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Abstract 
Situations of distributed decision making are usually characterized by the existence of different points of view 
between decision makers (DMs), and by different temporal dynamics within the system, which reinforces 
importance of studies on information data flows between DMs, and founds usual classical DDSS approaches. 
We propose here not to limit the analyse of the situation (and consequently the role of the DDSS) to information 
flows, but to integrate cognitive modelling of each DM, and to use these latter for better analysing relevant 
information, in order to control it, within the flows exchanged in the system. Our approach relies on a realistic 
application framework concerning decision making in Maritime Patrol. 

INTRODUCTION 
In classical cognitive science approaches, decision making is perceived as a data processing activity (Lindsay & 
Norman 1980). The activity is characterized by processes composing it, information treated, flows between the 
different processes, and a final result. This latter is an information intended either to another cognitive activities, 
or to the execution of an action. 
The focus in this article is distributed, or collective, decision making, i.e. situations where multiple agents have 
to cooperate. Our reflection relies on a realistic application framework in which a decision support system might 
improve global team performance. 

Distributed decision making 
The distributed aspects of decision refer to spatial, temporal and/or functional characteristics. The decision 
making may be spatially distributed in reference to the different localisations of the Decision Makers (DMs), that 
usually lead them to different points of view upon the surrounding environment. This separation, possibly 
geographic, does not prevent the cooperation between the agents that can be achieved through a network. 
Temporal characteristic of the distributed decision making may be considered as “extrinsic”  when referring to a 
dynamic and changing environment: information are only valid in a certain time frame, and the processes have to 
take into account these evolutions. This characteristics is also” intrinsic” when considering the converging 
dynamics of the collective decision, while taking into account the individual decisions of the different team 
mates. 
The distributed aspect of the decision making may finally be considered as functional, meaning that agents may 
be assigned with different roles, particularly depending on their competencies. We are focusing on situations 
where DMs are experts of their domain. During the decision making, they mainly proceed by identification of 
prototypic situations (Rosch 1978). These prototypic situations are supposed to be stable structures stored in long 
term memory (Montgomery 1983). Observing the DM’s effective choices, it is thus  possible to access to these 
structures by an ad hoc learning process. 
The three dimensions of the distributed decision making are narrowly associated. The spatial distribution, which 
enables the obtention of different points of view, is thus linked to functional distribution which supposes that the 
agents perceive reliable information according to their own competencies. Let us note that, even if these pieces of 



 

 

information are identical, spatial distribution might be necessary, e.g. for security reason, or simply to ensure the 
correct follow-up of the environment dynamic, while giving the possibility to the different agents to manage 
different temporal scales. The value of any data can need to be updated at any moment (breakdown,  
disappearance of the agent in charge of the data, rapid evolution of the data). 
This situation applies to our application framework, i.e. Maritime Patrol (object at sea identification) where 
information of different kind (sonar, radar etc.) are necessary. Each source of information cannot separately be 
generally enough to proceed with the identification task and the decision making requires the intervention of 
varied competencies. The decision, i.e. the identification of the object, then requires cooperation of different 
agents who can be spatially separated (e.g. with a team on the ground, another one at sea, and a third one in a 
plane). Exchanges between agents are thus crucial within the process. 
The previous situation is characterized by the fact that individuals have a common goal and the will to work 
together. We can then speak of cooperative work and of teams instead of groups. This working situation does not 
exclude different degrees of freedom, and a hierarchical structure can be instantiated. This latter even can be 
useful, e.g. when the different agents cannot succeed to a collective decision whereas not to decide is worth that a 
bad decision, while giving responsibility to one of the team mates , and while enabling him to “slice” the process. 
We thus try to approach an “anytime” process, i.e. being able to give a decision at any time. 
In this article, we propose some methodological reflections, and specification elements of a distributed decision 
support system. 

Positioning 
Current distributed decision support systems (DDSS) generally focus on the global structuring of the process in 
different stages, and usually ignore  individual processes but work directly on the aggregation or the combination 
of individual results (Ruta & Grabys 2000). 
We propose to integrate cognitive individual models to the study of the distributed decision making in order to 
identify the articulations of the cooperation in terms of information exchanged by the individuals, and of the 
benefit to the individuals of the representations they construct of the other team mates and of the team. Our 
approach is resolutely anthropocentric. To maintain experts in the loop of cooperation between individuals, via 
artificial systems, represents a guarantee towards the complexity of the considered problems (Bisdorff 1999, 
Barthélemy et al. 2002): following Simon (1957) about the collaboration between artificial intelligence and 
operational research, we think that “three head are better than two” (Lenca 2002), the third one being the Human. 
In this article, we are thus interested in individual representations when contributing to a collective decision. We 
will identify elements that a DDSS should implement to support in first place the individual processes implied in 
the construction of a distributed decision, and in the second place the distributed decision making itself. 

A study case: decision making within a military patrol crew 
Crews in charge of maritime patrol are made up with operators having various expert competencies, different 
points of view by the means of specialized instruments. They cooperate to achieve a common goal given by a 
mission they have been affected to. A hierarchy generally exists, to clearly distribute roles and responsibilities, 
and to avoid jamming of the process, in case of dissension. 
Operators are usually four: three sensors operators (electronic support measures – ESM –, imagery –
 ISAR/FLIR –, acoustic analysis – SONAR –) and a leader, the tactical coordinator – TACCO –. They embark in 
planes like the Atlantic2 (in the case ,of the Casa235 plane, they are six team mates) for military and civil 
missions as various as surface vessel or submarine surveillance, anti-pollution fight or search and rescue at sea. 
Civil operations might also involve privates being at sea. 
All these mission usually have a recurring task: the track identification. This identification consists of labelling 
and classification of a radar echo (called track since it is under processing), to determine its nature (submarine, 
surface vessel, commercial or pleasure, etc.), its membership (friend, foe or neutral), its class (frigate, etc.) (see 
Figure 1). 
Regarding the nature of the crew and of the task, task identification is a distributed decision activity as we 
mentioned early. The finality of the identification is to provide a classification of the track which might be, if the 
mission requires it, extremely precise. Some identifications can thus provide the name of the vessel, and, 
consequently, all sorts of information connected, in particular  via the cooperation with software agents (access 
to database, automated decisional agents, etc.). 



 

 

Figure 1: Missions of maritime patrol 
The context of these decisions is in addition often characterized by uncertainty conditions, limited time or by the 
fact error costs are not symmetric. In the military case, to mismatch a friend for a foe leads to what we sadly are 
now used to call a “friend shot”. The opposite error does not have the same cost. In the same way, in case of a 
search and rescue mission, not to identify a boat as being in need of emergency does not imply helps whereas 
people are in danger. The opposite error, once again, does not have the same costs. This leads the operators, 
being conscious of the consequences of their decisions, to an important level of stress. In addition, surveillance 
missions can be long (up to eight hours) and tiredness might become an important source of errors, particularly if 
a cognitive overload appears. Two famous examples in a military context sadly illustrate these kind of situations: 
destruction of a civil aircraft by the North-American navy (Klein 1998, chap. 6), and the strike of two civil 
aircrafts (Otelli 2003). 
A good cooperation between human and software agents, in suitably distributing tasks between them, and in 
limiting situations of cognitive overload, can thus allow to better process the essential data. The tasks 
distribution and scheduling have particularly been studied in air traffic control, e.g. in Vanderhaegen et al. 
(1994) and in Crevits (1996). The assistance to the operators in maritime patrol might thus allow to improve the 
quality of decisions taken by the crew. 
In this identification task, the role of a sensor operator is to propose, assisted by his own instruments and by the 
set of measures that he can make, a first classification, which constitutes an “individual/intermediate decision” in 
the team process. The role of the TACCO is to synthesize information provided by the sensors operators, to 
establish the global track identification, which constitute the “unified decision”. 

MODELISATION 
The cognitive approach in the study of individual or distributed decision making is a vast field of study, and 
models within are numerous, see e.g. in Lipschitz (1993). So, initially, we present two models relevant for our 
approach and context, and on which we rely our construction of mental representations explained in the last 
paragraph of this section. 
The first model, called RPD – Recognition-Primed Decision – (Klein 1989, and Klein 1998, chap. 3) will help us 
in explaining the cognitive processes implemented by the different team mates. The second one is a model of 
long term memory (LTM), called MINERVA2 (Hintzman 1988), and it allows us to justify our description of the 
different mental representations handled by each team mate during decisional process. 

Recognition-Primed Decision 
Historically, this model is one of the first in the naturalistic decision making (NDM) domain. It stipulates what 
has became the basis of many studies, including ours: in a stressing situation, with uncertainty, time constraints 
or, simply, that does not require an exhaustive search for an optimal choice resulting of an explicit, analytical, 
rational choice (Simon 1957), expert DM decides through the recognition of the situation, of its typicality, and 
through associating to the identified pattern a corresponding behaviour that has been learned by experience. Let 
us note that situations that are studied, and particularly their dynamics, make illusory the search for an “optimal 
solution”. 
The model presented in Figure 2 is a “diagnosis” variation of the complete RPD model, which does not describes 
how the course of action (COA) resulting of certain decisions can be mentally simulated before being 



 

 

implemented. 

Figure 2: Recognition-Primed Decision model (“diagnosis” variation) 
In the first phase of the process, the DM perceives a situation and rules about its familiarity. More precisely, this 
corresponds to a recovering process from LTM (Richard 2004). The DM perceives cues, and tries to construct a  
satisfying representation, thanks to a whole of events stocked in LTM (named concepts or prototypes), and 
activated by the context. 
If the recovering process is not convincing, the DM then tries to refine its perception of the situation by a 
proactive search for supplementary cues, on observation dimensions he has not firstly explored. If the recovering 
process is convincing, he considers the situation to be familiar and recovers, in his working memory (WM), the 
reference of this (these) remembering(s). The search for dominance structures is also a typical model relying on 
the preceding considerations (Montgomery 1983). As these same structures can be expressed in the form of 
production rules, we have developed multiple approaches, essentially based on the Moving Base Heuristic 
(Barthélemy & Mullet 1994), allowing them to be learned (Lenca 1997, Le Saux 2000). 
In the second phase of the process, the recovered reference is “peeled”. It thus allows to identify critical cues 
that the DM will have to follow to, according to his experiences, correctly understand the situation. Some 
expectancies are also defined: they represent awaited values on certain cues, and allow the DM to confirm or 
cancel his recognition of the situation. Moreover, even if the DM usually has one or more generic goals, e.g. 
imposed by the mission, the recovered reference allow him to define plausible goals adapted by the particular 
situation he is observing. The last point concerns the definition of a COA for the most plausible goal. This COA 
only represents the result of the decision if this one requires an action on the environment (pragmatic finality). 
Thus, in the case where decision leads to a production of information (epistemic finality), we will consider that 
there is no COA in the recovered reference. 
Finally, if there is no violation of expectancy and that the decision has a pragmatic finality, the COA can begin. 
We only consider in this article decisions with epistemic finalities. 

Long Term Memory Model 
Decision making as described by the RPD model mainly relies on recognition and recovering from long term 
memory reference situations that are relevant for the decision maker. But the RPD approach does not provide 
many indications on the recovering processes itself. It seems thus necessary to complete this general approach 
with a memory model allowing to precise elementary operations involved in the reference recovering. 
The MINERVA2 models within the descriptive scope of the memory system implementing a working memory 
and a long term memory. As a multiple-trace model, MINERVA2 assumes that each experienced event is 
represented in long term memory by its own mnesic trace. Thus, LTM might be seen as a (very) vast collection 
of traces, formed in various contexts. These contexts are moreover part of the traces, and this allows to easily 
isolate those too far from the situation one. 
It's important to note that this model implicitly implies that the recovering process is made by pattern-matching. 



 

 

In this case, memory is not structured according to high levels knowledge architectures (e.g. semantic network), 
and Hintzman locates this recovering process in the signal level of the SRK (Signal – Rules – Knowledge) 
hierarchy (Rasmussen 1983). This level is associated with expert behaviour, therefore the MINERVA2 model 
proves well adapted to the problems we are raising, and to which we want to apply the RPD model. 
Recovering process is not instantaneous, but always appears in response to a (some) cue(s) from WM. We 
suppose that an event activate all traces in parallel. These latter respond together to generate a reference which is 
stored, from LTM, to WM (see Figure 3). This generation is carried out, in the model, by summing the different 
traces while weighing them with activations, calculated in order to support those whose context is similar to the 
situation one. 

Figure 3: Traces activation following an event occurrence  
(Ai represents activation degrees of each trace by the received event) 

Nature of the representations 
Mental representations we are describing in this article are only each DM’s knowledge, at time t, on 
competencies, roles and information handled by individuals. They have to allow answers on questions about help 
one can bring to the others, and those he is allowed to wait for. 
Representations contain no information on the kind of process implemented by the others. Each team mate 
knows that another one is able to make such or such processing of such or such problem dimension, but does not 
know, on the other hand, how these processing are implemented, mainly because the fields of expertise are 
different. The responsibility of these treatments falls to the concerned team mate, and to the DDSS supposed to 
assist the team. Thus, a formalisation of the individual processes is required for the DDSS. 
It's also important to explain our position about distinction that might be introduced between role and 
competencies of an individual: we consider that the role assigned to an individual at a given time leads him to 
implement a subset of his competencies. Thus, if needed (emergency, disappearance of an agent, etc.), an 
individual might use competencies outside of his role. In spite of that, we suppose that roles have been 
judiciously chosen. In particular, this is the case in our application framework, where constitution of the team 
relies on the TACCO expertise, insofar that he has freedom in the choice of his team mates. In the suite, we 
consider this hypothesis verified. 
Thus, the representation an individual has of himself contain: 

• his role: list of the observation dimensions he manages, and on which he is able to give values, 
• his cues: values on observation dimensions he directly perceives from his environment, 
• his expectancies: expected values on some observation dimensions. 

Let us note that list of possible observation dimensions on objects might be bigger than the one managed by the 



 

 

individual, and thus, might imply a cooperation with a team mate whose managed dimensions would complete 
the scene analysis. The interest of the DDSS mainly resides in its capacity to improve this cooperation. 
Thus, representation DM have of each other is simply constituted by the list of observation dimensions he 
manages, i.e. his role. 
According to the RPD model we rely on, we stipulate that the list of dimensions is established when the situation 
is experienced, either from the DM experience, or after a search for information. This step is in particular 
necessary when activation of the recovered reference is below a given satisfaction threshold, specific to the user. 

DISTRIBUTED DECISION MAKING: METHODOLOGICAL REFLECTIONS AND 
IMPLEMENTATION 
We are mainly taking up the question: “What influences the presence of team mates does imply on the individual 
decision process?”. Consequently, social organization and communication within the team are two main factors 
to study. They might allow to explain operation differences of two teams harnessed with a same task 
(Hutchins 1991). We are mainly focusing here the analysis of flows between team mates. 

Decision process within the maritime patrol 
To decide means to find a unique solution to the objectives given by the mission, i.e. identify tracks. The 
solution can be obtained by the convergence of the different points of view (this makes it unique), or by the 
TACCO decision, in case of dissension. In the first case, the decision is unique and consensual. In the second 
one, it is “dictatorial”. The TACCO can obviously have an organisational role, as a negotiator or a mediator, in 
improving, even while requiring, a cooperative mode. 
A solution is obtained by affecting values to variables allowing the identification of an object, this variables 
being considered at a “global” level on which team mates agree. This especially means that the interpretations of 
variables do not require the expertises of the equipments having been used for the measurements (the variables 
are global in opposition to variables specifically attached to a certain field of competencies or to a particular 
operator). E.g., temperature can be given by a thermometer for one DM and by an electromagnetic radiation 
measure for another one: at the global level, both operators will be able to cooperate (according to a certain scale 
of measures). We are then facing an affectation problem of values to variables, aiming at the prototypes 
identification (see paragraph “Long Term Memory Model”). Cooperation and information flows (global value 
exchanges, confirmation, etc.) must then improve recognition phase. 
We can then rely on a matrix representation (see Figure 4 and Figure 5) of situations on which different models 
of individual decision making might apply (decision tree, bayesian network, based case reasoning, etc.). 

Figure 4: Information representation of agent i (crosses indicate initial cues allowing recovering from LTM) 
 

Figure 5: Information representation of agent j seen by agent i 



 

 

 
Moreover, information flows, key points of the cooperation, and of the social organization, of the team, are 
easily observable with these kind of structures. They allow in particular the study of polarisation phenomena, or 
smoothing ones (see paragraph “Information flows control guided by collective behaviours”). 

Decision process for an individual on his own 
When the DM is alone, the decision process might be described this way: 

(i) Initial perception of the situation: 
• perception of initial cues; 
• context perception; 
• definition of objects under study. 

(ii) Memory recovering thanks to cues: if the recovering process is not satisfying, we go back to point (i) 
to search for more information (i.e. either to refine the perception of initial cues, either to select new 
cues), otherwise we continue. 

(iii) The recognition of the situation is satisfying. The recovered reference brings back: 
• another important observation dimensions, that might not have been taken into account .yet; 
• expectancies to verify as new data on the situation become available; 
• plausible goals. 

(iv) Expectancies tests then begin: if a violation is observed, the individual might be lead to a search for 
more information, or (more drastically) to start again the recovering process to get a reference better 
adapted (point (i)). 

Decision process for an individual as a team mate 
Information flows appear when there is more than one individual in charge of the decision, and when they 
cooperate. Let us take again the previous points to show what might be modified and added by the cooperation: 

(i) Cues perception remains an individual process. On the other hand, definition of the objects under 
study might require harmonization between team mates. 

(ii) Recovering processes also remain individual processes, just as the resulting notion of satisfaction. 
Nevertheless, during information research, one can call upon a team mate who, either has a better 
control over the observation control, and might thus give another finest/more reliable measure, or 
control another observation dimensions, and might then give complementary measures. 

(iii) Recovered references individually bring back the different preceding elements. The cooperation might 
then again need some harmonization, for exchanging the “plausible” goal. But this is not mandatory 
since a parallel work on different objects of the situation is possible. 

(iv) The considerations coming for the expectancies tests are very similar to those of the point (ii). Each 
team mate test the expectancies he is aware of. Nevertheless, two team mates may have some 
expectancies in common. If one is declared violated for one team mate, the information have to be 
transmitted to the other team mate who will have to take it into account. 

Flows nature 
With the sight of the preceding paragraph, exchanged information between team mates might simply be 
summarized this way: 

• Exchanges of individual lists of “objects under study”; 
• Exchanges of measures: 

– to confirm a personal, but not reliable, measure; 
– to obtain new measure, on a dimension not handled; 

• Exchanges of the goal pursued; 
• Warning about violated expectancies. 

DDSS: SPECIFICATIONS 

Need for individual behaviour modelling 



 

 

The distributed decision support system we envisage cannot limit itself to a “surface” control of information 
flows: as exposed in the introduction of the article, individual decision models, even if they turn out to be 
heterogeneous, might allow to identify the relevant data for one DM of the team, and to understand and better 
use the communication impact of a variable between team mates. Conversely, only the analysis of information 
transmissions or missing data gives only little information for the setting of an assistance (data are missing for 
the novice DM, but might not be important for the expert (Shanteau 1988)). 
One main function of a DDSS should therefore to integrate individual decision models that will be the basis of 
assistance functions to the team DMs. 

Obtention of individual decision making models 
If the preceding principle is commonly accepted, there remains a problem about the elicitation of the individual 
decision processes, and notably in dynamic or noisy environments as we mentioned above. Two approaches – at 
least – are possible: 

• The first one consist in imposing to the machine representation a format guided by considerations of 
cognitive realism, but also by the capacities of this format to be adapted to consensus calculation (or any 
reasoning trying to aggregate the different individual decisions into one unique “collective” decision). 
One classic methodology consists in collecting decisional expertise to the expert DMs, and in the 
translation of this information into the desired format, in a fixed and definitive manner. We applied the 
approach in the maritime patrol framework context (Coppin & Skrzyniarz 2003, Skrzyniarz 2003), with 
an imposed format of decision trees for each individual decision process. This allowed to significantly 
improve the number of correctly identified tracks in a given time, and to globally decrease the time 
needed to the identification of the tactic situation. 

• Exchanges of measures: the second approach relies on the non-intrusive observation of individual 
decisional behaviours and on the adaptation (eventually continuous) of a generic model according to 
information actually observed. This approach might allow avoiding the classic bias observed during 
expertise verbalisations (“the expert is not expert of his expertise” (Barthélemy & Mullet 1994)). This 
solution presents the advantage to propose an adaptable model (implementation of learning techniques), 
just as the implementation of a more advanced man-machine dialogue (Le Saux et al. 1998, Le Saux et 
al. 2002). It is rather in this direction we are turning towards, in particular because of the dynamic and 
changing characteristic of the environment. 

The DDSS must thus integrate learning functions allowing the convergence of “satisfying” individual decision 
models. The definition of a “satisfying” model will be either directly bind to the predictive power of the model 
(comparisons of the predicted decisions with actually taken decisions by the DM), or bind to the explicit 
acceptation of the model by the DM if the DDSS integrates adequate means of visualisation/edition. 

Information flows control... 

... guided by individual interests 
On the basis of individual models (following the RPD approach), it might be possible, according to the current 
situation, to identify a set of relevant information for each individual DM, and – but only on the basis identified 
individual decisional behaviours – to organize information exchanges in order to facilitate cooperation: 

• Localisation of observation dimensions taking part in respective decision processes, in order to prevent or 
regulate “intra-dimension” conflicts between individual DMs. This function relies on study of the 
covering parts between sets of team mates observable dimensions (see Figure 4 and Figure 5); 

• Management of requests and demands of information between DMs (also on the display and man-
machine interaction fronts); 

• Emphasizing and explication of consequences of a decision, or of the importance of an observed 
dimension by one DM of the team, regarding decision models of his team mates. 

... guided by collective behaviours 
The DDSS should be able to analyse and act at the group behaviour level: in this case, the DDSS will not try to 
improve, or eventually optimise, each individual decisional behaviour, but it will replace each observed 
behaviour in a group logic in order to facilitate cooperation: 

• In identifying polarisation phenomena of the group (Moscovici 1996), that may lead each individual DM 
to adopt imitating behaviours – reinforced by facilitated access to other DMs models – and, therefore, to 
collectively not correctly explore the solutions space, 

• In maintaining or smoothing of active minorities (Moscovici 1996) on the period of collective decision 



 

 

making: in response to the preceding phenomenon, it might be necessary to encourage part of the DMs to 
analyse a neglected part of the solutions space. On the other hand, the maintenance of an active minority 
may be globally judged as negative for the collective decision, 

• By the synthesis and the presentation of indicators showing the current state of the consensus or the 
harmonization between individual DMs. 

Maritime patrol framework 
In the framework of the maritime patrol, characteristics of the RPD model may be instantiated as follows: 

• Situation: for a sensor operator, the “situation” may be reduced to one single object/track to identify. For 
the TACCO, the “situation” may be understood in the more common sense of “scene”, and will therefore 
be constituted by the tracks, each one being a whole “situation” for the sensors operators. 

• Goal: the goal of a sensor operator consists systematically in transforming the situation he is currently 
treating – i.e. the track he is identifying – into a “classified track”. In other words, the goal of each 
operator is to move one track out of its unknown state into a classified state. This goal is transposed to the 
whole set of tracks for the TACCO (and complete by the eventual recognition of a “tactical plan” 
corresponding to the observed tactical situation). 

• Cues: for the sensor operators, cues are the measures that are done on each track. For the TACCO, 
measures are completed by intermediate identifications given by the sensors operators. 

• Expectancies: for the sensor operators, expectancies correspond to expected but not directly measured 
characteristics, which are induced by the track identification in progress. For the TACCO, expectancies 
can be similar but also, and especially, concern classification of tracks that have not yet been treated (but 
induced by the global comprehension of the situation). As an example, the expecting classification 
(expectancy) of a track localised within a set of friendly identified tracks will also be “friend”. This level 
of expectancies may also apply to a sensor operator who, if he works in an “intra-track” manner, may 
after all have context information, and thus classifications of adjacent tracks. The expectancy will then 
concern no longer the characteristic of the object but on his class membership. 

Problems assumed by collective decision and possible role of a DDSS 
Minimal expected functions of the DDSS are: 

• the sharing of the studied object and of the goals: generally speaking, sensors operators are not supposed 
to process the tracks in the same orders. In this case, cooperation plan is systematically managed by the 
TACCO, and the expression of the common goal is necessarily at the global situation level. When a 
difficult case – or directly leading to a classification dissension – is detected, it is also possible, and 
necessary to lead operators in a cooperating state, i.e. to make them work on the same track; 

• Exchanges and confrontations of cues/measures; 
• Comparisons of single expectancies with measures of the same dimension and coming from other team 

mate(s). 

ASSESSMENT AND PROSPECTS  
The approach we have presented in this article relies on a certain number of studies on decision processes 
modelling that have been realised and validated in a mono-decision maker context. Otherwise, the transition to 
the collective dimension have already been under studies while limited to information flows between decision 
makers, and to a unique formalism to represent individual decision making processes. We propose here to bring 
together these two approaches and to validate the methodology and the decision models in a real or realistic 
environment. Experimentations are thus planned from technical-operational scenarios validated by domain 
experts, and in a framework allowing non-intrusive observations of the working decision makers, namely in the 
integrated laboratory THALES – ENST Bretagne, ATOL – Aeronautics Technico Operational Laboratory. 
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