
13: j = j + 1
14: end for
15: i = i+ 1
16: end for
17: lifeN = compute Lifetime(q) of SolN
18: ∆ = life - lifeN
19: if ∆ ≤ 0 then
20: Sol = SolN
21: else
22: Sol = SolN with probability exp

∆
T

23: end if
24: decrease T (i)
25: end for
26: update termination values
27: end while
28: Sol

pseudo code of SA solving MLCP is presented in Algorithm 2. SA algorithm
works until termination condition meets performing cycles of searching solutions
in the neighbourhood of the initial solution. Each cycle consists of several itera-
tions characterized by the temperature. During one iteration a random solution
within the current solution’s neighbourhood is created, Lifetime(q) for the cur-
rent solution and its neighbour is computed, the current solution is compared
with the created neighbour. The better new solution always replaces the old one,
while in case of worse neighbour it replaces the current solution with probability
exp

∆
T so that the probability of acceptance of the new solution depends on the

temperature value and difference in values of evaluation function between two



solutions. At the end of an iteration temperature level is increased according
with the cooling scheme.

5 Experimental results

We consider WSN consisting of a number N of sensors equal to 100, 200 and
300, respectively. For each value of N , we created 3 instances, which differ by
random allocation of sensors, so 9 instances were used in experimental study.
Each instance is described as Instance{indicator of network size}{order number
of WSN instance}, where N is equal to indicator of network size times 100. To
give an example, Instance23 represents the third instance of WSN consisting of
200 sensors. The algorithm’s parameters should be chosen as the set of the best

Fig. 2. An example of a typical run of two algorithms: greedy and SA for instance11,
Rs = 20, b = 10.

values for each of the algorithms: greedy heuristic and SA. SA is defined by the
following values. Temperature is cooled according to the logarithmic scheme with
initial temperature 50, length of the temperature cycle 25, the frozen level 10 and
maximal number of iterations 100. The termination condition is as follows: ex-
ceeding maximal number of iterations or achieving the frozen temperature level.
Greedy heuristic needs to set a number of iterations equal to 150, after which the
algorithm stops. The main component of computational cost of both algorithms
is related to calculation of Lifetime(q) function. An example of a typical run of
these two algorithms is presented in Figure 2, which presents the dynamics of
Lifetime(0.9) obtained by greedy and SA for three instances consisting of 100,
200 and 300 nodes as a function of a number of computation the Lifetime(q)
function. From the figure one can observe that greedy converges quicker for all
instances with a slightly better quality than SA. However, when the size of an
instance is relatively large (instance 31) the greedy algorithm achieves a local
optimum, while SA continuously improves quality of a solution.

Let us finally discuss the overall results on the MLCP input data. In order
to present a broader view, WSN instances with different properties will be used.
For testing purposes we will consider nine WSN instances with three types of
densities and sensing coverage range 20 deployed over the same target field <100,



100, 5>. Coverage requirement is represented by three values: 0.85, 0.9 and 0.95.
Battery capacity is equal to 10.

Table 1. Maximal, average with standard deviation values of Lifetime(q) obtained by
two algorithms: greedy and SA for nine instances; q ∈ = {0.85, 0.9, 0.95}, Rs = 20,
b = 10.

q algorithm Max Avg ± σ Max Avg ± σ Max Avg ± σ

instance11 instance12 instance13

greedy 54 52 ± 3.32 58 56 ± 4.7 52 49 ± 4.36
0.85 SA 51 49 ± 1.0 55 52 ± 1.73 49 47 ± 1.0

greedy 44 42 ± 3.88 47 44 ± 4.36 41 39 ± 3.88
0.9 SA 42 38 ± 2.0 46 43 ± 1.41 38 36 ± 1.0

greedy 32 30 ± 3.47 35 33 ± 3.32 29 27 ± 4.36
0.95 SA 29 26 ± 1.0 33 29 ± 1.73 25 23 ± 1.0

instance21 instance22 instance23

greedy 109 107 ± 4.36 108 105 ± 5.48 109 107 ± 4.48
0.85 SA 110 106 ± 1.41 108 104 ± 2.23 110 107 ± 1.41

greedy 93 90 ± 4.7 93 88 ± 7.82 93 91 ± 4.48
0.9 SA 88 85 ± 1.73 87 84 ± 1.41 90 86 ± 1.73

greedy 65 60 ± 6.71 60 58 ± 3.75 63 61 ± 4.48
0.95 SA 64 62 ± 0.0 61 59 ± 1.0 66 63 ± 1.41

instance31 instance32 instance33

greedy 166 162 ± 6.49 158 156 ± 4.8 165 160 ± 9.44
0.85 SA 165 162 ± 1.73 163 158 ± 2.0 164 161 ± 1.41

greedy 139 135 ± 6.33 136 129 ± 9.28 139 136 ± 4.36
0.9 SA 137 130 ± 2.44 130 126 ± 2.23 135 131 ± 2.44

greedy 97 92 ± 9.8 88 85 ± 5.39 98 93 ± 8.84
0.95 SA 98 94 ± 1.73 94 89 ± 2.82 98 95 ± 1.0

Table 1 presents results of systematic study of both algorithms conducted for
representatives of three types of instances, which support our previous observa-
tions. The table contains maximal, average and standard deviation of the goal
function values obtained by greedy and SA based on averaging of 10 runs. The
remaining parameters are as follows: q-requirement is based on the set {0.85,
0.9, 0.95}, nine instances of WSN with Rs = 20, and b = 10. One can see from
the table that the average and the maximal values of Lifetime(q) are differed
slightly. In the most cases, it is evident that greedy provides better solutions
than SA, the results concerning instances of WSN consisting of 100 nodes can
serve as an example. Meanwhile, with growth of the problem complexity, when
N is equal to 200 or 300, SA finds better solutions, for instance, see q equal
to 0.85 or 0.95. It should be notice that standard deviation computed for SA
results in all cases are better than σ-values computed for the results provided by
greedy algorithm. This indicates, that SA is a more stable than greedy algorithm.
In such a way we can assume that in the case of bigger problem instance SA



enables to provide better solutions than greedy. To summarize aforementioned
discussion it is shown that there are two different approaches solving MLCP
providing good different solutions of the problem.

6 Conclusion

In this paper the problem of lifetime maximization in WSNs stated as MLCP
with assumption of not full coverage defining by a coverage ratio requirement
q was considered. The problem belongs to a class of NP-hard problems char-
acterized by high computational complexity, what motivates to use algorithms
provided approximate solutions.

To solve the problem we proposed and study two centralized knowledge-
based algorithms: stochastic greedy heuristic and simulated annealing algorithm.
All of the algorithms were studied on the same testbed and under the same
assumptions. Results of experimental study of the algorithms shows that the
greedy algorithm is efficient in both a quality of solutions and time complexity
for a medium sizes of the problem instances. When the size of the problems
becomes relatively large simulated annealing provides better quality of solutions,
however it is achieved by increasing computational time of the algorithm.
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