
HAL Id: hal-02122729
https://hal.science/hal-02122729v1

Submitted on 7 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronisation dans les Réseaux Dynamiques
Bernadette Charron-Bost, Shlomo Moran

To cite this version:
Bernadette Charron-Bost, Shlomo Moran. Synchronisation dans les Réseaux Dynamiques. ALGOTEL
2019 - 21èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications, Jun
2019, Saint Laurent de la Cabrerisse, France. �hal-02122729�

https://hal.science/hal-02122729v1
https://hal.archives-ouvertes.fr

Synchronisation dans les Réseaux Dynamiques

Bernadette Charron-Bost1 Shlomo Moran2

1
École polytechnique, 91128 Palaiseau, France

2 Department of Computer Science, Technion, Haifa, Israel 32000

Abstract

Le problème appelé “firing squad” consiste à synchroniser les nœuds d’un système distribué. Ce
problème a été originellement étudié pour une châıne d’automates communicants à états finis. Au
départ, tous les nœuds de la châıne sont passifs excepté un des deux nœud extrémités chargé d’envoyer
un message d’activation aux autres nœuds. Sur réception d’un message d’activation, un nœud devient
actif et retransmet ce message à ses voisins. Lorsque tous les nœuds sont devenus actifs, ils doivent ”faire
feu” (i.e., entrer dans un état particulier) simultanément.

Ce problème se généralise au cas où chaque nœud peut devenir actif lorsqu’il le souhaite, sans devoir
impérativement répondre à la sollicitation d’un autre nœud déjà actif. Les nœuds ne sont alors autorisés
à faire feu que s’ils sont tous actifs. Nous étudions cette généralisation du ”firing squad” lorsque les
nœuds correspondent à des machines de Turing (avec un nombre d’état infini) et que la topologie est
un graphe dynamique avec des arrêtes qui peuvent changer arbitrairement au cours du temps. Notre
principal résultat est une caractérisation des graphes dynamiques pour lesquels le problème du firing
squad est résoluble. Nous étudions aussi comment une information sur le diamètre du réseau ou encore
la randomisation permettent d’améliorer les solutions algorithmiques à ce problème.

1 Introduction

Many distributed algorithms assume a synchronous networked system, in which computation is divided into
synchronized rounds that are communication closed layers. In this model, it is typically assumed that each
run of an algorithm is started by all nodes simultaneously, at the same round (e.g., [8, 4, 5]). In this work,
we justify this assumption of synchronous starts for dynamic networks with no central control that monitors
the node activities, but with sufficient connectivity assumptions.

We study a generalization of the associated synchronization problem, classically referred to as the firing
squad problem. This generalization considers a communication network of unknown size, in which messages
are delivered along a set of edges that may change in each round. All nodes are initially passive, and a node
becomes active upon receiving a start signal at an unpredictable time. The goal is then to guarantee that
if all nodes received start signals, then the nodes should synchronize by firing - i.e., entering a designated
state for the first time - simultaneously.

We generalize the original firing squad problem in two ways: First, while the original formulation assumes
that the network is defined by a fixed connected undirected graph, we allow for unidirectional communication
links that may be added or deleted in each round. Second, in the original formulation, start signals are
supposed to be diffusive, i.e., a passive node that receives a message from an active node immediately
becomes active. In our formulation start signals may be non-diffusive – a passive node that receives a
message from an active node may remain passive for an unpredictable time. The firing squad problem (or
FS problem, for short) is then formally specified by (FS1) a node fires if and only if all nodes have received
start signals and (FS2) all the nodes that fire, fire at the same round.

As a basic synchronization abstraction, the fulfillment of FS1 and FS2 can be used in various types of
situations to guarantee simultaneity: for distributed initiation (to force nodes to begin some computation
in unison), for distributed termination (to guarantee that nodes complete their computation at the same
round), or in real-time processing (where nodes have to carry out some external actions simultaneously).

Another typical scenario that requires both FS1 and FS2 is when some algorithm needs to be executed
several times in a row, and the (i+ 1)st run should be started simultaneously, after all nodes terminated the
ith run. The latter application exemplifies the relevance of the model of non-diffusive start signals as a start
signal corresponds there to the termination of a local computation.

The FS problem was originally studied in the context of automata theory (e.g., [6, 7]). This model
considers a finite but unknown number n of nodes which are connected in a line. Nodes are identical finite
state machines whose number of states is independent of n. A start signal is given to a node located at
one end of the line - the “general” - and then is propagated to the rest of the nodes; thus the above model
basically assumes diffusive start signals. The main challenges in this model are to reduce the number of
states of the finite state machine and the time required to reach the firing state.

The FS problem has also been studied in the context of fault tolerant distributed computations (e.g.,
[2, 3]). This model also assumes that the nodes have full computational power, but otherwise the setting of
the problem is different: The primary topology is a connected bidirectional graph and the number of nodes
n is known. Links are reliable and at most f nodes may be faulty, for various types of faults. The topology
is weakly dynamic, in the sense that all the edges from non-faulty nodes are stable, and it may become
non-strongly connected. Start signals are assumed to be diffusive. Moreover, the problem specification is
different: e.g., faulty nodes are allowed not to fire simultaneously. For all these reasons, our results on the
dynamic FS problem are incomparable to the ones on the fault-tolerant FS problem.

2 Summary of our results

We consider a networked system with a set V of n nodes, with distinct identifiers. Nodes run identical local
algorithms, i.e., their codes do not depend on node identifiers. Moreover, they do not know the network size n.

Computation proceeds in synchronized rounds: no node receives messages in round t that are sent in
a round different from t. In round t, each node sends messages to all nodes, receives messages from some
nodes, and finally goes to its next state and proceeds to round t + 1. Nodes cannot access the number of
the current round. Each node u is initially passive: it is part of the network, but sends only heartbeats,
and does not change its state. Then it either becomes active by receiving a unique start signal, or remains
passive forever.

Communications that occur at round t, including the heartbeats, are modelled by a digraphG(t) = (V,Et)
where the set of nodes is fixed while the set of edges may change from round to round. The sequence of
digraphs G = (G(t))t∈N is called a dynamic graph. Any set of dynamic graphs is called a network model.
An algorithm A solves the FS problem for the network model G if for each dynamic graph G in G the run of
A defined by G and any scheduling of start signals satisfies both FS1 and FS2.

We examine various connectivity properties that hold, not necessary round by round, but globally over
finite periods of consecutive rounds. For formalizing these properties, we introduce the digraph G(t : t+T) =
G(t) ◦ · · · ◦G(t+ T) , where ◦ denotes the Kronecker product of digraphs. We say that G is connected with
delay T if it is strongly connected over each period of T consecutive rounds, i.e., all the digraphs G(t : t+T)
are strongly connected. It is said to be eventually connected if for each round t, it is strongly connected
over a sufficiently long period of consecutive rounds starting at t, that is to say there exists s > t such that
G(t : s) is strongly connected. The dynamic diameter of G is the minimum positive integer D, if it exists,
such that for every positive integer t, there is a directed path between any two nodes in any period of D
consecutive rounds starting at t. We easily check that if G is connected with delay T , then its diameter is
finite and at most equal to (n− 1)T .

For a positive integer T , let GT denote the network model composed of all dynamic graphs that are
connected with delay T . The union G =

⋃∞
T=1 GT then consists of all dynamic graphs with bounded delay

connectivity. Let G� denote the network model of eventually connected dynamic graphs. The relations
among the above snetwork models are thus given by the strict inclusions:

G1 ⊂ G2 ⊂ · · · ⊂ GT ⊂ GT+1 ⊂ · · · ⊂ G ⊂ G�.

The main contribution of this paper is a characterization of the connectivity properties that enable to
solve the FS problem, with respect to this hierarchy.

2.1 Firing with a bounded diameter

As a preliminary step, we present an algorithm AD in the case that a finite bound D on the diameter of the
dynamic graph is given. Our algorithm is based on local virtual clocks whose values may reach D only if
all nodes are active. Basically, u’s local clock, denoted ru, is the length of the shortest path of active nodes
ending at u. The remarkable property of these virtual clocks is that if some node sets its clock to D, then all
nodes set their clocks to D at the same round. Hence the firing test for the node u in AD is just “ ru > D”.

The algorithm AD does not use node identifiers; its time complexity is in O(D) and it uses only O(logD)
bits per message.

2.2 Firing with T -Delayed Connectivity

We then present the algorithm BT and show that it solves the FS problem in linear time for dynamic graphs
that are connected with delay T while no bound on the diameter is given.

Each node maintains the same virtual clocks ru as in AD in order to compute the network size |V |, and
T |V | is then used as a bound on the network diameter. For that, each node u collects the identifiers of
the active nodes that u has heard of in a variable HOu. Then the strategy for firing is the same as in the
algorithm AD: The node u fires when ru > T |V |, which is enforced by the condition |HOu| 6 d(ru + 2) /T e.
This technique requires distinct node identifiers and long messages since each node u broadcasts HOu in
each round.

Algorithm BT , firing with T -delayed connectivity

Initialization: % upon the receipt of the start signal

ru ∈ N, initially 0 ; HOu ⊆ V , initially {u}
In each round do:

send 〈ru, HOu〉 to all and receive messages (from in-neighbors)

if at least one received message is a heartbeat then ru ← 0

else ru ← 1 + min {r : 〈r, HO〉 is received }
HOu ←

S
〈r,HO〉 is received HO

if |HOu| 6 d(ru + 2) /T e then Fire

Theorem 1. The algorithm BT solves the FS problem for the network model GT . Moreover, in any active run
all nodes fire in less than nT rounds after all nodes have become active and messages are of size O(n log n).

It should be noted that as a byproduct, the algorithm BT thus solves the problem of counting the network
size despite asynchronous starts in any model of dynamic graphs that are connected with delay T , and in
particular in the model of continuously strongly connected dynamic graphs.

2.3 Bounded delayed connectivity is not sufficient

On the negative side, we show that under the sole assumption that the network is connected with some
unknown delay T , the FS problem is unsolvable.

Theorem 2. The FS problem is not solvable for the network model G of dynamic graphs with bounded delay
connectivity, even if the start signals are diffusive and the network size is known.

As an immediate corollary of Theorems 1 and 2, we obtain that if at each round, the communication
graph may be any member of a given set of digraphs over the same set of nodes, then the FS problem is
solvable if and only if each member in the set is strongly connected.

2.4 Bound on the network size and randomization

Finally, we show that if a polynomial bound N on the network size is given, then randomization may reduce
the message size in BT without degrading its linear time complexity. We present a Monte Carlo algorithm
that may produce runs in which FS1 or FS2 are violated with arbitrary small probability. The algorithm
assumes that the dynamic graph is generated by an oblivious adversary, which determines the complete
sequence of digraphs before the run begins.

For the sake of simplicity, we present the algorithm in the case T = 1. The algorithm, denoted RN,η,
depends on two parameters N and η, where N is a positive integer and η is any real number in [0, 1/2), and
works as follows: upon becoming active, each node u generates ` independent random numbers Y 1

u , . . . , Y
`
u

and the distribution of each Y iu is exponential with rate 1. At each round, any active node u first broadcasts
the smallest value of the Y iv ’s it has heard of for each index i ∈ {1, . . . , `}, and then computes from the
minimum values it received so far an estimation nu of the number of nodes it heard of. Node u fires when
ru > 1.5nu (instead of ru > nu as in B1).

The asymptotic Cramér-Chernoff bounds (e.g., see [1]) show that for large enough `, the value of nu
provides with high probability a good approximation of the number of active nodes that u has heard of so
far. Moreover, if ru > 1.5nu, then with high probability node u has heard of all nodes. More precisely,
` =

⌈
243 · (ln 4N2 − ln η)

⌉
enforces a final probability of at least 1 − η for these successful active and non-

active runs.
Sending exact values for Y iu would require nodes to send real numbers, which cannot be represented using

a bounded number of bits. Instead nodes send rounded and range-restricted approximations of Y iu, each of
them using O (log log(N/η)) bits.

Theorem 3. The algorithm RN,η solves the FS problem with probability at least 1 − η for the network
model G1. Moreover, in any active run, with probability at least 1 − η all nodes fire simultaneously in less
than 2n rounds after the last nodes have become active and messages are of size O (log(N/η) · log log(N/η)).

References

[1] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities. A nonasymptotic
theory of independence. Oxford University Press, Oxford, 2013.

[2] James E. Burns and Nancy Lynch. The byzantine firing squad problem. Advances in Computing Research,
4:147–161, 1987.

[3] Brian A. Coan, Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. The distributed firing squad
problem. In ACM Symposium on Theory of Computing Conference, STOC’85, pages 335–345, 1985.

[4] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic networks. In
Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC’10, pages 513–522,
New York, NY, USA, 2010. ACM.

[5] Fabian Kuhn, Yoram Moses, and Rotem Oshman. Coordinated consensus in dynamic networks. In
Proceedings of the 30th ACM Symposium on Principles of Distributed Computing (PODC), pages 1–10.
ACM, 2011.

[6] Edward F. Moore. The firing squad synchronization problem. Sequential Machines, Selected papers,
pages 213–214, 1964.

[7] F. R. Moore and G. G. Langdon. A generalized firing squad problem. Information and Control, 12(3):212–
220, 1968.

[8] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, April 1980.

