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Abstract
Background: DSB, the 3-O-(3',3'dimethylsuccinyl) derivative of betulinic acid, blocks the last step
of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag), which leads to immature,
noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9), DSB inhibits the
assembly and budding of membrane-enveloped virus-like particles (VLP). In order to explore the
possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process,
several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP
yields assayed in the extracellular medium.

Results: Wild-type Vif (Vifwt) restored the VLP production in DSB-treated cells to levels observed
in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective
in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in
Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the
zinc binding domain (ZBD) formed by the four H108C114C133H139 coordinates with a Zn atom.
Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large
proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis.
However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded
at the plasma membrane, as in control cells expressing Pr55Gag alone.

Conclusion: The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly
was independent of its packaging capability, but depended on the integrity of ZBD. In the presence
of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular
compartment and egressed via the exocytic pathway.
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Introduction
The 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (or YK-
FH312 [1], or PA-457 [2], or Bevirimat™ [3,4]), has been
used as an antiviral which blocks HIV-1 replication via its
inhibitory activity on Gag polyprotein maturation [2,5-8].
DSB differs from conventional protease (PR) inhibitors in
that it does not bind to PR, but interferes with the PR-
mediated Gag processing. The ultimate cleavage of the C-
terminal capsid domain CAp25 into CAp24 + SP1 is
required for production of fully infectious virions [9].
DSB blocks this step, and decreases or abolishes virus
infectivity [2,4,6,10]. Several lines of evidence indicate
that the CA-SP1 junction is the preferred target of DSB in
HIV-1 Gag precursor [3,4,8,11]. Although there is no
available structural data on DSB-Gag complex which
could explain its inhibitory activity at the molecular level,
data from in vitro experiments [12], as well as the encapsi-
dation of DSB in equimolar ratio to Gag in vivo [13], sug-
gested that the mechanism of inhibitory activity of DSB
results from the direct binding of DSB to the Gag polypro-
tein, or/and to a transient Gag structural intermediate
which occurs during virus assembly.

The latter observation incited us to study the possible
effect of DSB on assembly of recombinant HIV-1 Gag pre-
cursor (Pr55Gag) expressed in heterologous, eukaryotic
system. We observed a dose-dependent negative effect of
DSB on the process of assembly and release of HIV-1 VLP
from recombinant baculovirus AcMNPV-Pr55Gag-
infected cells [14]. This effect was not due to a block in
Gag synthesis, and was independent of the N-myristoyla-
tion of Pr55Gag and its plasma membrane addressing. It
did not depend on the presence of the p6 domain at the
C-terminus of Gag. The same effect was observed with the
Gag precursor of SIVmac (Pr57GagSIV), although at signif-
icantly higher DSB concentrations, suggesting that the
DSB inhibitory activity on Gag assembly was not as strictly
sequence-dependent as the negative effect on Gag process-
ing at the CA-SP1 junction [8]. In addition, we found a
lower stability of delipidated cores assembled in the pres-
ence of DSB, compared to control cores, suggesting a
weakening of Gag-Gag interaction occurring in the pres-
ence of DSB [14]. Using Gag mutants and a chimeric HIV-
MuLV Gag precursor, we mapped the DSB-responsive
domain in terms of Gag assembly to the hinge region
overlapping the C-terminal end of the CAp24 and the SP1
domain [14].

The DSB concentration at which we observed an inhibi-
tory activity on Gag assembly in insect cells (IC50 ~8–10
μM) was apparently disproportionate compared to the
usual doses required for blocking the CAp25 cleavage in
HIV-1-infected mammalian cells. However, a wide range
of IC-50 values have been reported for the DSB inhibition
of virus maturation, varying from nanomolar (0.35 nM

[15] and 7.8 nM [2]) to micromolar values (10 μM [12]),
depending on the different assays used. In addition, in
Pr55Gag-expressing Sf9 cells, the bulk of Gag protein mol-
ecules synthesized at 48 h pi has been evaluated to be as
high as 5 × 108 per cell [16]. The addition of DSB at 10 μg/
ml to 106 cells corresponded to 12 × 109 DSB molecules
per cell, i.e. a DSB to Gag stoichiometric ratio of 24: 1 at
this DSB concentration. A 24-fold excess of DSB over Gag
was therefore compatible with a mechanism of Gag
assembly inhibition due to a stoichiometric interaction
between the drug and its protein target.

Whatever the molecular mechanism, our observation
raised the question of the difference between Pr55Gag-
expressing Sf9 cells, in which DSB inhibited VLP assembly
[14], versus HIV-1-infected human cells, in which DSB
was found to block the CA-SP1 (CAp25) to CAp24 matu-
ration cleavage [3,4,8,11], and to have limited effects on
virus assembly [1]. In our experimental model of baculo-
virus-infected cells [14], assembly of Pr55Gag was ana-
lyzed in a context devoid of PR and of glycoproteins (Gp)
SUgp120 and TMgp41, three viral components which
have been identified as directly or indirectly involved in
the antiviral effects of betulinic acid derivatives [8,17,18].
In the aim to reconcile the different antiviral activities of
DSB, we explored cellular and viral determinants of the
DSB response, and their possible role in modulating the
degree of susceptibility to DSB of the VLP assembly proc-
ess. Among the viral candidates, we analyzed EnvGp160,
the precursor to the envelope glycoproteins (reviewed in
[19]), and two inner core components, the Vpr and Vif
proteins. Vpr is packaged into the virion in substoichio-
metric amounts with Gag [20-23], and Vif, which is also
coencapsidated with Gag, has been found to exert a con-
trol on proteolytic processing of Gag in insect cells [24]
and human cells [25].

We found that coexpression of wild-type Vif protein
(Vifwt) with Pr55Gag restored the VLP assembly in DSB-
treated Sf9 cells at levels observed in the absence of the
drug, suggesting an antagonistic effect of Vif towards DSB.
Data obtained with Vif mutants indicated that the anti-
DSB function of Vif required the integrity of the zinc bind-
ing domain (ZBD) recently identified in the Vif protein
[26-28], but was independent of the Vif packaging func-
tion. Electron microscopic analysis showed that coexpres-
sion of Pr55Gag and Vifwt, in the presence or absence of
DSB, resulted in a major change in the VLP egress path-
way: the majority of VLP budded in intracytoplasmic ves-
icles and were released by exocytosis, instead of budding
at the plasma membrane as in cells expressing Pr55Gag
alone. With ZBD mutants of Vif however, the VLP bud-
ding pathway was similar to that observed in cells express-
ing Pr55Gag alone. Our data suggested that the anti-DSB
effect of Vif, a novel function associated with its ZBD, was
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the indirect consequence of its effect on the cellular path-
way of VLP assembly and budding.

Results
Antiviral effects of DSB and cellular context
We first compared the effect of DSB on VLP assembly and
release in our reference model of AcMNPV-Pr55Gag-
infected Sf9 cells [14] and in a trans-packaging mamma-
lian cell line. 5BD.1 cells derive from CMT3-COS cells by
integration of a discontinuous HIV-1 progenome, and sta-
bly express the gag, gagpol, rev and env gene products but
no Nef protein. 5BD.1 cells also express Vif protein in sig-
nificant amounts [29,30]. 5BD.1 and Sf9 cells represented
a similar situation in terms of VLP content, as both cell
types produced VLP devoid of viral genomic RNA. DSB
was added to monolayers of 5BD.1 cells at increasing con-
centrations for 30 h, and whole cell lysates and VLP recov-
ered from culture medium were analyzed for Gag protein
content at the end of this time period.

The intracellular Gag content was found to remain con-
stant throughout the period of DSB treatment in both Sf9
and 5BD.1 cells (Fig. 1Ai and 1Bi), which confirmed that
DSB had no significant effect on the level of Gag protein
synthesis [14]. However, a drastic decrease in the yields of
extracellular VLP was observed at DSB doses superior to 4
μg/ml in Pr55Gag-expressing Sf9 cells (Fig. 1Aii; and refer
to [14]). By contrast, only a moderate decrease in VLP pro-
duction (20–30%) was detected for DSB-treated 5BD.1
cells at high DSB concentrations (12 to 16 μg/ml; Fig.
1Bii). Protein analysis of VLP showed that their Gag pro-
tein content mainly consisted of Pr55Gag and CAp24 pro-
teins, with other minor species migrating at the expected
position for intermediate cleavage products, e.g. Pr47 to
Pr41 (Fig. 1Bii). Prolonged exposure of autoradiograms of
immunoblots reacted with radiolabelled secondary anti-
body revealed a discrete alteration of the Gag processing
at high DSB concentrations: there was a progressive
increase in the amount of uncleaved CAp25 versus the

Effects of DSB on HIV-1 VLP production by (A) insect cells and (B) mammalian cellsFigure 1
Effects of DSB on HIV-1 VLP production by (A) insect cells and (B) mammalian cells. (A), Sf9 cells infected with 
AcMNPV-Pr55Gag were treated with increasing concentrations of DSB in DMSO-aliquots for 30h at 18h pi, as indicated on 
top of the panels. Cells were harvested at 48 h pi, and whole cell lysates (WCL) and extracellular VLP recovered from the cul-
ture medium were analyzed by SDS-PAGE and immunoblotting using anti-Gag polyclonal antibody and phosphatase-labelled 
anti-rabbit IgG antibody. (i), WCL. (*), Asterisk marks posttranslationally modified Gag precursor (ubiquitinated and/or phos-
phorylated). This Gag species was not included in the quantification of Pr55Gag polyprotein. (ii), Extracellular VLP. (B), 5BD.1 
packaging cells were treated with increasing DSB concentrations in DMSO for 30 h, as indicated on top of the panels, and cells 
and VLP collected separately and analyzed as above. (i), WCL; (ii), VLP. (iii), Same experiment as in (ii), except for the immu-
noblot analysis, which was performed using 35S-labelled secondary antibody. Shown in (iii) is an autoradiogram of the blot. 
Molecular markers (m) were electrophoresed on the left side of the gels, and their molecular masses are indicated in kiloDal-
tons (kDa).
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CAp24 species (Fig. 1Biii), as expected from previous
studies [3,4,8,11].

VLP assembly and release were therefore less sensitive to
DSB inhibitor in 5BD.1 cells compared to Gag-expressing
Sf9 cells. This suggested that the DSB sensitivity of the VLP
assembly pathway might be modulated by the cellular
context in which the HIV-1 Gag precursor was expressed,
or/and by viral proteins present in 5BD.1 cells and absent
from Sf9 cells. The following experiments were designed
to address this issue, and to determine which factor(s)
possibly interfered with DSB inhibitory activity and
accounted for the difference in DSB response between Sf9
and 5BD.1 cells, as well as other mammalian cells.

Absence of detectable effect of EnvGp160 or Vpr on the 
DSB inhibition of VLP assembly in Sf9 cells
The best candidates to act as viral modulators of the Gag
assembly response to DSB were the HIV-1 proteins coen-
capsidated with Gag, in particular those which are active
participants in the virus assembly pathway (reviewed in
[19,31]). This was the case for the envelope glycoprotein
Gp160, which has been shown to interact with the MA
protein via the cytoplasmic tail of its TMgp41 domain [32-
36], as well as for auxiliary viral proteins Nef, Vpr and Vif.

In order to test this possibility, Sf9 were coinfected with
AcMNPV-Pr55Gag and AcMNPV-Gp160, and subjected to
increasing doses of DSB for 30 h, at 18 h pi. Culture
medium samples were collected at 48 h pi and assayed for
production of extracellular VLP. Results were compared
with VLP yields from Sf9 cells infected with AcMNPV-
Pr55Gag alone and treated in parallel with DSB at the
same doses. No significant difference in the DSB effect on
VLP assembly was detectable with or without coexpres-
sion of EnvGp160 (data not shown). This excluded the
direct or indirect participation of HIV-1 envelope glyco-
proteins in the level of susceptibility to DSB of assembly
and extracellular release of VLP by Sf9 cells.

Nef in its processed form, called Nef core, has been shown
to be a bona fide component of the virion inner core [37-
40]. In 5BD.1 cells, which do not express Nef but express
Vif [29,30], we observed a significantly lesser inhibitory
effect of DSB on VLP assembly, compared to Gag-express-
ing Sf9 cells (refer to Fig. 1Bii). Considering that Nef pro-
tein was absent from both Sf9 and 5BD.1 cells, the
difference in DSB response between these two cell types
apparently excluded Nef as a possible modulator of the
DSB sensitivity of VLP assembly.

Vpr is coencapsidated with Gag via interaction of the N-
terminal alpha-helical domain encompassing residues
17–33 in Vpr [41-44] with the LXXLFG motif in the p6
domain of Gag [21,22,45-48]. In Sf9 coinfected with AcM-

NPV-Pr55Gag and AcMNPV-Vpr, the same DSB sensitivity
of VLP assembly was observed as in cells solely expressing
AcMNPV-Pr55Gag: both Pr55Gag and Vpr protein signals
decreased in parallel and in DSB dose-dependent manner
in the extracellular medium of DSB-treated cells, although
their intracellular content remained unchanged (Fig. 2).
This implied that Vpr did not significantly interfere with
the inhibitory effect of DSB on Gag assembly.

Antagonistic effect of Vifwt on the DSB inhibition of HIV-1 
VLP assembly
HIV-1 Vif protein has been shown to interact with
Pr55Gag in vitro and in vivo [49,50], to control the viral
PR-mediated processing of Gag in mammalian and insect
cells [24,25,51], and to be coencapsidated with Gag at a
level of 70–100 copies of Vif protein per HIV-1 virion or
VLP [24,25,50,52-57]. Sf9 cells coinfected with AcMNPV-
Pr55Gag and AcMNPV-Vifwt showed a pattern of DSB
effect different from that observed in cells expressing
Pr55Gag alone: there was no significant decrease in the
VLP yields from DSB-treated Sf9 cells, up to drug concen-
trations as high as 20 μg/ml, implying that expression of
Vifwt protein negated the DSB inhibition of VLP assembly
process in Pr55Gag-expressing insect cells (Fig. 3b, c). Of
note, the Vif content of VLP progressively decreased in a
DSB-dependent manner (25–30% less than in control
sample at 20 μg/ml DSB; Fig. 3b, c), although the intrac-
ellular content of Vif and Pr55Gag remained stable up to
high DSB doses (16–20 μg/ml; Fig. 3a). This suggested a
direct or indirect interference of Vif with DSB in virus
assembly, resulting in the abrogation of the DSB negative
effect on this process.

Anti-DSB activity of packaging-defective mutants of Vif
In a previous study, we have constructed and character-
ized Vif mutants which differed from Vifwt in their effi-
ciency of copackaging with Pr55Gag into VLP produced
by recombinant baculovirus-coinfected cells [50]. The two
discrete regions involved in this function spanned resi-
dues 76–80 and 89–94, respectively (Fig. 4). Substitution
mutants VifsubA (76EKEWH80 to 76DINQN80), VifsubB
(89WR90-Y94 to 89FE90-F94), double mutant VifsubC
(subA+subB), and triple mutant VifsubCΔ170 carrying the
double mutation subA+subB and a deletion of the C-termi-
nal twenty-three residues, were found to be defective to
various degrees in the encapsidation of Vif into VLP: Vif-
subA, VifsubB and VifsubC were partially defective in Vif
packaging (40–50% the levels of Vifwt), whereas this func-
tion was totally abolished in VifsubCΔ170 [50]. On the
opposite, VifKRA8, a full-length Vif mutant which had
eight basic residues in the C-terminal domain replaced by
neutral alanine residues (Fig. 4) and lacked the plasma
membrane addressing function [54], was packaged into
VLP at levels higher than Vifwt [50], suggesting that plasma
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membrane localization and encapsidation into VLP were
distinct functions in Vif.

We then tested the anti-DSB activity of Vif mutants with
different encapsidation phenotypes. With VifsubC, the
production of extracellular VLP remained virtually
unchanged throughout the DSB concentration range, with
less than 15% decrease in VLP production at high DSB
doses (Fig. 5). As observed with Vifwt (refer to Fig. 3b, c),
there was a DSB-dependent, progressive decrease of Vif-
subC mutant protein content in VLP, relative to the
Pr55Gag content, with 20–30% lesser Vif protein incorpo-
rated at high DSB doses, compared to control samples
(Fig. 5b, c, samples 16–20). A similar DSB resistance pat-
tern as with Vifwt and VifsubC was observed with the other
packaging-defective mutants VifsubA, VifsubB, and
VifsubCΔ170 (not shown). Likewise, the packaging-effi-

cient mutant VifKRA8 showed the same phenotype as
Vifwt and the packaging-defecting mutants in terms of
anti-DSB activity (not shown). These results suggested
that the DSB-counteracting function of Vif was independ-
ent from the packaging function of Vif.

Involvement of the zinc-binding domain of Vif in its anti-
DSB function
A conserved region of the Vif protein, within residues 108
to 140, has been recently characterized as a non-canonical
zinc-coordinating structure, generated by the H108, C114,
C133 and H139 coordinates (HCCH) with a Zn atom
[27,28]. This zinc-binding domain (ZBD) has been iden-
tified as the interacting region with the Cullin5 (Cul5) E3-
ubiquitin ligase [28]. It has been shown that Vif recruits
cellular proteins ElonginB/ElonginC and Cul5 via its BC-
box and ZBD domain, respectively, and the resulting E3-

Absence of counteracting effect of Vpr on DSB inhibition of HIV-1 VLP assembly and releaseFigure 2
Absence of counteracting effect of Vpr on DSB inhibition of HIV-1 VLP assembly and release. Sf9 cells were coin-
fected with two baculoviruses at equal MOI each (5 PFU/cell), one expressing Pr55Gag, the other expressing His-tagged Vpr. 
Cells were treated with increasing concentrations of DSB in DMSO aliquots for 30 h at 18 h pi, as indicated on top of the pan-
els. Cells were harvested at 48 h pi, and whole cell lysates (WCL) and extracellular VLP analyzed by SDS-PAGE and immunob-
lotting, using anti-His mAb and phosphatase-labelled anti-mouse IgG antibody, followed by anti-Gag rabbit antibody and 
peroxidase-labelled anti-rabbit IgG antibody. (A), VLP. (B), WCL. Note the occurrence of Vpr dimer (Vprx2; 30 kDa), stained 
in blue with the phosphatase reaction. (m), prestained molecular mass markers; (kDa), kiloDaltons.
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Influence of Vif on the DSB susceptibility of HIV-1 VLP assembly in Sf9 cellsFigure 3
Influence of Vif on the DSB susceptibility of HIV-1 VLP assembly in Sf9 cells. Sf9 cells were coinfected with equal 
MOI (5 PFU/cell) of two baculoviruses expressing Pr55Gag and Vif, respectively. Cells were treated with increasing concentra-
tions of DSB in DMSO for 30 h at 18 h pi, as indicated on top of panels (a) and (b), and the x-axis of panel (c). Cells were har-
vested at 48 h pi, and whole cell lysates (WCL) and extracellular VLP analyzed by SDS-PAGE and immunoblotting. Blots were 
reacted with anti-Vif primary antibody and secondary phosphatase-labelled antibody, followed by anti-Gag primary antibody 
and secondary peroxidase-labelled antibody. (a), WCL. (*), Asterisk marks posttranslationally modified Gag precursor (ubiqui-
tinated and/or phosphorylated). This Gag species was not included in the quantification of Pr55Gag polyprotein. (b), VLP. 
Molecular mass of prestained markers (m) are indicated in kiloDaltons (kDa) on the left side of panels (a) and (b). (c), Quanti-
fication of Gag and Vif proteins in WCL (IC-Gag, intracellular Gag; IC-Vif, intracellular Vif) and extracellular VLP, using SDS-
PAGE and radio-immunoblotting. Gag and Vif protein contents were quantified by autoradiography of immunoblots reacted 
with anti-Gag and anti-Vif rabbit primary antibodies and 35S-labelled secondary anti-rabbit IgG antibody. After autoradiography 
of the blots, bands of Pr55Gag and Vif proteins were excised and their radioactive content determined by liquid scintillation 
spectrometry. Results were expressed as percentage of control, untreated samples, which was attributed the 100% value. 
Mean of three separate experiments ± standard deviation.
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Genotype and expression of recombinant Vif mutants in Sf9 cellsFigure 4
Genotype and expression of recombinant Vif mutants in Sf9 cells. (A), Sequence alignment of the central and C-ter-
minal domains of HIV-1 Vif proteins, WT and mutants. The zinc binding domain (ZBD) and its three constitutive loops are 
boxed: loops 1 and 3 are indicated as dark grey boxes, central loop 2 as a lighter grey box. (B), Cellular expression of recom-
binant Vif proteins, wild-type and mutants, in baculovirus-infected Sf9 cells. Sf9 cells were infected with baculoviruses (MOI 5) 
expressing different forms of Vif, as indicated on top of the panel, and harvested at 48 h pi. Whole cell lysates were analyzed by 
SDS-PAGE and immunoblotting, using anti-Vif primary antibody and secondary peroxidase-labelled antibody. The full-length 
ZBD mutants VifC133S and Vif116V show an aberrant electrophoretic mobility, as they migrate with a higher apparent molec-
ular weight compared to Vifwt (23 kDa), and a higher sensitivity to proteolysis, as evidenced by the discrete bands of lower 
molecular weight breakdown products. Note the propensity of the Vif protein of triple mutant VifsubCΔ170 (20 kDa) to 
dimerize (Vifx2; 40 kDa).
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Counteracting effect of packaging-defective mutant Vif subC on the DSB inhibition of HIV-1 VLP assemblyFigure 5
Counteracting effect of packaging-defective mutant Vif subC on the DSB inhibition of HIV-1 VLP assembly. Sf9 
cells were coinfected with two baculoviruses at equal MOI of each (5 PFU/cell), one expressing Pr55Gag, the other expressing 
the double substitution, packaging-defective mutant VifsubC. Cells were treated with increasing concentrations of DSB in 
DMSO for 30 h at 18 h pi, as indicated on top of panels (a) and (b), and on the x-axis of panel (c). Cells were harvested at 48 h 
pi, and whole cell lysates (WCL) and extracellular VLP analyzed by SDS-PAGE and immunoblotting, using anti-Vif primary anti-
body and secondary phosphatase-labelled antibody, followed by anti-Gag primary antibody and secondary peroxidase-labelled 
antibody. (a), WCL; (b), VLP. Note the low level of Vif protein in VLP, consistent with the packaging-defective phenotype of 
VifsubC [50]. (m), prestained molecular mass markers; (kDa), kiloDaltons. (c), Quantification of Pr55Gag and Vif protein con-
tent of VLP, performed by autoradiography of immunoblots with anti-Gag and anti-Vif rabbit antibodies and 35S-labelled sec-
ondary anti-rabbit IgG antibody, as described in the legend to Fig. 3 (c). Results were expressed as percentage of control, 
untreated samples, which was attributed the 100% value. Mean of three separate experiments ± standard deviation.
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ubiquitin ligase complex polyubiquitinates APOBEC3G
and redirects it to the proteasome [27,28,58-60]. Position
116 in HIV-1 Vif belongs to the ZBD domain, and more
precisely to the N-terminal portion of loop 2, the large
loop defined by the two cysteine residues at positions 114
and 133 [26,28] (Fig. 4A). It has been recently found that
replacement of Ser by Ala at position 116 in Vif did not
change the Vif-Cul5 interaction [28]. This result was not
totally surprising since position 116 can be occupied by
serine, threonine or alanine in HIV-1 and SIV-CPZ strains
[61], all residues characterized by short, hydrophilic or
hydrophobic, side chains. However, these authors
observed that deletion of Ser-116 abolished the Vif-Cul5
interaction, implying that the amino acid residue spacing
in loop 2 was critical for Vif functions [28].

Taking the latter observation into account, we substituted
the serine residue to a valine at position 116. We assumed
that the bulky side chain of valine would introduce local
disorganization in the 3D structure of the ZBD domain, as
did the S116 deletion, and would be detrimental to the
anti-DSB effect of Vif. We found that the VifS116V mutant
was coencapsidated with Gag at the same levels as Vifwt

(Fig. 6Bi, lane 0). However, the assembly and extracellular
release of VLP from Sf9 cells coexpressing Pr55Gag and
VifS116V showed the same degree of DSB susceptibility as
the one observed when Pr55Gag was expressed alone (Fig.
6Bi, and Fig. 6C). Thus, the lack of antagonistic effect
against DSB of the packageable mutant VifS116V con-
firmed that anti-DSB function and packaging into VLP
were separate functions in the Vif protein.

To further analyze the role of the ZBD structure in the Vif
anti-DSB activity, we constructed another mutant of
recombinant Vif protein. Cysteine at position 133 in Vif is
a residue essential for virus infectivity [62,63], for Zn coor-
dinate formation and ZBD-associated functions in Vif
[27,28]. We therefore generated mutation C133S in
recombinant Vif, and tested mutant VifC133S in co-
expression with Pr55Gag in control or DSB-treated Sf9
cells, as above. In untreated cells, VifC133S behaved as
VifS116V mutant, and was coencapsidated with Pr55Gag
into VLP at levels equivalent to Vifwt (Fig. 6Bii, lane 0). In
DSB-treated cell samples, VifC133S had the same pheno-
type as VifS116V in terms of lack of anti-DSB effect:
assembly and release of VLP from Sf9 cells coexpressing
Pr55Gag and VifC133S showed the same degree of DSB
sensitivity as from Sf9 cells expressing Pr55Gag alone (Fig.
6Bii, and Fig. 6C).

These results suggested that the antagonistic activity of Vif
against the DSB inhibition of Gag assembly, absent from
VifS116V and VifC133S mutants, was associated with the
ZBD and more precisely involved residues located on the
N-terminal side of loop 2. Thus, the phenotype of our Vif

Absence of anti-DSB effect of zinc-binding domain mutants of VifFigure 6
Absence of anti-DSB effect of zinc-binding domain 
mutants of Vif. Sf9 cells were coinfected with two baculo-
viruses at equal MOI of each (5 PFU/cell), one expressing 
Pr55Gag, the other expressing VifS116V (A and B, (i)) or 
VifC133S (A and B, (ii)). Cells were treated with increasing 
concentrations of DSB in DMSO for 30 h at 18 h pi, as indi-
cated on top of panels (i) and (ii), and on the x-axis of panel 
(C). Cells were harvested at 48 h pi, and whole cell lysates 
(WCL) and extracellular VLP analyzed by SDS-PAGE and 
immunoblotting, using anti-Vif primary antibody and second-
ary peroxidase-labelled antibody, followed by anti-Gag pri-
mary antibody and phosphatase-labelled secondary antibody. 
(A), WCL; (B), VLP. (m), prestained molecular mass mark-
ers; (kDa), kiloDaltons. (C), Quantification of VLP produced 
by DSB-treated Sf9 cells coexpressing Pr55Gag and Vif 
mutants was performed using SDS-PAGE and autoradiogra-
phy of immunoblots reacted with anti-Gag and 35S-labelled 
secondary anti-rabbit IgG antibody, as described in the leg-
ends to Fig. 3(c) and 5(c). Results were expressed as per-
centage of control, untreated samples, which was attributed 
the 100% value. Mean of three separate experiments ± stand-
ard deviation.
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mutants with respect to their packaging and anti-DSB
properties showed that the integrity of the ZBD structure
was not required for the packaging of Vif into VLP pro-
duced by Sf9 cells, but was crucial for its DSB counteract-
ing effect.

Assembly and budding pathways of HIV-1 VLP in Vif-
expressing Sf9 cells
To further investigate on the mechanism of the DSB coun-
teracting effect of Vif, Sf9 cells coexpressing Pr55Gag and
Vifwt or ZBD mutants were analyzed by electron micros-
copy (EM) and immunoelectron microscopy (immuno-
EM). Cells were infected with AcMNPV-Pr55Gag and
AcMNPV-Vif, untreated or treated with DSB at 10 μg/ml at
18 h pi, harvested at 48 h pi and processed for EM or
immuno-EM using anti-Vif antibody. In control Sf9 cells
expressing Pr55Gag alone, the vast majority of VLP assem-
bled at and budded from the plasma membrane (Fig. 7a),
as shown in previous studies [16,64,65]. The pattern of
VLP assembly and budding was drastically different in
Gag+Vifwt-coexpressing cells: VLP were found in abun-
dance in cytoplasmic vesicles (Fig. 7b). Coexpression of
Vifwt did not decrease the production of VLP by Pr55Gag-
expressing Sf9 cells [24,50], and vesicular VLP egressed
into the extracellular medium by exocytosis (Fig. 7c). In
immuno-EM, gold grains of anti-Vif antibodies were seen
in close association with intravesicular VLP, or along the
rim of VLP-containing vesicles (Fig. 7d, e), suggesting that
Vif and Pr55Gag proteins colocalized in the same vesicu-
lar compartment.

The proportion of VLP following the intravesicular bud-
ding and exocytosis pathway compared to the ones using
the plasma membrane pathway was estimated under the
EM, by counting several hundreds of VLP in subcellular
compartments of more than 20 different cells. In control
Sf9 cells expressing Pr55Gag alone, less than 5% VLP were
found within the vesicular compartment, whereas in
Gag+Vifwt-coexpressing cells, the proportion increased to
30 to 50%, viz. a 5- to 10-fold increase. Likewise, in cells
coexpressing Pr55Gag and Vifwt and treated with DSB,
most VLP used the intravesicular budding and exocytic
pathway (Fig. 8). Interestingly, many VLP-containing ves-
icles showed an electron-dense, heterogenous lumen (Fig.
8), resembling multivesicular bodies (MVBs) observed in
mammalian cells. MVBs belong to the late endosomal
subcellular compartment, and have been identified as the
preferred budding sites for WT HIV-1 particles in primary
human macrophages (reviewed in [66]), as well as in
human epithelial and T cells for gag mutants altered in the
cluster of basic amino acids of the matrix (MAp17)
domain [67].

We next examined cells coexpressing Pr55Gag and ZBD
mutants of Vif under the EM, and found that, in the pres-

ence of Vif116V and VifC133S, the VLP budding pathway
was similar to the one observed in Sf9 cells expressing
Pr55Gag alone, i.e. a majority of VLP budding at the
plasma membrane and rare intravesicular VLP (less than
10%; Fig. 9). The EM pattern of VifS116V and VifC133S
mutants was consistent with their phenotype, as both
mutants failed to negate the inhibitory effect of DSB on
VLP assembly. Taken together, our results suggested that,
in the presence of Vifwt, the VLP assembly and budding
process was redirected to the vesicular compartment, and
that the VLP egress via exocytosis represented a salvage
pathway through which HIV-1 VLP escaped the negative
effect of DSB.

Discussion
It is generally accepted that DSB inhibits the cleavage of
CAp25 into CAp24 and SP1 by the viral PR, due to its
interference with the Gag substrate [8]. However, in
recombinant Pr55Gag-expressing Sf9 cells, a cellular con-
text devoid of PR and other viral proteins, DSB showed a
dose-dependent inhibitory activity on VLP assembly and
release [14]. The aim of the present study was to under-
stand this dual inhibitory activity, and explain the appar-
ent discrepancy between the DSB effects observed in
mammalian and non-mammalian, insect cells. We first
explored the effect of DSB on VLP production in 5BD.1
cells, a mammalian trans-packaging cell line producing
VLP devoid of viral genome, as the VLP produced by AcM-
NPV-Pr55Gag-infected Sf9 cells. We found that DSB had
only a moderate inhibitory effect on VLP yields at high
DSB doses (Fig. 1), indicating that VLP assembly in 5BD.1
cells was less sensitive to DSB inhibitor, compared to
Pr55Gag-expressing Sf9 cells. This suggested that the DSB
negative effect on the VLP assembly process might be
modulated by factors depending on the cellular or/and
viral context.

We therefore investigated on the possible influence of
viral components on the pattern of anti-assembly effect of
DSB, and in particular the role of viral partners of
Pr55Gag within the capsid. Coexpression of recombinant
Pr55Gag with EnvGp160 or Vpr did not modify the level
of inhibition of VLP assembly by DSB (Fig. 2), whereas
coexpression of Vifwt restored the production of VLP in
DSB-treated cells to levels found in the absence of the
drug (Fig. 3). A panel of recombinant Vif mutants (Fig. 4)
were then tested for their anti-DSB activity. We found that
the DSB-antagonistic effect of Vif was retained in packag-
ing-defective mutants of Vif (Fig. 5), but abolished by a
Cys-to-Ser substitution at position 133 (Fig. 6Bii), a muta-
tion which destroyed the zinc finger-like structure or ZBD.
A phenotype similar to that of VifC133S was observed for
mutant VifS116V (Fig. 6Bi), which carried a mutation on
the N-terminal side of the large loop (loop 2) generated
by the four HCCH coordinates with the Zn atom (Fig. 4A).
Page 10 of 18
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EM and immuno-EM analysis of Pr55Gag-expressing Sf9 cells, with or without Vifwt coexpressionFigure 7
EM and immuno-EM analysis of Pr55Gag-expressing Sf9 cells, with or without Vifwt coexpression. Sf9 cells were 
infected with AcMNPV-Pr55Gag alone or coinfected with another baculovirus expressing Vif (AcMNPV-Vifwt) at equal MOI of 
each (5 PFU/cell), harvested at 48 h pi, and processed for EM analysis. (a), Control cells expressing Pr55Gag alone; (b), Sf9 
coinfected with AcMNPV-Pr55Gag and AcMNPV-Vifwt. Inset (c), Enlargement of an area of the plasma membrane showing 
exocytosis of VLP. Note the abundance of VLP at the cell surface in (a), compared to the high VLP content of vesicular com-
partment in (b). (d, e), Sf9 coinfected with AcMNPV-Pr55Gag and AcMNPV-Vifwt and harvested at 48 h pi were processed for 
immuno-EM. Cell sections were incubated with anti-Vif rabbit antibody, followed by 5-nm colloidal gold-tagged anti-rabbit IgG 
antibody. (d), General view of a cell. The plasma membrane (PM) is materialized by a dotted line; the cytoplasmic area shows 
vesicles (VS) with intraluminal budding of VLP. (e), Enlargement of VLP-containing vesicles. Note the immunogold labelling of 
VLP, as well as the accumulation of gold grains at the membrane of VLP-containing vesicles.
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DSB treatment of Sf9 cells coexpressing Pr55Gag and VifwtFigure 8
DSB treatment of Sf9 cells coexpressing Pr55Gag and Vifwt. Sf9 coinfected with AcMNPV-Pr55Gag and AcMNPV-
Vifwtat equal MOI of each (5 PFU/cell) were treated with DSB at 10 μg/ml for 30 h at 18 h pi. Cells were harvested at 48 h pi, 
and processed for EM. (a), General view of a cell. (b), Enlargement of a submembranal region of the cell showing VLP in the 
process of exocytosis. Note the abundance of VLP in the vesicular compartment in panels (a) and (b). VLP-containing vesicles 
reminiscent of MVBs observed in mammalian cells are indicated with arrows.
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EM analysis of Sf9 cells coexpressing Pr55Gag and ZBD mutants of VifFigure 9
EM analysis of Sf9 cells coexpressing Pr55Gag and ZBD mutants of Vif. Sf9 were coinfected with AcMNPV-Pr55Gag 
and AcMNPV-VifS116V (a) or AcMNPV-VifC133S (b) at equal MOI of each (5 PFU/cell), harvested at 48 h pi, and processed 
for EM analysis. The vast majority of VLP budding at the plasma membrane was reminiscent of Sf9 cells expressing Pr55Gag 
alone (refer to Fig. 7a), and contrasted with Sf9 cells coexpressing Pr55Gag and Vifwt (refer to Fig. 7b-e).
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Both VifC133S and VifS116V mutants were encapsidated
into VLP at levels comparable to Vifwt (Fig. 6Bi and 6Bii,
control lanes 0). Our results therefore suggested that (i)
the anti-DSB effect and packaging into VLP were two inde-
pendent functions in Vif; (ii) the function of Vif which
negated the DSB-induced inhibition of VLP assembly
depended on the integrity of the zinc-binding domain,
and more precisely on a discrete region of loop 2 overlap-
ping residue 116 (Fig. 4A). This region differed from the
Vif packaging signals [50].

EM analysis of Sf9 cells coexpressing Gag and Vifwt or Vif
mutants gave some insight into the cellular mechanism of
anti-DSB activity of Vif. Sf9 cells coexpressing Pr55Gag
and Vifwt, with or without treatment with inhibitory doses
of DSB, showed a high proportion of VLP budding into
intracytoplasmic vesicles and egressing via exocytosis (Fig.
7b–e and Fig. 8). This contrasted with cells expressing
Pr55Gag alone, in which the majority of VLP budded at
the plasma membrane (Fig. 7a). When Pr55Gag was coex-
pressed with one or the other of the ZBD mutants,
VifS116V or VifC133S, we observed a drastic change in
VLP budding, compared to Vifwt coexpression, consisting
of a reversion to the plasma membrane budding pathway,
as in Sf9 cells expressing Pr55Gag alone (Fig. 9). Since
both ZBD mutants lacked the anti-DSB activity and failed
to redirect VLP to the vesicular compartment, as did Vifwt,
it might be hypothesized that the antagonistic activity of
Vif towards DSB would be the indirect effect of a Vif-medi-
ated change in the VLP assembly sites and mode of cellu-
lar exit.

It has been shown that the assembly and release of HIV-1
virions proceeds via two pathways, depending upon the
cell type [67]: (i) in primary human macrophages, virions
preferentially follow the exosomal pathway via MVBs [67-
69]; (ii) in HeLa cells and T lymphocytes, the major
exgress route consisted of plasma membrane addressing
and direct budding at the cell surface, but MA polybasic
signal mutants of Gag use the MVB pathway in these cells
[67]. Sf9 cells expressing Pr55Gag alone belonged to the
second category of cells [16,64,65], but when coexpressed
with Vifwt, the VLP assembly and budding process mim-
icked the MVB budding and exocytic pathway used by MA
polybasic mutants in HeLa and T cells. The hypothesis for-
mulated above implied that the intravesicular budding
and exocytic pathway of VLP would be less sensitive to
DSB inhibitory activity than the plasma membrane
assembly and budding pathway usually observed in insect
cells. If confirmed, this would be an example of drug
resistance mechanism (DSB, in the present case) which
involves the bypass of a drug-sensitive assembly and bud-
ding pathway by the virus or virus-like particle progeny.

The results of our study suggested that DSB and other bet-
ulinic acid derivatives could be considered not only as

antivirals for patients treatment in vivo, but also as chem-
ical probes to analyse the molecular and cellular mecha-
nisms of retroviral Gag assembly in vitro. In the latter
context, considering Vif as a determinant of the budding
pathway usage in Sf9 cells, and as a modulator of the DSB
response in terms of VLP assembly, any evaluation of
potential HIV-1 assembly inhibitors using the baculovi-
rus-insect cell system should be carried out in the presence
of the Vif protein.

Methods
Chemical synthesis of DSB
The title compound 3-O-(3',3'-dimethylsuccinyl)-betu-
linic acid (C36H56O6; MW = 584.8) was obtained as origi-
nally described [5] with a few minor modifications
described in our previous study [14].

Cells
Simian 5BD.1 packaging cells (obtained from D. Rekosh
and M.-L. Hammarskjöld, University of Virginia at Char-
lottesville) were CMT3-COS-derived cells that stably
express HIV-1 Gag-Pol and Env proteins but no Nef
[29,30]. They were maintained in Iscove's medium sup-
plemented with bovine calf serum (10%), hygromycin
(200 μg/ml), gentamycin (50 μg/ml) and G418 (1.5 mg/
ml). Spodoptera frugiperda Sf9 cells were maintained as
monolayers, and infected with recombinant baculovirus
at a multiplicity of infection (MOI) ranging from 2.5 to 20
PFU/cell, as previously described [16,65,70,71].

Recombinant baculoviruses
All the different HIV-1 genes used in the present study,
except for vpr, were inserted into the genome of
Autographa californica MultiCapsid NucleoPolyhedrosis
Virus (AcMNPV) under the control of a chimeric AcM-
NPV-GmNPV polyhedrin promoter [16,65,70]. (i) Gag.
AcMNPV-Pr55Gag, expressing the full-length wild type
(WT) HIV-1 Gag polyprotein (Pr55Gag), has been
described in detail in previous studies [14,16,65,71]. (ii)
Envelope glycoprotein Gp160. AcMNPV-Gp160 expressed
the CCR5-tropic YU2 envelope glycoprotein. (iii) Vpr. The
baculovirus clone expressing the oligohistidine-tagged
Vpr protein (AcMNPV-Vpr) was obtained from Eric
Cohen [72]. (iv) Vif clones (refer to Fig. 4). AcMNPV-Vifwt

expressed the full-length wild type Vif protein. VifsubA
(EKEWH-to-DINQN substitution) and VifsubB (WRxxxY-
to-FExxxF substitution) were mutated in two tryptophan-
containing motifs, at position 76–80 and 89–94, respec-
tively; the double mutant VifsubC carried both subA and
subB mutations; mutant VifKRA8 had 8 basic residues in
the C-terminal domain (residues 156–192) replaced by
alanine residues. VifsubCΔ170 carried the VifsubC multi-
ple substitutions and an additional deletion of the 23 C-
terminal residues of Vif. VifsubA, VifsubB, VifsubC,
VifKRA8 and VifsubCΔ170 have been characterized in pre-
vious studies [49,50]. Substitutions Ser-to-Val at position
Page 14 of 18
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116 and Cys-to-Ser at position 133 in the Vif sequence
were constructed using the conventional PCR-SOE tech-
nique. Recombinant Vif mutants VifS116V and VifC133S
were generated by recombination with the baculoviral
genome. All mutants were verified by DNA sequencing.

Gag assembly assays
Aliquots of Sf9 cells (106) were infected with recombinant
AcMNPV at MOI 10. At 18 h postinfection (pi), increasing
quantities of DSB in DMSO were added. To avoid possible
interference with DMSO effect, DMSO was kept constant
in volume in the different samples. A stock solution of
DSB (10 mg/ml DMSO) was diluted with DMSO to
obtain a range of DSB concentrations from 0.5 to 30 μg
DSB per 3 μl-aliquot of DMSO, and each 3 μl-aliquot was
added to 1 ml of culture medium overlaying the cell mon-
olayers. The cells were harvested at 48 h pi, and extracel-
lular VLP quantitatively assayed in the culture medium.

Isolation of extracellular virus-like particles (VLP)
Sf9 cell culture supernatants were clarified by low-speed
centrifugation, then VLP recovered using sucrose-step gra-
dient centrifugation[73], by pelleting through a cushion
of 20% sucrose in TNE buffer (TNE: 100 mM NaCl, 10
mM Tris-HCl pH 7.4, 1 mM Na2EDTA). The pellets were
gently resuspended in PBS (0.20–0.25 ml), and VLP fur-
ther purified by isopycnic ultracentrifugation in linear
sucrose-D2O gradients [50]. Gradients (10-ml total vol-
ume, 30–50%, w:v) were generated from a 50% sucrose
solution made in D2O buffered to pH 7.2 with NaOH,
and a 30% sucrose solution made in 10 mM Tris-HCl, pH
7.2, 150 mM NaCl, 5.7 mM Na2EDTA. The gradients were
centrifuged for 18 h at 28 krpm in a Beckman SW41 rotor.
Aliquots of 0.5 ml were collected from the top, and pro-
teins analyzed by SDS-PAGE, immunoblot analysis with
or without autoradiography.

Gel electrophoresis and membrane transfer
Polyacrylamide gel electrophoresis of SDS-denatured pro-
tein samples (SDS-PAGE), and immunoblotting analysis
have been described in detail in previous studies
[70,71,74]. Briefly, proteins were electrophoresed in SDS-
denaturing, 12%-polyacrylamide gel and electrically
transferred to nitrocellulose membrane (Hybond™-C-
extra; GE Healthcare Bio-Sciences). Blots were blocked in
5% skimmed milk in Tris-buffered saline (TBS) contain-
ing 0.05% Tween-20 (TBS-T), rinsed in TBS-T, then suc-
cessively incubated with primary rabbit, mouse or goat
anti-Gag antibodies, and relevant anti-IgG secondary anti-
bodies, at working dilutions ranging from 1:5,000 to
1:40,000. Apparent molecular weights were estimated by
comparison with prestained protein markers (PageRuler™
prestained protein ladder; Fermentas Inc., Hanover, MD).

Antibodies and immunological analysis
Anti-HIV-1 Gag polyclonal antibody (laboratory-made;
[50]) was raised in rabbit by injection of bacterially-
expressed, GST-fused and affinity-purified C-truncated
Gag protein consisting of full-length MA domain and the
first seventy-eight residues of the CA domain (Pst I site;
gagLai sequence). Mouse monoclonal antibody (mAb)
anti-CAp24 (Epiclone #5001) and mAb anti-MAp17 (Epi-
clone #5003) were obtained from Cylex Inc. (Columbia,
MD). MAb 41A9, directed against the Gp41 domain of the
EnvGp160, was obtained from Hybridolab (Institut Pas-
teur, Paris). Mouse anti-Hisx6-tag antibody (Tag-100 anti-
body) was purchased from Qiagen SA (Courtabæuf,
France). Anti-Vif antibody was raised in rabbit by injec-
tion of bacterially-expressed His-tagged Vif protein puri-
fied by guanidine denaturation and progressive
renaturation of insoluble protein inclusion, followed by
affinity chromatography on Ni-column (a gift from E.
Decroly; [75]). Phosphatase-labelled anti-rabbit, or anti-
mouse IgG conjugates were purchased from Sigma (St
Louis, MO), and horseradish peroxidase-labelled conju-
gates from Sigma (St Louis, MO). For immunological
quantification of membrane-transferred Gag and Vif pro-
teins, blots were reacted with secondary 35SLR-labelled
anti-rabbit or anti-mouse whole IgG antibody (GE
Healthcare Bio-Sciences; 2,000 Ci/mmol; 20–30 μCi per
100 cm2 membrane), and exposed to radiographic films
(Hyperfilm™ MP, GE Healthcare Bio-Sciences). Autoradi-
ograms were scanned and quantitated by densitometric
analysis, using the VersaDoc image analyzer and the
Quantity One program (BioRad). Alternatively, protein
bands were excised from blots and radioactivity measured
in a scintillation counter (Beckman LS-6500), as previ-
ously described [14,50].

Electron microscopy (EM) and immunoelectron 
microscopy (immuno-EM)
Baculovirus-infected Sf9 cells were harvested at 48 h pi,
pelleted, fixed with 2.5% glutaraldehyde in 0.1 M phos-
phate buffer, pH 7.5, post-fixed with osmium tetroxide
(2% in H2O) and treated with 0.5% tannic acid solution
in H2O. The specimens were dehydrated and embedded
in Epon (Epon-812; Fulham, Latham, NY). Ultrathin sec-
tions were stained with 2.6% alkaline lead citrate and
0.5% uranyl acetate in 50% ethanol, and post-stained
with 0.5% uranyl acetate solution in H2O [64]. For
immuno-EM analyses, cell specimens were included in
metacrylate resin (Lowicryl K4M). Sections on grids were
reacted with polyclonal anti-Vif antibody (diluted at
1:100 in Tris-buffered saline) overnight at 4°C. Reaction
with by 5-nm gold-conjugated anti-rabbit IgG goat anti-
body (EM-GAR5; British Biocell International, Cardiff,
UK) was carried out at room temperature for 1 h, and sec-
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tions post-stained with 0.5% 0.5% uranyl acetate solution
in H2O [50,64,74,76]. Grids were examined under a Jeol
JEM-1400 electron microscope, equiped with an ORIUS™
digitalized camera (Gatan France, 78113-Grandchamp).
For statistical EM analyses, a minimum of 30 grid squares
containing 10 to 20 cell sections each were examined for
counting VLP budding at the cell surface, or for core-like
particles assembled intracellularly.
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