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ABSTRACT

Monitoring some sites using a wireless sensor network (WSN)
may be hampered by the difficulty of recharging or renewing
the batteries of the sensing devices. Mechanisms aiming at
improving the energy usage at any moment while fulfilling
the application requirements are thus key for maximizing
the lifetime of such networks. Among the different methods
for achieving such a goal, we focus on energy management
methods based on duty-cycling allowing the sensors to switch
between two modes: a high-energy mode (active) and a low-
energy mode (sleep). In this paper we propose two new sched-
uling heuristics for addressing the problem of maximizing
the lifetime of a WSN under the constraint of coverage of a
subset of fixed targets. The first one is a stochastic greedy
algorithm and the second one is based on applying Simulated
Annealing (SA). Both heuristics use a specific knowledge
about the problem. Experimental results show that while
both algorithms perform well, greedy algorithm is preferable
for small and medium sizes networks, and SA algorithm has
competitive advantages for larger networks.

CCS CONCEPTS

• Theory of computation → Simulated annealing; •
Computing methodologies → Planning and schedul-
ing; • Computer systems organization → Sensor net-
works;
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1 INTRODUCTION

Applications of wireless sensor networks (WSN) are manifold
and their number increases every day [4]. Some of them are
deployed in well-controlled environments allowing an easy
maintenance, recharging or renewing of their battery. How-
ever, when deployed in hostile environments where human
access is limited or even impossible, sensors may not be easily
accessible and thus batteries cannot be recharged or renewed.
Such scenarios may occur in nature: remote deserts, dense
forests, flanks of volcanoes, as well as in urban environments:
after an earthquake or on industrial sites after catastrophic
events.

In such situations energy saving mechanisms are key to
allow the WSN to work properly. The lifetime of a sensor
network is then defined as the maximal duration for which ap-
plication requirements are fulfilled, and most of the time the
lifetime is limited by a lack of energy due to batteries deple-
tion. This has motivated many works on energy conservation
in WSN during the last two decades and, according to [3],
three main methods may be considered: duty-cycling, data
driven and mobility. The present work focuses on duty-cycling
energy conservation methods. Such a method considers that
each sensor is able to switch off its main energy-intensive cir-
cuits during some periods of time. Sensors may thus be either
in active state during one time slot and in sleep state during
another one. Deciding the scheduling of activity/idleness pe-
riods for the sensors is the main topic of the present work.
Sensors iteratively perform mainly three tasks, sensing, com-
puting and communicating, thus power management can
concern any of these three steps, in the current work we
mainly focus on energy saving mechanisms for the sensing
task.

The scheduling decision depends mainly on the goal of
the application, and many applications relying on WSN are
interested in the monitoring of a specific zone. The underlying
problem, regarding the application, is to obtain the best
coverage for collecting data from the environment. There
exist, at least, two different ways for an application to consider
the coverage. The coverage of a surface or the coverage of
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targets. In this work we are interested in this latter situation
where the environment contains some regularly spaced targets.
These targets are called points of interest (POI) in the present
document.

Given all these elements, our problem consists in finding
the best tradeoff between fulfilling the coverage constraint on
the POIs and the minimization of the energy usage, which
can be formulated as the maximization of the lifetime of the
network while fulfilling the application requirements. In this
paper we present the results obtained by two new knowledge-
based algorithms to address this problem: a greedy heuristic
and an algorithm based on Simulated Annealing (SA).

The rest of the paper is organized as follows. In the next
section the main related works are outlined. Section 3 presents
in detail the problem statement. The two following sections
describe our greedy (Section 4) and Simulated Annealing-
based algorithms (Section 5). Section 6 presents the results
of simulation experiments and discusses the choices of the
experimental parameters, followed by some concluding re-
marks.

2 STATE OF THE ART

The problem addressed in this paper is a variant of the
Maximum Lifetime Coverage Problem (MLCP). In the present
work we focus on a variant involving a set of fixed points or
targets, called POIs (Point of Interest). Each POI may be
monitored by more than one sensor at a time. The application
requirement is that at any moment a minimum fraction of all
the POIs have to be monitored. For maximizing the lifetime
of the network we are interested in method scheduling the
activity of each sensor that may be either in active or in sleep
state.

One of the first attempt to solve this kind of problem is due
to Slijepcevic and Potkonjak [13] in 2001. They proposed a
heuristic composed of two parts: a first part for gathering all
the sensors into mutually exclusive sets with a full coverage
constraint, and a second part for scheduling the activity of
each set of sensors in such a way that, at any moment, one and
only one set can be active. Given the good results obtained
in terms of network lifetime, this work inspired many other
research. Among them, Abrams and his colleagues in [2]
proposed to relax the full coverage constraint by allowing the
algorithm to cover only a subset of the targets, and present
three approximation algorithms for a variation of the set
k-cover problem, this relaxation is also considered in our
work. One year later, [5] proposed a theoretic model of the
problem: the disjoint set covers problem (DSC) and they
proved its NP-completness, then, in [6], the authors propose
another formulation as the maximum set covers problem
(MSC) and also prove its NP-completness, two complexity
results that motivate the search for efficient heuristics for
providing approximate solutions to this problem.

During the last decade many nature-inspired approaches
addressing similar problems have been published [11]. Among
them are genetic algorithms [12], multi-objective genetic al-
gorithm [9], evolution strategies [7], memetic algorithm [14],

Figure 1: An example of sensor network deployed
over the target field

particle-swarm optimization [1], differential evolution [16],
etc. Our recent research applying a general purpose nature-
inspired metaheuristic to solve this problem [15] shows that
they are not enough efficient. As we already mentioned, the
quality of solutions and computational complexity are not sat-
isfactory. Coverage problems were considered under different
scenarios and types of WSNs, namely Wireless Multimedia
Sensor networks in dynamic environment [7], Wireless camera-
based Sensor Networks [14], Directional Sensor Networks [8].
These assumptions lead to different problems statement and,
therefore, each approach should be modified to enable to
solve coverage problem in another type of WSNs.

Our approach differs from these works by the formulation
of the lifetime and also by

3 PROBLEM STATEMENT

Let us consider a sensor network 𝑆 = {𝑠1, . . . , 𝑠𝑁} consisting
of N sensor nodes randomly distributed over a given target
field 𝐹 . 𝐹 is considered to be a two-dimensional rectangular
area. 𝐹 contains a set of points of interest (POIs) regularly
distributed on a 2D-grid, as illustrated on Figure 1. A sen-
sor 𝑠𝑗 is defined as a point of coordinates (𝑥𝑗 , 𝑦𝑗) in the
two-dimensional area, with a sensing range 𝑅𝑠 and battery
capacity b. All sensors are identical: same sensing range and
same initial battery capacity.

It is assumed that each sensor can work in two modes:
active mode and sleep mode. In active mode a sensor 𝑠𝑖 is
able to monitor all the POIs that are within a disk centered
at 𝑠𝑖 with a radius equals to 𝑅𝑠 and we consider that time is
divided in time intervals of same length. We denote by 𝑠𝑡𝑎𝑡𝑒𝑗𝑖
the state of sensor 𝑠𝑖 during time interval 𝑡𝑗 . If the sensor 𝑠𝑖
is active during this time interval, 𝑠𝑡𝑎𝑡𝑒𝑗𝑖 = 1 and 𝑠𝑡𝑎𝑡𝑒𝑗𝑖 = 0
if 𝑠𝑖 is in sleep mode during time interval 𝑡𝑗 .

Below we give a number of definitions concerning the
problem statement.

Definition 3.1. A sensor 𝑠𝑖(𝑥𝑖, 𝑦𝑖) covers a POI p(x, y) iff
the Euclidean distance between them 𝑑(𝑠𝑖, 𝑝) ≤ 𝑅𝑠
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We denote by 𝑃𝑂𝐼𝑠𝑜𝑏𝑠(𝑠𝑖) the set of POIs covered by
sensor 𝑠𝑖 when in active mode, and by 𝑐𝑜𝑣(𝑠𝑖) the number of
such POIs:

𝑐𝑜𝑣(𝑠𝑖) = |𝑃𝑂𝐼𝑠𝑜𝑏𝑠(𝑠𝑖)| (1)

During time interval 𝑡𝑗 , the set of POIs covered by the set
of active sensors is denoted as 𝑃𝑂𝐼𝑠𝑜𝑏𝑠(𝑡𝑗), i.e.

𝑃𝑂𝐼𝑠𝑜𝑏𝑠(𝑡𝑗) = ∪𝑁
𝑖=1𝑃𝑂𝐼𝑠𝑜𝑏𝑠(𝑠𝑖)|𝑠𝑡𝑎𝑡𝑒𝑗𝑖 )=1

(2)

Definition 3.2. The coverage of 𝐹 during a given time
interval 𝑡𝑗 and denoted by 𝐶𝑜𝑣(𝑡𝑗), is the ratio of the number
of observed POIs by sensors in active mode during 𝑡𝑗 to all
POIs:

𝐶𝑜𝑣(𝑡𝑗) =
|𝑃𝑂𝐼𝑠|𝑜𝑏𝑠(𝑡𝑗)
|𝑃𝑂𝐼𝑠| (3)

We make the assumption that the energy consumption of
any sensor depends on its sensing range such that the energy
used by any sensor is the same whatever the considered time
interval.

Thus, a potential solution for our problem is a schedule
of the states of all the sensors and this schedule can be
represented by a matrix with binary elements. Each column 𝑗
of the matrix corresponds to the states of the sensors during
time interval 𝑡𝑗 and each row 𝑖 represents the schedule of the
activity of sensor 𝑠𝑖.

Definition 3.3. A schedule of a WSN is a binary 𝑇𝑚𝑎𝑥×𝑁
matrix denoted as 𝑆𝑜𝑙, i.e.

𝑆𝑜𝑙(𝑆)=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑠𝑡𝑎𝑡𝑒11 · · · 𝑠𝑡𝑎𝑡𝑒𝑗1 · · · 𝑠𝑡𝑎𝑡𝑒𝑇𝑚𝑎𝑥
1

...
. . .

...
...

𝑠𝑡𝑎𝑡𝑒1𝑖 · · · 𝑠𝑡𝑎𝑡𝑒𝑗𝑖 · · · 𝑠𝑡𝑎𝑡𝑒𝑇𝑚𝑎𝑥
𝑖

...
...

. . .
...

𝑠𝑡𝑎𝑡𝑒1𝑁 · · · 𝑠𝑡𝑎𝑡𝑒𝑗𝑁 · · · 𝑠𝑡𝑎𝑡𝑒𝑇𝑚𝑎𝑥
𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where 𝑠𝑡𝑎𝑡𝑒𝑖𝑗 ∈ {0,1} is a state of sensor 𝑠𝑖 during time
interval 𝑡𝑗 , 0 corresponds to the sleep state and 1 is related
to the active state.

Definition 3.4. A schedule 𝑆𝑜𝑙(𝑆) is a feasible solution if
the following inequality is met:

(∀𝑖)𝑖=1,...,𝑁 |
𝑇𝑚𝑎𝑥∑︁
𝑗=1

𝑠𝑡𝑎𝑡𝑒𝑗𝑖 ≤ 𝑏 (4)

Definition 3.5. We call Coverage String the series of the
coverage of 𝐹 for time intervals from 𝑡1 to 𝑡𝑇𝑚𝑎𝑥 , i.e.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑡𝑟𝑖𝑛𝑔 = {𝐶𝑜𝑣(𝑡1), 𝐶𝑜𝑣(𝑡2), ..., 𝐶𝑜𝑣(𝑡𝑇𝑚𝑎𝑥)} (5)

For our problem we consider 𝑞 ∈]0, 1] a real number rep-
resenting a minimum threshold value for the coverage of 𝐹 .
If during a given time interval 𝑡𝑗 , 𝐶𝑜𝑣(𝑡𝑗) ≥ 𝑞 the coverage
requirement of the application is considered to be fulfilled
for this time interval.

In that context, the lifetime of the WSN is the total number
of time intervals for which 𝐶𝑜𝑣(𝑡𝑗) ≥ 𝑞

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑞) =

𝑗=𝑇𝑚𝑎𝑥∑︁
𝑗=1

𝜂𝑡𝑗 (6)

where

𝜂𝑡𝑗 =

{︂
1 if 𝐶𝑜𝑣(𝑡𝑗) ≥ 𝑞
0 if 𝐶𝑜𝑣(𝑡𝑗) < 𝑞

The parameter 𝑇𝑚𝑎𝑥 is a predefined number and should
be set greater than the value of the lifetime of the WSN
obtained by some method and less than the upper bound
𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑈𝑝, i.e

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑞) < 𝑇𝑚𝑎𝑥 ≤ 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑈𝑝 (7)

Let us derive an upper bound of the lifetime. We make the
assumption that 𝐹 contains exactly 𝑁𝑃𝑂𝐼𝑠. The maximum
number of POIs that can be monitored by sensors is equal
to:

𝑀𝑎𝑥(𝑁𝑐𝑜𝑣
𝑃𝑂𝐼𝑠) =

𝑁∑︁
𝑖=1

𝑐𝑜𝑣(𝑠𝑖) (8)

If we make the assumption that during each time interval
the battery of an active sensor is decreased by one unit, then
the maximum number of POIs that can be monitored by all
the sensors until all the batteries are depleted is equal to:
𝑀𝑎𝑥(𝑁𝑐𝑜𝑣

𝑃𝑂𝐼𝑠)× 𝑏
But during each time interval, only 𝑁𝑃𝑂𝐼𝑠 × 𝑞 POIs have

to be monitored to fulfill the application requirement, so the
maximum number of time intervals during which the coverage
requirement is fulfilled, denoted by 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑈𝑝, is equal to:

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑈𝑝 =
𝑀𝑎𝑥(𝑁𝑐𝑜𝑣

𝑃𝑂𝐼𝑠)× 𝑏

𝑁𝑃𝑂𝐼𝑠 × 𝑞
(9)

And this bound is tight. Indeed, 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑞) could be
equal to the value 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑈𝑝 if the set of all the sensors
can be divided into disjoint subsets in such a way that active
sensors of each subset cover exactly 𝑁𝑃𝑂𝐼𝑠 × 𝑞 POIs without
intersections.

As a consequence the upper bound of the parameter 𝑇𝑚𝑎𝑥

is 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑈𝑝 defined by equation 9 .

We consider Maximum Lifetime Coverage Problem (MLCP)
as a scheduling problem applied to a WSN solving the area
coverage problem in the discrete two-dimensional space. Un-
der our formulation, a method addressing the MLCP problem
should minimize the number of sensors monitoring redundant
POIs during each time interval in order to minimize energy
consumption.

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑞) as defined in Equation 6 is our evaluation
function. It should be maximized over the space of all feasible
solutions.

Then, Maximum Lifetime Coverage Problem can be stated
as follows:

Given

∙ a set of numbers 𝑃𝑂𝐼𝑠 = {1, 2, ..., 𝑁𝑃𝑂𝐼𝑠}, each ele-
ment represents an ordinal number of a POI,
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∙ a family of 𝑁 subsets 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑁}, where each
element 𝑆𝑖 ⊆ 𝑃𝑂𝐼𝑠, 𝑖 = 1, 2, ..., 𝑁 , is related to covered
POIs by sensor 𝑠𝑖, and,
∙ an integer 𝑏 representing the initial battery capacity.

Objective:

∙ find a maximal number 𝑚 of subsets {𝑆′
1, 𝑆

′
2, ..., 𝑆

′
𝑚},

where 𝑆′
𝑗 ⊆ 𝑆, such that the number of covered ele-

ments |∪𝑆𝑖∈𝑆′
𝑗
𝑆𝑖|meets the coverage ratio (see equation

10) and each element 𝑆𝑖 of the family 𝑆 is included in
no more than 𝑏 subsets {𝑆′

𝑗1 , 𝑆
′
𝑗2 , ..., 𝑆

′
𝑗𝑧} (see equation

11), i.e.

(∀𝑗)𝑗=1,...,𝑚|
| ∪𝑆𝑖∈𝑆′

𝑗
𝑆𝑖|

|𝑃𝑂𝐼𝑠| ≥ 𝑞 (10)

(∀𝑖)(∃𝑗1, ..., 𝑗𝑧)|𝑆𝑖 ∈ 𝑆′
𝑗1 , ..., 𝑆𝑖 ∈ 𝑆′

𝑗𝑧 , (11)

where 𝑖 = 1, ..., 𝑁 and (∀𝑘)𝑘=1,...,𝑧 1 ≤ 𝑗𝑘 ≤ 𝑚 and 𝑧 ≤ 𝑏.
An objective of searching a maximal number 𝑚 of subsets

satisfying (10) is equivalent to lifetime maximization and
corresponds to scheduling activities of sensor nodes. The last
equation (11) corresponds to the battery capacity restriction.

MLCP - specific knowledge. A searching process conducted
by both a greedy heuristic and SA-based algorithm (see,
below) incorporates the MLCP specific knowledge and is
based on the following classification of columns in a schedule.
All columns of the schedule solution are divided on three
groups called three subsequences:

(1) Redundant Subsequence (RS),
(2) Excellent Subsequence (ES),
(3) Unsatisfactory Subsequence (US).

Each subsequence groups time intervals such that a network
of active sensors covers the target area with certain coverage
ratio.

RS subsequence is introduced in order to reveal time inter-
vals during which we potentially have redundant sensors and
we wish to shift elements from RS into ES. RS is defined as
a sequence of time intervals {𝑡𝑖}, during which the coverage
is greater than the coverage ratio 𝑞 on at least 𝛿, i.e.

𝑐𝑜𝑣(𝑡𝑖) > 𝑞 + 𝛿, (12)

where 𝛿 is a small value representing a predefined declina-
tion from coverage ratio 𝑞. ES subsequence consists of time
intervals {𝑡𝑖} in the schedule during which the coverage of
the target field is within 𝛿 range from given coverage ratio 𝑞:

|𝑐𝑜𝑣(𝑡𝑖)− 𝑞| ≤ 𝛿 (13)

We use ES as a mark of high quality of the schedule solution
regarding to lifetime. In order to prolong the WSN’s lifetime a
number of elements in ES should be increased and their values
should be less than elements included in US. US subsequence
is defined as time intervals {𝑡𝑖} in the schedule during which
the coverage of the target field is less than the coverage ratio
𝑞 on at least 𝛿, i.e.

𝑐𝑜𝑣(𝑡𝑖) < 𝑞 − 𝛿 (14)

Let us denote a number of elements in RS, ES and US as

Figure 2: An example of RS, ES and US for a sched-
ule with 𝑞=0.55 and 𝛿=0.05.

𝑁𝑅, 𝑁𝐸 and 𝑁𝑈 respectively. An example of RS, ES and
US for a schedule built for the network depicted in Figure
1 with 𝑞=0.55 and 𝛿=0.05 can be found in Figure 2. In the
schedule, ones correspond to active sensors, zeros - switched
off sensors. According to coverage, seven time intervals are
divided on three types: ES = {𝑡3, 𝑡7}, RS ={𝑡5} and US =
{𝑡1, 𝑡2, 𝑡4, 𝑡6}. In this schedule Lifetime(0.55) of the network
is equal to 3.

4 A GREEDY HEURISTIC TO SOLVE
MLCP

In this section, we present an iterative knowledge-based sto-
chastic greedy heuristic to solve MLCP. The algorithm is
based on constructing a tree of solutions. A root of the tree
is a randomly created solution. In each iteration a solution
called a predecessor is changed under two steps described
below to form one more solution called a successor. The next
iteration continues from the node corresponding to the best
solution between a predecessor and its successor from the
previous iteration.

The pseudocode of the algorithm is presented in algorithm
1. At each iteration a schedule is a subject of two types
procedures, pseudo codes of which are sketched in Procedure
1 (Algorithm 2) and Procedure 2 (Algorithm 3).

The aim of procedure 1 is to improve a current solution
via joining active subnetworks during time intervals when
necessary coverage is not achieved. This purpose can be
obtained by multiple shifting several columns from US toward
ES or RS. A schedule is changed under the Procedure 1 as
follows. Two new columns are generated by applying boolean-
valued functions OR and AND to a pair of two values from
same row from US columns (line 5 in algorithm 2). The new
first column contains the values resulted of OR operator,
and the second column contains the results of AND operator
applied.
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Algorithm 1 Pseudocode - Greedy algorithm for random
initial solution.

1: 𝐼𝑛𝑝𝑢𝑡 :
2: WSN: 𝑆 = {𝑠1, ..., 𝑠𝑁}, 𝑠𝑖 = {(𝑥𝑖, 𝑦𝑖), 𝑅𝑠, 𝑏}
3: Target field: 𝑃𝑂𝐼𝑠 = {𝑝1, ...𝑝𝑁𝑃𝑂𝐼𝑠}, 𝑝𝑘 = (𝑥𝑘, 𝑦𝑘)
4: A number of iterations: 𝑁𝐼 ,
5: Problem requirements: 𝑞, 𝛿
6: Solution: 𝑇𝑚𝑎𝑥,
7: initialize random 𝑠𝑜𝑙𝑐𝑢𝑟(𝑁,𝑇𝑚𝑎𝑥)
8: k = 1
9: for 𝑖← 1 to 𝑁𝐼 do

10: compute US,
11: apply Procedure1(US, k) to form successor solution,
12: compute Lifetime(q)
13: if Lifetime(q) of the predecessor > Lifetime(q) of the

successor then
14: k = k + 1
15: end if
16: compute RS, US for the successor,
17: apply Procedure2(RS, US) to the successor,
18: compute Lifetime(q) for the successor,
19: keep the best from the predecessor and its successor,
20: i = i+1
21: end for
22: 𝑂𝑢𝑡𝑝𝑢𝑡 :
23: return 𝑠𝑜𝑙

Algorithm 2 Pseudocode - Procedure1(US, 𝑘)

1: 𝐼𝑛𝑝𝑢𝑡 :
2: 𝑠𝑜𝑙
3: for 𝑖← 1 to 𝑁𝑈 - 𝑘 + 1 do
4: for 𝑗 ← 1 to 𝑘 do
5: modify 𝑖 and 𝑖+ 𝑗 columns from US,
6: j = j + 1
7: end for
8: i = i +1
9: end for

10: return 𝑠𝑜𝑙

In another words, in the result the first selected column
contains ”1” in all cells, if at least one of corresponding cells
from two columns has contained ”1”. The second column
contains the rest of two values which was not used in the first
one. These steps are repeated 𝑘 or no more than 𝑁𝑈 (𝑁𝑈−1)

2

times, where 𝑁𝑈 is a number of elements in US.
As the algorithm proceeds it may happen that a new

solution is not improved in the sense of Lifetime(q). In that
case a parameter 𝑘 (a number of use Procedure 1) is increased
by 1 (lines 12-14 in algorithm 1). Initially, 𝑘 is equal to 1.

An example of the solution obtained due to one step of
the Procedure 1(𝑈𝑆, 1) is outlined in Figure 3. The schedule
is constructed for a sensor network depicted in Figure 1 for
seven consecutive time intervals. For coverage ratio 𝑞 equal
to 0.55 and coverage declination 𝛿 equal to 0.05, 𝑈𝑆 consists
of the three elements {1, 2, 4}. As 𝑁𝑈=3, then the procedure

Figure 3: An example of a one iteration in procedure
1, coverage ratio 𝑞=0.55 and 𝛿 = 0.05.

repeats 𝑘 or no more than 3 times. For instance, the initial
schedule involves two columns corresponding to 𝑡1 and 𝑡2
time intervals. In the new solution two pairs related to sensors
𝑠1 and 𝑠3 in the two chosen columns change their values. Due
to the operation (line 5 in algorithm 2) coverage at the first
time interval is improved till 0.6. Thus, Lifetime(0.55) of
the network is also improved by 1. The predecessor and its
successor of solutions with its coverage strings are presented
in the figure (left) and (right), respectively.

The solution obtained by the first modification (Procedure
1) is next changed by the Procedure 2. The aim of this stage
is to reduce redundant consumption of energy, i.e. a randomly
chosen sensor in active state from RS time interval is switched
off and, next, is switched on during US time interval.

Algorithm 3 Pseudocode - Procedure2(RS, US)

1: 𝐼𝑛𝑝𝑢𝑡 :
2: 𝑠𝑜𝑙
3: for 𝑖← 1 to 𝑁𝑅 do
4: modify the 𝑖− 𝑡ℎ column in RS in the solution,
5: i = i +1
6: end for
7: return 𝑠𝑜𝑙

The Procedure 2 (see, Algorithm 3) is executed on a current
solution and consists of the following steps:

∙ from the 𝑖− 𝑡ℎ RS column a cell is randomly selected
with probability 𝑝𝑖:

where 𝑛1 is a number of ”1” cells in the column. Let us
denote a row of the selected cell as 𝑗.

∙ the ”0” cell in the first US column in 𝑗 − 𝑡ℎ row is
changed to ”1”.

Therefore, the first selected cell is equal to 1. The second
selected cell is taken as the first ”0” cell from 𝑈𝑆 and from
the same row as previous cell was. The selected cells swap
their values. If there is no a cell with the value ”0” in US, the
predecessor solution coincides with its successor. The above
mentioned two steps are repeated consequently 𝑁𝑅 times for
each RS column.

An example of solution change due to one step of Procedure
2 is shown in Figure 4. A schedule constructed for a sensor
network depicted in Figure 1 for seven consecutive time
intervals. For coverage ratio 𝑞 equal to 0.55 and coverage
declination 𝛿 equal to 0.05, initially, coverage string is as
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Figure 4: An example of a one iteration in procedure
2, coverage ratio 𝑞=0.55 and 𝛿 = 0.05.

follows {0.8, 0.16, 0.4, 0.24, 0.64, 0, 0.6}, where 𝑅𝑆 contains
two elements 𝑡1 and 𝑡5. Therefore, Procedure 2 is executed
twice via changing the first and fifth columns in the schedule.
From the 𝑡1 column with the probability 0.16 equal for all
cells of ”1”s values the one is taken, for an example the 4-th
cell was selected. The chosen ”1” cell changes its value into
”0”, while the first ”0” cell of the corresponding row from
𝑈𝑆 (in the picture such cell is taken from 𝑡3 column) changes
its value into the opposite one. Coverage of the schedule
for the first time interval (from the column 𝑡1) decreases,
while the coverage for the 𝑡3 increases. Coverage string of
the successor solution becomes the following: {0.76, 0.16,
0.56, 0.24, 0.64, 0, 0.6}. Thus, a number of elements in ES is
increased, Lifetime(0.55) is improved by 1 as well.

The predecessor schedule and its successor are evaluated
by Lifetime(q) metric and the best one is saved as a current
schedule for the next iteration to be applied. These steps are
repeated until stop condition is met. The last saved schedule
is a result of the algorithm.

5 SIMULATED ANNEALING
ALGORITHM TO SOLVE MLCP

Simulated Annealing is one of the nature inspired metaheuris-
tics based on the physical annealing process observed in glass
and metal metallurgy and firstly proposed by Kirkpatrick,
Gelatt and Vecchi [10].

The general idea of SA technique to solve MLCP is pre-
sented in Algorithm 4.

After setting initial parameters of the algorithm, in partic-
ularly an initial temperature 𝑇 , the algorithm starts from a
randomly generated initial solution (see, line 1), which be-
comes a current solution of the problem. Next, a new solution
is randomly generated from a neighbourhood of the current
solution (see, line 6). If a new solution is better than the
current solution it becomes a new current solution (see, lines
9 - 10). If a new solution is worse than the current one it can

be accepted as a new solution with probability exp−Δ
𝑇 , which

depends on the difference between a quality of the current
and a new solution, and the current temperature 𝑇 of the
system (see, lines 11 - 13). This process of searching a solu-
tion under current temperature 𝑇 is continued a predefined
number of iterations (see, line 4 - 14), and after exceeding
this number the temperature of the system is decreasing (see,
line 15). If stop condition is not fulfilled (see, line 3) the

Algorithm 4 General SA

1: Generate initial solution 𝑆𝑜𝑙𝑐𝑢𝑟
2: Set temperature 𝑇
3: while stop condition is not fulfilled do
4: for 𝑖← 1 to 𝐿 do
5: life = compute fitness of 𝑆𝑜𝑙𝑐𝑢𝑟
6: Generate neighbouring solution 𝑆𝑜𝑙𝑁(𝑆𝑜𝑙𝑐𝑢𝑟)
7: lifeN = compute fitness of 𝑆𝑜𝑙𝑁
8: ∆ = life - lifeN
9: if ∆ ≤ 0 then

10: 𝑆𝑜𝑙𝑐𝑢𝑟 = 𝑆𝑜𝑙𝑁
11: else
12: 𝑆𝑜𝑙𝑐𝑢𝑟 = 𝑆𝑜𝑙𝑁 with probability exp−Δ

𝑇

13: end if
14: end for
15: decrease 𝑇
16: end while
17: 𝑂𝑢𝑡𝑝𝑢𝑡 :
18: 𝑆𝑜𝑙𝑐𝑢𝑟

algorithm returns to the main loop of searching a solution
under a given temperature 𝑇 .

The main problem related to the application of SA to solve
MLCP is a generation of a new solution in the neighbourhood
of a current one. Because of specific limitations concerning
feasible solutions of MLCP, generation of valid solutions is
a difficult problem. To solve the problem we propose an
algorithm which uses information about MLCP. Pseudocode
of the algorithm is presented below (see, Algorithm 5.

Algorithm 5 Generating neighbouring solution

1: 𝐼𝑛𝑝𝑢𝑡 :
2: 𝑆𝑜𝑙
3: 𝑘
4: compute 𝑅𝑆, 𝑈𝑆
5: for 𝑖← 1 to 𝑘𝑛𝑒𝑖𝑔ℎ do
6: for 𝑗 ← 1 to 𝑅𝑆.𝑠𝑖𝑧𝑒() do
7: choose a random cell of ”1” value from 𝑖 − 𝑡ℎ RS

column, the row of the cell let us denote as 𝑙
8: find the first ”0” cell from 𝑈𝑆 and 𝑙 − 𝑡ℎ row
9: swap the values of the chosen pair

10: 𝑗 = 𝑗 + 1
11: end for
12: 𝑖 = 𝑖+ 1
13: end for
14: 𝑂𝑢𝑡𝑝𝑢𝑡 :
15: 𝑆𝑜𝑙

Generating neighbouring solutions. Generating subsequent
solutions is based on a swap of a pair of opposite values
in one row of a current schedule. A neighbouring solution
differes from the current solution by a number of bits changed
comparatively with the given solution. Let us call this char-
acteristic defined by a number of changed pairs of bits, as
neighbourhood size and denote it as 𝑘𝑛𝑒𝑖𝑔ℎ - neighbourhood.
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In such a way, in the case of changing two random cells of
a schedule, we obtain a solution in 1-neighbourhood from a
given solution. A random neighbour is generated as follows:
𝑘𝑛𝑒𝑖𝑔ℎ times two opposite values chosen at random from the
same row are swapped (see, Algorithm 5). An additional
information about a solution is computed, such as coverage
of each time slot according to which the time line is divided
on RS, ES and US. The idea of knowledge-wise neighbour-
hood generating procedure is to switch off an active sensor
from redundant subsequence in order to reduce a number
of redundantly covered POIs and to switch it on in the first
unsatisfactory subsequence with the aim of increasing cover-
age at the additional time interval. These steps may increase
lifetime of the generated solution.

6 EXPERIMENTAL RESULTS

In this section, we present some preliminary results of exper-
imental study of the proposed algorithms. More experiments
are yet to come in order to compare the performances of
these two methods with other state-of-the-art solutions that
have to be adapted to our variant of the MLCP. Performance
of each algorithm is evaluated on the test of nine problem
instances. Each problem instance is defined by a number
of sensors 𝑁 , sensor coordinates (𝑥, 𝑦), a number of POIs
uniformy allocated on the target field, sensing range 𝑅𝑠 and
battery capacity 𝑏.

The coverage requirement consists of two real number:
percentage of coverage required 𝑞 and admissible declination
𝛿 from the 𝑞-requirements.

We consider WSN consisting of a number 𝑁 of sensors
equal to 100, 200 and 300, respectively. For each value of 𝑁 ,
we created three instances, which differ by random allocation
of sensors, so nine instances were used in experimental study.
Each instance is described as Instance{indicator of network
size}{order number of WSN instance}, where 𝑁 is equal
to indicator of network size times 100. To give an example,
Instance23 represents the third instance of WSN consisting
of 200 sensors. For testing purposes the following instances
were created:

∙ instance11, instance12, instance13 for N=100,
∙ instance21, instance22, instance23 for N=200,
∙ instance31, instance32, instance33 for N=300.

The values of sensing range 𝑅𝑠 and battery capacity 𝑏 are
equal to 20 𝑚 and 10 𝑡.𝑢.. As a targer field we consider a uni-
form distribution of POIs over the square area of dimensions
100 × 100 𝑚2 and between two neighbor POIs are separated
by a step 𝑔 equal to 10 𝑚.

The algorithm’s parameters should be chosen as the set of
the best values for each of the algorithms: greedy heuristic
and SA. SA is defined by the following values. Temperature is
cooled according to the logarithmic scheme with initial tem-
perature 50, length of the temperature cycle 25, the frozen
level 10 and maximal number of iterations 100. The termi-
nation condition is as follows: exceeding maximal number of
iterations or achieving the frozen temperature level. Greedy

Figure 5: Example of runs of two algorithms: 𝐺𝑟𝑒𝑒𝑑𝑦
and SA for instances consisting of 100, 200 and 300
nodes; 𝑞=0.8, 𝑅𝑠 = 20, 𝑏 = 10.

heuristic needs to set a number of iterations equal to 150,
after which the algorithm stops.

All experimental results in this section are based on aver-
aging of ten runs for each problem instance.

Experiment 1. An example of a typical run of these two
algorithms is presented in Figure 5, which presents the dy-
namics of 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(0.8) obtained by greedy and SA for three
instances consisting of 100, 200 and 300 nodes as a function
of a number of computation of the 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑞) function.

One can notice that behaviour of both algorithms is dif-
ferent. While SA with a linear speed achieves its maximal
value of 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(0.8) (equal to near 190 for 300 nodes, near
130 for 200 nodes, and near 60 for 100 nodes) the greedy
algorithm moves to its maximum with different speeds achiev-
ing 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(0.8) equal to near 108 for 300 nodes, near 80
for 200 nodes, and near 62 for 100 nodes. SA finds much
better solution for 300 nodes (aroud 190 against around 108)
with approximatelly the same computational costs (around
6000 iterations). A similar situation is for 200 nodes, but
computational costs of greedy algorithm is twice higher than
for SA (around 4000 iterations against around 8100 itera-
tions), but for 100 nodes greedy algorithm is slightly better
(60 against 62) with twice larger computational costs (around
2000 against 4150 iterations).

Experiment 2. In order to study more detaily the behaviour
of both algorithms, the next experiment was conducted where
results were obtained through multiple runs of algorithms.
Table 1 contains maximal, average and standard deviation of
𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑞) function values obtained by 𝑔𝑟𝑒𝑒𝑑𝑦 and SA.

One can see from the table that for relatively small net-
work with 100 nodes the average and the maximal values
of 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒(𝑞) are better for greedy algorithm. The similar
results are for a network with 200 nodes, but the difference
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Table 1: Maximal, average with standard deviation
values of Lifetime(q) obtained by two algorithms:
𝑔𝑟𝑒𝑒𝑑𝑦 and SA for nine instances; 𝑞 = 0.8, 𝑅𝑠 = 20,
𝑏 = 10.

𝑔𝑟𝑒𝑒𝑑𝑦 SA
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 Max Avg ± 𝜎 Max Avg ± 𝜎

𝑁 = 100

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒11 77 74.0 ± 6.09 71 68.0 ± 1.73
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒12 82 79.0 ± 5.3 77 74.0 ± 1.41
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒13 74 71.0 ± 5.39 71 68.0 ± 1.41

𝑁 = 200

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒21 154 152.0 ± 7.62 153 147.0 ± 2.0
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒22 152 148.0 ± 8.49 149 144.0 ± 2.0
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒23 156 151.0 ± 6.09 152 149.0 ± 1.73

𝑁 = 300

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒31 230 226.0 ± 6.0 232 226.0 ± 2.23
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒32 225 220.0 ± 7.55 227 223.0 ± 2.0
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒33 227 221.0 ± 22.21 227 223.0 ± 2.0

between results provided by both algorithms is small. For the
network with 300 nodes SA provides better results than greedy
algorithm, but also the difference between results provided
by both algorithms is small.

It is worth to notice that standard deviation computed
for SA in all cases is better than 𝜎-values computed for the
results provided by greedy algorithm. This indicates that
SA is more stable than greedy algorithm. Therefore, we can
assume that in the case of larger problem instances SA should
provide better solutions than 𝑔𝑟𝑒𝑒𝑑𝑦.

CONCLUSION

In this paper the problem of lifetime maximization in WSNs
stated as MLCP with assumption of not full coverage defined
by a coverage ratio requirement 𝑞 was considered. The prob-
lem belongs to a class of NP-hard problems characterized
by high computational complexity, what motivates the use
of algorithms providing approximate solutions. To solve the
problem we proposed and studied two centralized knowledge-
based algorithms: stochastic greedy heuristic and simulated
annealing algorithm.

Results of experimental study of algorithms show that
while both algorithms perform well in a relatively wide spec-
trum of nodes number, the greedy heuristic is sligtly better
for low and medium sizes of a network, and SA algorithm
becomes competitive for larger networks.
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