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Fast simulation of stent deployment with plastic beam elements

Camille Krewcun1, Laurent Sarry1, Nicolas Combaret2 and Émilie Péry1

Abstract— Coronary stent deployment is a reference cardi-
ology intervention, used to treat atherosclerosis and prevent
heart attacks. The outcomes of the intervention highly depend
on the accuracy of the stent apposition, which could benefit
from per-operative prediction tools. In this paper, we propose
a fast and mechanically realistic 3D simulation of a coronary
stent expansion. Our simulation relies on the finite element
method and involves serially linked beam elements to model
the slender geometry of a stent. The elements are implemented
with a non-linear elasto-plastic behavior, describing realistically
the complex deformation of a balloon-expandable stent. As a
proof of concept, we simulated the free expansion of a coronary
stent. The simulation output was compared with micro-CT
data, acquired experimentally during the device expansion.
Results show that the plastic beam model is able to reproduce
successfully the final geometry of the stent. In addition, the
use of 1D elements allows to achieve a significantly lower
computational time than for equivalent literature simulations,
based on 3D elements. This preliminary work highlights the
compatibility of our method with clinical routine in terms of
execution time. Further developments include the application
of the method to more advanced simulation scenarios, with the
addition of a personalized artery model.

I. INTRODUCTION

The coronary artery disease results from a physiological
aging process causing a progressive narrowing (stenosis) of
the artery lumen. In the case of coronary arteries, symptoms
include an ’acute’ phase resulting in myocardial infarction
(i.e. heart attack).
In this study, we focus on the Percutaneous Transluminal
Coronary Angioplasty (PTCA) procedure with stent
deployment. The intervention consists in reducing the
stenosis by inflating a balloon and expanding a metallic
endoprosthesis (stent). When the balloon is deflated, the
stent keeps its deformed shape and stays permanently inside
the vessel, to support the artery wall.
The outcomes of this intervention highly depend on the
stent geometry and on the accuracy of the deployment.
Consequently, numerical simulation is a valuable prediction
tool to minimize the probability of complications.

We find in literature an important number of studies
using the Finite Element Method (FEM) to simulate the
deployment of coronary stents.
A commonly mentioned objective is to study the influence
of the stent geometry over the global mechanical behavior,
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in order to optimize the stent design. Example of such
works were published in [1] and [2], in which the free
(unconstrained) deployment of a stent is simulated with
different geometries. A free expansion is also simulated in
[3] in order to study the influence of the balloon model
on the global simulation. Studies such as [4] and [5]
additionally introduced an artery model in the simulation,
allowing to assess the impact of the stent geometry on the
artery wall stress. As priority is given to a high precision,
almost all the simulated objects in the aforementioned
studies (stent, balloon, artery) are discretized finely with
volumetric finite elements. Although this allows to optimize
the stent design prior to its production, the corresponding
models can not be used directly in a clinical environment, for
instance to perform patient-specific simulation. Indeed, the
computational times required by 3D element discretization,
and standard commercial codes are prohibitive compared
to the duration of the corresponding clinical interventions
(for instance, an execution time of 48 hours is mentioned in
[3]).

In this paper, we propose a faster simulation routine to
model accurately the deployment of a balloon-expandable
stent. Our objective is to reach an execution time compatible
with clinical routine, so that our simulation method could
be used in practice as a relevant prediction tool (typically
in patient-specific applications).
We decide to base our model on the discretization of the
stent geometry by 1D serially linked beam elements. Similar
work was proposed by Čanić, Tambača et al. in [6] and
[7], where the stent structure is modeled by an assembly
of 1D rod elements. A limitation of these studies is that
the proposed mechanical behavior is only elastic, therefore
corresponding to auto-expandable stents. Nevertheless, the
computational time mention in [6] is significantly faster
(with an order of magnitude of 1 s).
We decide to use beam elements in a similar way, in
order to model the more complex (nonlinear) deformation
undergone by a balloon-expandable stent. The use of
connected beam elements has already been proved efficient
in medical simulation to model slender structures, such
as catheters for navigation in [8], endovascular coils for
brain aneurysm in [9], flexible needles in [10] and [11], or
vascular networks [12]. The use of beam elements in these
studies allows to achieve low computational times (up to
interactive simulations), but once again is limited to elastic
deformations.



II. METHOD

A. Serially-linked beam model

The first step of our method consists in discretizing the
stent structure, by considering its wire-like geometry as a
series of straight slender segments. In order to take advantage
of this particular shape, we model the stent struts using
serially connected beam elements. Beams are discretized
into 2 nodes, each described by 6 Degrees Of Freedom
(DOFs): three degrees for the node’s position, and three for
its orientation.
Linking beam elements allows to refine the discretization of
the curvilinear stent parts. Typically, the number of beam
elements discretizing a given strut length increases with
curvature. A limitation of this model is that it is primarily
intended to represent simple structures, in which different
beam sequences are not connected. In the case of vascular
stents, we need to connect more than 3 beam elements at
the same node, while conserving the information of each
beam’s orientation. This particular issue is addressed using
Lagrangian constraints, as developed in section II-F.

B. Mesh conception

Although the various commercialized coronary stents rep-
resent a wide range of shapes, all can be decomposed into
basic elements. In this way, coronary stents are characterized
by two elementary features:

• stent rings are constituted by the periodic repetition of
a single geometrical pattern. The dimensions of this
particular pattern are sufficient to reconstruct the ring.

• rings are unified in the global stent structure by con-
nectors, which are repeated periodically along the stent
length between each pair of rings.

Consequently, only the dimensions of the ring base pattern
and the connectors are required to reconstruct the entire stent
structure. In order to retrieve these geometric features, we
perform a series of X-ray acquisitions on a crimped device.
Considering the dimensions of coronary stents (and vascular
stents in general), we use micro-CT imaging to obtain a
sufficiently high resolution.

With the stent key dimensions, we can reproduce the
rings’ base pattern and connectors. From these elements, we
can take advantage of the aforementioned stent periodicity
to simply replicate circumferentially the base pattern, and
axially the resulting ring and the connectors. Concretely, the
conception is carried out using a Computer Aided Design
(CAD) software (SolidworksTM). All structures are designed
using edges, which can then be converted to straight beam
elements. As the association of a beam element to an edge
requires to compute the orientation of the edge’s nodes, we
only use CAD to design a flat version of the global stent
mesh. This flat version is then wrapped into a cylindrical
shape when the beam elements are created.

C. Finite Element Method implementation

Our implementation of the FEM routine relies entirely on
the open-source simulation framework SOFA1, which was
first mentionned in a publication in [13]. The fundamental
principle of the simulation workflow in SOFA is to rely on
Newton’s second law of motion, which can be simply written
as:

Mat+h = ft+h(x,v), (1)

where M is the mass matrix of the discretized mechanical
system (i.e. if the system is described by n DOFs, then M
is a n × n matrix), x is the global position vector, v the
velocity, and a the acceleration. Subscript t indicates that
the variable is considered at time t, and h is the time step.
Adopting the Backward Euler implicit formulation intro-
duced in [14] we obtain the following system:

(M− hB− h2K)︸ ︷︷ ︸
A

∆vt+h = hft(x,v) + h2Kvt︸ ︷︷ ︸
b

, (2)

where K = ∂f
∂x is the element stiffness matrix and B = ∂f

∂v
the damping matrix. A more detailed version of the global
simulation process can be found in [15]. The last linear
system (A∆vt+h = b) is solved in ∆vt+h at each time
step. From ∆vt+h and the Backward Euler scheme, we
then retrieve xt+h making the system progress forward in
time.

In (2), we use non-specific expressions for M and B:
namely a uniform mass model (i.e. M is diagonal and all
its elements are equal), and a Rayleigh damping model (i.e.
B = rMM + rKK, rM and rK representing the Rayleigh
mass and Rayleigh damping respectively).
On the contrary, the expression of the stiffness matrix K
highly depends on the finite element discretization and me-
chanical behavior. An important part of this study consists in
proposing a novel approach to compute K, using a nonlinear
elasto-plastic beam model.

D. Elasto-plastic behavior

A critical issue in our study is to handle correctly the
complex deformation undergone by balloon expandable
stents. During balloon inflation, endoprostheses are deformed
from a crimped rest configuration to comply to the deploying
balloon membrane. When the balloon is deflated, internal
stresses resulting from the deformation do not tend to bring
the stent back to its rest shape. This phenomenon indicates
a highly plastic deformation, which must be appropriately
simulated.
In the following, we describe briefly the main principles in
the implementation of a plastic beam model, by focusing
on the computation of the associated stiffness matrix K.
For more details on the application of the FEM to beam
theory, or in the definition of K, we refer the reader to [16]
or [17].

1www.sofa-framework.org



Linear elasticity
In the case of linear elasticity, the stiffness matrix of a

single beam element is computed as follows. First, we define
as Ω(x, y, z) the volume represented by the beam element.
Coordinates x, y, and z represent material coordinates, so
that x ∈ [0, l], y ∈ [−h

2 ,
h
2 ] and z ∈ [−w

2 ,
w
2 ] respectively,

where l represents the beam length, and h and w the height
and width of its section. We use the approximation that h
and w remain constant during the deformation.
We note u(x, y, z, t) the continuous displacement field in the
element. As mentioned in II-A, beams are discretized into
12 DOFs. Thus, we can also define the nodal displacement
vector of a beam as ũ = (wx,i, wy,i, wz,i, θx,i, θy,i, θz,i),
where i ∈ J1, 2K indicates which of the beam nodes the
DOFs are referring to.
The relation between u and ũ is described by shape func-
tions, defining the beam continuous medium by interpolation
of the nodal DOFs. In this study, we use 3D Timoshenko
beam functions, as expressed by Bazoune and Khulief in
[18]. The Timoshenko beam model allows notably to take
into account shear deformations and to describe more accu-
rately beams for which the section dimensions are compara-
ble to the length [18]. In our case, this will be the case in the
stent parts presenting a high curvature. The shape functions
can be summarized in the form of a 3×12 matrix N giving:

u(x, y, z, t) = N(x, y, z)ũ(t). (3)

The expression of N is explicitly given in [18].
From the displacement field, we can compute the strain
tensor ε using the small strain formulation. We represent
the second order strain tensor as a 6× 1 vector, using Voigt
notation.

ε(x, y, z, t) = Su(x, y, z, t), (4)

with

S =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

0 1
2

∂
∂z

1
2

∂
∂y

1
2

∂
∂z 0 1

2
∂
∂x

1
2

∂
∂y

1
2

∂
∂x 0


and ε =


εx,x
εy,y
εz,z
εy,z
εx,z
εx,y

 . (5)

Combining (3) and (4), we obtain:

ε(x, y, z, t) = Be(x, y, z)ũ(t), (6)

where Be = SN is a 6× 12 matrix.
Using Hooke’s law for isotropic linear elasticity, we can
relate the stress tensor σ to the strain:

σ(x, y, z, t) = Cε(x, y, z, t). (7)

It can be noted that in (7), σ and ε are second order
tensors, imposing C to be expressed as a fourth order tensor.
Using again Voigt notation, ε and σ can be expressed as 6-
dimensional vectors, while C is reduced to a 6 × 6 matrix.
The corresponding expression for C can be found in [19].
From the Principle of Virtual Work, we can express the

beam stiffness matrix K in integral form, using the quantities
above, as:

K =

∫
Ω

Be
TCBe dΩ. (8)

The resulting K is a 12 × 12 matrix. Detail of the
computation from the continuous expression of the Principal
of Virtual Work can be found in [20].
We stress out the fact that matrices Be and C are constant
over time, meaning that K could be computed once and
for all at the beginning of the simulation. As elements of
Be are at most second degree polynomials, we could also
compute analytically the integral. This is namely used in [8],
[9], and [12] to save computational time. Nevertheless this
becomes irrelevant when replacing the linear elasticity law
by a nonlinear plastic behavior. Consequently, we concretely
compute K by using Gaussian reduced integration over
each beam element.

Plasticity
In plasticity theory, the constitutive law (i.e. the stress-

strain relation) can be decomposed into two phases:
• an elastic phase, during which the internal stress de-

pends linearly on the strain, as in (7),
• a plastic phase, during which part of the strain can be

distinguished as resulting from plastic energy dissipa-
tion, and the stress-strain relation becomes nonlinear.

The transition from the elastic to the plastic phase is de-
scribed by a yield criterion f : R6 → R, defined on the stress
space. In this study, we use the Von Mises yield function:

f(σ) = σe(σ)− σ0, (9)

where
σe(σ) = (σe1 + σe2)

1
2 , (10)

with

σe1 =
1

2

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2

]
, (11)

and
σe2 = 3

(
σ2
xy + σ2

yz + σ2
zx

)
. (12)

In (9), σ0 is a material constant referred to as the yield
stress. In a 1D tensile test, it corresponds to the stress value
above which the material starts to deform plastically. It is
determined experimentally for a given material.
The yield criterion is used as follows:

• if f(σ) < 0, the stress state σ corresponds to an elastic
deformation,

• if f(σ) > 0, σ is actually an unacceptable stress state,
i.e. the deformation can not be considered as elastic
anymore. A new realistic stress state must be computed.

The computation of an acceptable plastic stress state relies
on the decomposition of the strain into a plastic and an elastic
component:

ε = εel + εpl. (13)

In the following, we adopt a model of perfect plasticity, as
described in [21]. The term ’perfect’ refers to the fact that



the yield stress σ0 remains constant during the plastic phase.
Consequently, the yield surface described by f(σ) = 0 in
the stress space also remains unchanged.
The evolution of the plastic strain is described by a flow rule,
of the form:

dεpl = dλ
∂g

∂σ
. (14)

The scalar value dλ is known as the plastic multiplier, and
g : R6 → R is a plastic potential defined on the stress space.
In our case, we use an associative flow rule, meaning that
the plastic potential is considered equal to the yield criterion:

g(σ) = f(σ). (15)

This approximation is generally acceptable for metals, but
gives incoherent results with more complex elasto-plastic
materials (such as soil, or concrete).

As the constitutive law becomes nonlinear in plastic
phase, it is not possible to use (7) to compute the new
stress state at each time step anymore. Additionally, the
expression of K given in (8), relying on the fact that C is
constant, is no longer relevant.
An alternative is to integrate the differential elasto-plastic
stress-strain relation, in order to compute the new stress
state incrementally, at each time step. A solution for this
well known issue is to adopt an integration scheme based
on the implicit return algorithm. Although the idea was
introduced before, we refer the reader to [21] for a detailed
implementation, and to Simo and Taylor’s study [22] for
a thorough review of this procedure. We give a brief
description of the method below.

We want to compute a new stress increment ∆σ so that
σt+h = σt + ∆σ. The computation is decomposed into two
steps. At first, we compute an incremental elastic predictor,
as:

∆σel = C∆ε. (16)

Depending on the sign of f(σt + ∆σel), we consider two
scenarios:

• if f(σt + ∆σel) < 0, the new stress state σt+h

actually results from a purely elastic deformation, and
the elastic predictor is accurate. Therefore ∆σ = ∆σel.
This scenario is also chosen if ∇T f(σt)∆σel < 0
(unloading case).

• if f(σt + ∆σel) > 0, the elastic predictor does not
provide an acceptable stress state. We must couple it
with a corrective term, in order to obtain a plastic stress
state.

As described in [21], the orthogonal return algorithm consists
in searching for a corrective stress increment which, summed
to the elastic predictor, gives the final stress state σt+h.
The term ’return’ refers to the fact that the direction of this
corrective stress increment is given by the unit normal to
the yield surface. When using the Von Mises criterion, the
regularity of the function implies that this direction is the
radial direction. This is known as the radial return algorithm.

As given in [21], we obtain the following update for the new
stress state:

σt+h =
σ0

σe(σel
t+h)

selt+h + Tr(σel
t+h)I, (17)

where σel
t+h = σt + ∆σel and selt+h is the corresponding

deviatoric stress (selt+h = σel
t+h −Tr(σel

t+h)I). Following the
consistency condition (∇fT dσ = 0), the plastic multiplier
increment is computed as:

∆λ =
∇fTσel

t+h

∇fTC∇f
. (18)

Once the stress state σt+h is known, we may finally
compute the resulting internal forces, and linearized stiffness
matrix, so that they are taken into account in the global
mechanical system (2).
The new internal forces are simply computed by integration:

fint(σt+h) =

∫
Ω

Be
Tσt+h dΩ. (19)

The linearized version of the stiffness matrix (or tangent
stiffness matrix) Kt can be expressed in a similar analysis
way as for (8), leading to:

Kt =

∫
Ω

Be
T

(
dσ

dε

)
Be dΩ. (20)

Starting from Hooke’s law, we have:

dσ = Cdεel

= C(dε− dεpl)

dσ = C(dε− dλ
∂g

∂σ
).

Through calculus, and using the consistency condition:

∇fT dσ = 0, (21)

we obtain an equivalent differential relation between stress
and strain in plastic deformation:

dσ = Cep dε, (22)

with

Cep =

C−
C ∂f

∂σ
∂f
∂σ

T
C

∂f
∂σ

T
C ∂f

∂σ

 . (23)

This allows to explicitly express the tangent stiffness as:

Kt =

∫
Ω

Be
TCepBe dΩ. (24)



E. Expansion forces

In order to simulate the balloon expansion, we apply radial
forces on each mesh node. These forces are incremented
linearly in time, up to a maximal intensity value fi where i
represents the index of a node.
We approximate this intensity by considering that the infla-
tion pressure of the balloon is directly transmitted to the stent
inner surface Sint. The global force intensity F applied on
the stent can then be related to the inflation pressure P by:

F = P × Sint = P × w × h× ltot, (25)

where ltot stands for the mesh total length, computed by
summing the lengths of all the elements.
Then, we associate to each node a scalar value αi corre-
sponding to the ratio of the lengths of the beam elements
it belongs to, over 2ltot (as each beam length is counted
twice: once for each of its nodes). αi gives an estimation of
which proportion of the stent length is affected by node i.
We simply use these coefficients to distribute global force
intensity over the nodes, leading to:

fi = αiF. (26)

In order to reproduce the balloon inflation and deflation, we
increment and decrement linearly the intensity of the nodal
forces, over a given number of time steps. The direction of
theses forces remains constant (along radial direction) during
the deformation.

F. Constraints

As mentioned in the beginning of this paper, we need to
ensure nodal cohesion between three or more beam elements,
in certain parts of the mesh (for instance at stent ring
connections). This is achieved by making use of Lagrangian
constrained dynamics, as introduced in [23]. This method
was specifically described on beam elements in SOFA by
Sorokin et al. in [24], to simulate filopodia. Once again,
we use the same model without modifications, and refer the
reader to the aforementioned article for more details.
Briefly, the addition of constraints involves an additional step
in the numerical solution;

• At first, (2) is solved without being constrained, leading
to a new position (free motion).

• In a second time, a modified constrained system is
solved:

A∆vt+h = b + hHTλ, (27)

where H is a Jacobian containing the constraint directions,
and λ contains the Lagrange multipliers associated to each
constraint. In SOFA, this system is typically solved itera-
tively using a Gauss-Seidel algorithm.

III. RESULTS

As a proof of concept, the methodology presented above
was entirely carried out on a Presillion Plus (Cordis, Fre-
mont, California, U.S.) coronary stent.

A. Mesh conception

A first run of micro-CT images was acquired on the
crimped stent, to retrieve its geometrical base features. The
acquisition was performed with a micro-CT scanner (Explore
CT 120 R©, GE Healthcare, Chicago, Illinois, U.S.) with a
predefined routine of 700 projections. The dimensions of the
stent base patterns were measured on the resulting 3D image,
and a corresponding flat mesh was conceived accordingly, as
shown in Fig. 1.
The studied stent can be decomposed into two sinusoidal
ring patterns, used alternatively over a total of 13 rings. The
global structure was discretized with 1956 beam elements
(2005 nodes), and its cohesion assured with 85 bilateral
constraints.

Fig. 1. Flat mesh reproducing the Presillion Plus coronary stent structure.
The mesh was conceived with CAD, from micro-CT-acquired geometrical
data.

B. Simulation parameters

The flat mesh was imported into SOFA, and wrapped
into a cylindrical shape. The radial expansion forces applied
to each node were computed for an inflation pressure of
P =3.0 MPa (about 30 atm), and the FEM routine was run
with ∆t =1 µs.
The simulation was launched on a common workstation
(Intel Xeon E3-1270 v5 (8CPUs) 3.6 GHz, 16 GB RAM,
Windows10 64 bits), without any form of optimization
(single thread CPU execution). The execution time for the
whole simulation was around 1 hour.

C. Experimental validation

In order to assess the precision of our proof-of-concept
model, we performed three other micro-CT acquisitions,
on a Presillion Plus deployed with an inflation pressure
of 12, 16 and 20 atm, respectively. Stent expansion was
unconstrained (i.e. no artery phantom was used), and
the parameters were the same as for the crimped stent
acquisition.
Quantitative evaluation was achieved by comparing specific
geometrical features on two pointsets, extracted from the
simulation output and from the micro-CT 3D reconstruction,
respectively. The simulation pointset simply corresponds to
the mesh nodes, while the micro-CT pointset was extracted
by converting the volumetric representation of the stent to a
binary skeleton. We performed rigid registration between the
two pointsets. In a first step, rigid transform was carried out
to superimpose the principal axes of inertia and centers of
gravity. In a second step, we used a rigid rotation around the



common axis to minimize the Euclidean distance between
simulated points and their closest neighbors in the CT
pointset. 3D rendering of the registration output is given in
Fig. 3 for a crimped and a deployed configurations.

The first available feature is the Euclidean distance
between each pair of coupled points. We measured an
average distance of 0.17 mm, which is approximately 10
times smaller than the macroscopic dimensions of the stent
(the diameter and length’s order of magnitude being typically
1 mm). In the same way, we computed the radial distance
between each pair of points. We obtained an average
value of 80 µm, which is the same order of magnitude
as the strut thickness (the stent section dimensions being
(50× 50) µm).
The last geometrical feature is the deployment radius,
computed for each point as the radial distance with the stent
rotation axis. Fig. 2 shows the mean radius in function of the
axial position, along the stent centerline. We observe that the
expansion radius is accurately estimated by the simulation
around 0, with a minimum difference of 2.29× 10−3 mm
between the two models, for an axial position of −0.28 mm.
On the contrary, the radius is underestimated at the stent
extremities, with a maximum difference of 0.210 mm
for an axial position of −4.7 mm. We note that the free
deployment of the stent leads to an heterogeneous radius
along the centerline, which is correctly reproduced by the
simulation. In practice, when a coronary stent is deployed
inside an artery, its final radius is imposed by the artery wall.
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Fig. 2. Comparison of the Presillion Plus expansion radius between the
simulation output (orange curve) and a micro-CT ground-truth acquired with
P = 12 atm (blue curve). The result is given in function of the stent axial
position, along its rotation axis.

IV. DISCUSSION
The first point we want to mention is that the model we

propose for balloon-expandable stents is able to reproduce
the free expansion of a stent, in a reasonable amount
of time. The comparison of the simulation output with
experimental micro-CT data, based on basic geometrical
features, showed that the deployed configuration could
be accurately reproduced in terms of radial expansion. In

Fig. 3. 3D rendering of the rigid registration between the simulation output
and the micro-CT acquisition. The CT volumetric reconstruction is displayed
plain and in grey, while the simulation mesh nodes are superimposed as
red points. The top image corresponds to the crimped configuration (P =
0 atm), and the bottom image to a deployed configuration (P = 12 atm in
the micro-CT acquisition).

addition, the achieved execution time is significantly smaller
than for similar simulations using volumetric elements and
standard commercial codes. Among the studies mentioned
in introduction and also modeling stent free expansions, but
with 3D elements ([1], [2] and [3]), only De Beule et al.
in [3] mention an execution time: less than 48 hours, for
simulations run with ABAQUS large deformation analysis
on a in-house-built high performance computing cluster.
Although their discretization is particularly dense, we can
expect similar computational times for [1] and [2] in which
the simulation also relies on ABAQUS large deformation
analysis. Our 1D beam model is likely to be 10 times
faster (48 times faster than [3]), while running on a regular
workstation (single CPU thread).
One perspective of our work is to run an optimized version
of our code on a more powerful computer (Intel Xeon
E5-2630 v4 2.20 GHz (20 cores)). As several tasks can
be run in parallel over the beam elements (namely the
computation of the internal forces, the tangent stiffness
matrix, and plastic stress states), we are confident in being
able to divide the execution time by at least 10.



Nevertheless, the results also exhibit non-negligible limita-
tions. We can see in the bottom picture of Fig. 3 that the stent
length in the final configuration is shorter in the simulation
than in the micro-CT imaging (9.35 mm against 11.1 mm).
Even with similar expansion diameters, this unexpected
shortening creates an axial shift in the whole structure. This
phenomenon could be explained by various approximations
of our model, the most likely of which are listed below.
The perfectly plastic model is an obvious approximation
for the plastic behavior. Even if hardening phenomena are
not crucial considering the unique loading/unloading cycle
undergone by the stent during its deployment, we could
straightforwardly extend our model by taking into account
the evolution of the yield criterion, as proposed in [21].
Under the same expansion forces, such a modification should
notably stabilize the stent deformation in comparison with
perfect plasticity.
The balloon simulation is another potential issue. As the
balloon inflation and deflation are only simulated through
incremental forces, we do not render directly the equilibrium
that, in reality, takes place between the balloon elastic mem-
brane and the coronary stent. Typically the implementation
of this equilibrium could limit the shortening phenomenon
mentioned above.
The last clear limitation regarding our results is the fact that
the default implementation of the Newton-Raphson algorithm
in SOFA (used to solve (2)) restricts the procedure to 1
iteration per time step. Although this does not represent
an issue when dealing with linear elastic behaviors, the
introduction of a nonlinear plastic behavior should benefit
from a fully iterative procedure.
Although we restricted the accuracy assessment of this proof-
of-concept study to basic geometrical criteria, future work
should ensure that the precision of our model is compatible
with clinical use.

V. CONCLUSION

In this paper, we present a complete methodology to
realistically simulate the plastic deformation of a balloon-
expandable stent, in a reasonable time. The efficiency of
the algorithm relies on an original discretization of the sent
by 1D serially linked beam elements. Even if this study is
focused on coronary stents, we highlight the fact that - to
the best of our knowledge - this geometrical representation
could be applied to other models of (uncovered) vascular
stents, for instance designed to treat the carotid, femoral, or
iliac arteries.
Additionally, we experimentally assessed the output of the
simulation using basic geometrical criteria, thus establishing
the feasibility of the method and the compatibility of our
model with clinical routine.
As this work remains preliminary, it is meant to be extended
towards more realistic applications. Consequently, the ob-
jectives of our future investigations will be the enhancement
of the present beam model and the introduction of a con-
straining artery model in the simulation. Using a personal-
ized model (for instance retrieved from Optical Coherence

Tomography endovascular imaging), the simulation could be
integrated in a clinical routine, in the form of a reliable
visualization tool.
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[6] J. Tambača, M. Kosor, S. Čanić, and D. P. M.D, “Mathematical
modeling of vascular stents,” SIAM Journal on Applied Mathematics,
vol. 70, pp. 1922–1952, 2010.
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