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ABSTRACT This paper tackles the resource allocation (RA) problem of a Full-Duplex (FD) device-to-
device (D2D) communications enabled cellular network. In the considered scenario, multiple FD-D2D pairs
share the uplink channels of the regular cellular users (CUs) which leads to mutual interference between the
two communication types. Within this interference environment, this work aims to properly allocate the
network’s resources, such as the transmit power and the channels, to maximize a network-centric metric
like the weighted-sum rate (WSR) and the global energy efficiency (GEE). The complex coupling between
the mutual interference of the different links, as well as the flexibility of assigning the channels to the users,
results in a non-convex RA optimization problem, for which the global optimal solution is hard to obtain.
This paper is a first and innovative approach that globally solves the RA problem of an FD-D2D based
cellular network. In particular, we show that the global optimal solution can be achieved by decoupling the
original problem into two sub-problems as power allocation (PA) and channel assignment (CA). The PA sub-
problem is solved by means of monotonic optimization theory. Precisely, we propose a new polyblock-based
algorithm, MARIO, which efficiently converges to the global solution of the PA problem. Then, based on
the optimal PA solution, the CA problem reduces to an assignment problem, which can be solved by Khun-
Munkers algorithm. Further, we propose a sub-optimal solution by solving the original RA problem in the
reverse order, i.e., first assigning the channel and then allocating the power. Simulation results show the
effectiveness of the proposed algorithms and provide important insights on the solution design parameters
such as the proximity distance and the self-interference cancellation capability.

INDEX TERMS Channel assignment, device-to-device (D2D), energy efficiency, full-duplex (FD), power
allocation, resource allocation, weighted sum-rate.

I. INTRODUCTION

THE proliferation of mobile devices and data-hungry ap-
plications imposes severe challenges to current wireless

communication networks. For example, it is expected that
the number of connected devices will surpass 50 billion by
2020 and that a 1000-fold increase in data rate is required
to accommodate such an enormous number of devices [1].
Given the strict requirements defined for the future wireless
networks, the increasing data rate should not lead to crush-

ing the available cellular spectrum as well as consuming
more energy. Full-Duplex communication (FD) and device-
to-device communication (D2D) are emerging as two candi-
dates technologies for the next cellular network (5G) [2], [3].

D2D allows two devices in proximity of each other to
initiate a direct link in a peer-to-peer fashion without the
base station (BS) participation or with limited participation
[2]. In literature, two different D2D scenarios are proposed
named as D2D overlay communication and D2D underlay
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communication [4]. The former prevents the co-channel
interference between the D2D and the traditional cellular
signals by allocating dedicated cellular resources for the
D2D links. On the contrary, in the underlaying scenario the
D2D devices reuse the spectrum resources of the cellular
users (CUs) [5]. Thus in the underlaying scenario, rigorous
interference management is required to improve the network
performance. Due to the spectrum scarcity problem, the
underlay D2D communication has gained much attention
[4], [5], and several resource allocation techniques, including
channel assignment, mode selection, and power control have
been extensively explored [6]–[8].

On the other hand, FD technology enables a network node
to simultaneously transmit and receive in the same time slot
at the same frequency band [3]. However, FD introduces
a new interference type to the cellular network named as
self-interference (SI) [9]. This is because the receiver of an
FD device may receive the transmitted signal by its own
transmitter. Thus, the FD device may not always outperform
the traditional half-duplex (HD) device. Fortunately, the re-
cent antenna architecture of FD devices can achieve a high
level of SI cancellation especially for the devices with low
transmission power [10], [11]. Thus, the FD technology is
getting closer to being applied in the 5G network.

Given the short distance property of the D2D communica-
tion, the transmission power of the D2D devices is relatively
lower than the traditional CUs. Hence, integrating FD with
D2D would be an excellent choice to further improve the
spectrum efficiency and increase the data rate [12]. However,
the practical FD devices cannot perfectly eliminate the SI.
Thus, the residual SI (RSI) highly affects the performance
of FD transmission, and in some situation, it might be worse
than the HD technology. In addition, applying FD into D2D
technology invokes additional co-channel interference in the
network which may degrade its performance when compared
with the traditional HD-D2D communication. Despite the
complicated interference environment of an FD-D2D un-
derlaying cellular network, a non-trivial gain can be earned
if efficient interference management between the FD-D2D
devices and the CUs is adopted [13]. An overview of the
different resource allocation techniques is provided below.

A. RELATED WORK AND CONTRIBUTION
Similar to the traditional HD-D2D network, the envisioned
FD-D2D network can be classified into FD-D2D over-
lay/underlay cellular network. The works in [14]–[16] an-
alyze the overlay FD-D2D scenario. Specifically, the work
in [14] proposed a simple protocol to improve the rate of a
single FD-D2D pair which is allocated a dedicated spectrum.
Moreover, in [15] a power allocation scheme is developed to
maximize the ergodic bitrate of an FD-D2D pair overlay cel-
lular network. Besides, the authors of [16] aimed to maximize
the effective capacity of an FD-D2D network while satisfying
the statistical delay-bound QoS requirements. However, allo-
cating a dedicated spectrum for the FD-D2D pairs as in the
overlay scenario would lead to a low spectrum efficiency and

diminish the gain of FD transmission. That is why the focus
is more about FD-D2D underlay cellular network [17]–[25].

The authors of [17] investigated the performance of an
underlay cellular FD-D2D network by using the stochastic
geometry. Simulation results showed that an FD-D2D net-
work has a significant gain over its counterpart HD-D2D
especially when the SI is low. However, in their work, only
a simple on- off power allocation was used. To limit the
D2D interference at the cellular link, an upper bound transmit
power was derived in [18]. Moreover, an interference limited
area method was used to mitigate the interference from the
cellular users to the D2D link. The ergodic sum rate of
a single FD-D2D pair which coexist with a cellular user
was derived and analyzed in [20], [21]. In [22] a convex
optimization problem that maximizes the FD-D2D link rate
while satisfying the data rate requirement of the CU was
derived. Aiming to maximize the energy efficiency of an FD-
D2D link, the authors of [23] proposed an energy-efficient
power control algorithm for an FD-D2D network. However,
all the above mentioned works only focus on the Power
Allocation (PA) problem of an FD-D2D network with single
D2D pair and single cellular user. In addition, and due to the
non-convexity feature of the PA problem, they only provide a
sub-optimal power allocation solution by approximating the
original PA problem with a more simpler convex problem.

The resource allocation problem of an FD-D2D network
when multiple FD-D2D pairs coexist with multiple CUs has
been addressed only in [24] and [25]. The authors of [24]
aimed to maximize the sum-rate of an FD-D2D network by
considering both the power allocation PA and the channel
assignment (CA) problems. Besides the sum-rate, the energy
consumption became an important criteria design for the
5G network. In [25] an energy-efficient resource allocation
for FD-D2D based cellular network was provided. However,
both works provided the sub-optimal solution of the RA
optimization problem. In particular, both [24] and [25] rely
on the sequential convex optimization (SCO) theory to solve
the PA problem of an FD-D2D based cellular network. The
latter is guaranteed to provide only the first-order optimal
solution. Thus, both works do not find the global optimal gain
of an FD-D2D network, and the gap to the optimal solution
is still unknown. To fill this blank, in this paper we derive
the maximum gain of an FD-D2D network by providing an
efficient global optimization framework. To that end, first,
we formulate the RA problem as a maximization problem
of a general signal to interference plus noise ratio (SINR)
based network-centric metrics such as the weighted sum-
rate (WSR) and the global energy efficiency (GEE). Next,
we show that both the WSR maximization problem and the
GEE optimization problem can be decomposed into two sub-
problems as PA and CA. Hence, the global solution of the
original RA problem can be found by globally solving the
PA and CA sub-problems sequentially. The PA sub-problem
is known to be a non-convex problem in an interference
limited scenario, and thus it is hard to achieve the global
optimal solution. To overcome this issue, we propose to use
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the Monotonic Optimization theory (MO) to globally solve
the PA problem. The MO theory can globally solve the
optimization problems where the utility and the constraints
are monotonically increasing functions of the optimization
variables, even if the optimization problem is non-convex
[26], [27]. In general, both WSR and GEE are non-monotone
functions of the transmit power. However, they are monotone
functions of SINR, and thus they exhibit hidden monotonoc-
ity structure that allows us to find the global solution by
means of MO framework.

The MO problem can be solved by using the existing Outer
Polyblock Approximation algorithm (OPA) at the expense
of high complexity [26]. In particular, the OPA tries to
approximate the outer boundary of the feasible set by a tight
polyblock, and thus the global optimal point can be found by
searching the set of the polyblock vertices. Using the existing
OPA leads to a rapid growth in the number of vertices, and
thus to high complexity. To solve this issue, we propose
in this work a new power allocation algorithm which aims
to decline the complexity of the OPA by trimming down
the unnecessary vertices. For the sake of clarity, we denote
this new algorithm as Polyblock vertices triMming bAsed
poweR allocatIOn (MARIO). Then, based on the optimal
PA solution, the CA sub-problem becomes an assignment
problem which can be well addressed by Khun-Munkers
algorithm (Hungarian algorithm) [28]. Hence, the optimal
RA solution can be obtained by finding the global optimal
transmit powers by means of MO theory for all the possible
couplings between the FD-D2D pairs and the CUs and then
assigning the best CU reuse partner for each FD-D2D pair
by means of Khun-Munkers algorithm. Hence even with the
proposed MARIO algorithm, the global optimal solution still
has high complexity. Motivated by the need of an efficient
RA solution, we propose a novel algorithm, CATPA, which
first assigns the channels for the different FD-D2D pairs
and then allocates the transmit power for each FD-D2D
pair and its reuse partner. In particular, we propose a new
metric, denoted as Profit, that quantifies the profit of an FD-
D2D pair when reusing the channel of a CU, and then we
assign the CU reuse partner for each D2D pair based on
the highest profit values. After that, we allocate the transmit
power for each D2D pair and its CU reuse partner by means
of the SCO framework. This new algorithm highly reduces
the complexity of the solution, since it avoids solving the
PA problem for all the possible couplings between the FD-
D2D pairs and the CUs. An outline of the conventional RA
solution adopted in [24], [25] as well as the proposed RA
solutions for an FD-D2D network is depicted in Fig.1. In this
figure,N×M counts the number of all the possible couplings
between M D2D pairs that coexist with N CUs. Besides, to
ease following the paper, we show in Fig.1 the sections or the
references where every step is developed.

The main contribution of this work can be summarized as
follows:
• Deriving the ultimate gain of an FD-D2D network by

globally solving the RA problem of an FD-D2D based

Resource allocation 
approaches for an FD-D2D 

network

The 
Conventional  
Solution [24] 

[25]

The Proposed 
MO-based  
Solution

The 
Proposed 

CATPA
Solution

Solve PA via 
SCO [24]

Solve PA via 
MARIO 

(Section IV)

Solve CA via 
the proposed 
profit-based 

algorithm 
(Section VI)

Solve CA via 
Hungarian 

algorithm [28] 

Solve CA via 
Hungarian 

algorithm [28]

Allocate 
Powers via SCO 

[24]

Pros:
Each PA problem is 

approximated to a 
convex problem.
Low Complexity.
Cons:
Sub-optimal solution.
Needs to solve N × 𝑀𝑀

PA problems.
Each PA problem is 

non-convex.

Pros:
Global solution.
Each PA problem can 

be converted to a MO 
problem.

Cons:
Needs to solve N × 𝑀𝑀

PA problems.
Each PA problem is 

non-convex.
High complexity.

Pros:
Needs to solve only 𝑀𝑀

PA problems.
Each PA problem is 

approximated to a 
convex problem.
Very low Complexity.
Cons:
Sub-optimal solution.
Each PA problem is 

non-convex.

FIGURE 1. A comparison between the existing RA solution and the proposed
RA solutions for an FD-D2D network.

cellular network, unlike the previous related works that
only provide a sub-optimal RA scheme. The global
solution is found by first decomposing the original RA
problem into two sub-problems as PA and CA, and then
globally solving each sub-problem individually.

• Providing insights into the importance of monotonic
optimization theory in globally solving the PA opti-
mization problem for an FD-D2D networks and more
generally for any wireless cellular network. To the best
of our knowledge, this is the first time in which the MO
theory is applied to find the global RA solution in an
FD-D2D based cellular network.

• Proposing a novel algorithm, referred to as MAPEL, to
obtain the global optimal solution of the PA problem.
The proposed algorithm is designed based on the exist-
ing OPA algorithm, and thus it obtains the solution by
constructing a series of shrinking polyblocks that even-
tually closely approximate the boundary of the feasible
set of the PA problem around the global solution. On
the contrary to OPA, MARIO has a faster convergence
time, since it trims down the unnecessary vertices of the
generated polyblocks. The effectiveness of MARIO is
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validated through numerical simulation which employs
OPA as a benchmark. The results show that MARIO can
achieve the same optimal point as OPA but within less
number of iterations.

• Proposing an effective heuristic RA algorithm, referred
to as CATPA, which first assigns the channels for the
different users and then allocates the powers. We be-
lieve that this is the first work that provides such a
methodology to solve the RA problem. To validate the
proposed CATPA algorithm a numerical simulation is
applied that employs the global optimal solution as a
benchmark. Simulation results show that CATPA can
achieve a solution within the 90% of the global optimal
within a much lower number of iterations.

• Providing a comprehensive analysis of the FD-D2D
network, by comparing the performance of the FD-D2D
network with its counterpart HD-D2D network. More-
over, the effect of the different network parameters such
as the QoS of the users, the maximum transmit powers
of the devices, the D2D proximity distances, and the SI
cancellation capability of the FD nodes, on the FD-D2D
network performance have also been addressed.

B. OUTLINE AND NOTATION
The remainder of this paper is organized as follows. Section
II presents the system model considered in this work while
in Section III the resource allocation problem is formulated.
Sections IV and V develop the MO-based solution of the
derived RA problem, and Section VII presents the proposed
CATPA solution. The numerical results are shown in Section
VII whereas the conclusion is made in Section VIII.

The following notation is used throughout this paper. Bold-
face lower case letters stand for vectors, while lower case let-
ter denotes scalars. RN is theN×1 real space vector and RN+
represents its non-negative orthant. The superscript T denotes
the transpose of a matrix, and 0N is the N dimensional all
zeros vector. The gradient of a function f(x) with respect to
(w.r.t) x is represented by ∇xf . Moreover, we use x � y
(x � y) to indicate that x ∈ RN is greater than or equal (less
than or equal) to y ∈ RN in a component-wise manner.

II. SYSTEM MODEL
This work tackles the resource allocation problem for an FD-
D2D enabled cellular network. As depicted in Fig. 2 (a),
we consider an uplink resource allocation scenario where
N cellular users (CUs) share the uplink spectrum with M
D2D pairs in a single cell system. In particular, uplink
(UL) spectrum sharing is considered since UL resources
are underutilized comparing to that of downlink (DL) [6],
[29]. Furthermore, reusing UL resources in D2D links only
affects the BS and incurred interference can be handled by
BS coordination. The N CUs and the M D2D pairs are
respectively organized in the sets C = {CU 1, . . . ,CUN}
andD = {D2D1, . . . ,D2DM}, where CU i and D2Dj stand
for the ith cellular user and the jth D2D pair respectively.
Each D2Dj consists of two nearby devices denoted as Dj

1

and Dj
2, and they have the capability to operate in FD mode

while the CUs are assumed to operate only in HD mode.

BS

D1
1 D1

2

D2D1

DM
1 DM

2

D2DM

CU1

CU2

CU2

. . . . .
.

CUN

CU5

CU4

(a)

BS
CUi

gicb

Dj
1 Dj

2

gjd

gjd

h
j
i,
d1

hj
i,d2hj

d1,b

h j
d2,b

RSI RSI

(b)

FIGURE 2. The adopted system model in which (a) multiple FD-D2D pairs
coexist with multiple cellular users, and (b) the interference model when the
cellular user CUi shares its uplink resources with D2Dj .

The available UL bandwidth is composed of N orthog-
onal channels, and it is organized in the index set CH =
{1, . . . , N}. Without loss of generality, the ith channel is
assumed to be pre-assigned to CU i. Thus, in this paper, we
aim to allocate these channels to theM D2D pairs efficiently.
Sharing the UL spectrum between the D2D users (DUs) and
the CUs generates co-channel interference between the users
sharing the same channel. Therefore, to limit the interference
from the D2D pairs on the cellular links and avoid the
interference between the D2D pairs, similar to [6], [7], [24],
[25] , we require that each UL channel is allowed to be shared
with at most one D2D pair, and eachD2Dj can reuse at most
one UL channel.

With the above channel assignment constraints and assum-
ing imperfect SI cancellation, the interference model when
D2Dj and CU i transmit on the ith channel can be depicted
as in Fig. 2 (b). In this Figure, we define the channel gains as
follows:
• gicb denotes the direct channel gain between CU i and

BS.
• gjd stands for the direct channel gain between the D2D

users of D2Dj . Here, the D2D channel is assumed
reciprocal, since both Dj

1 and Dj
2 are using the same

UL channel and they are close to each other.
• hjd1,b and hjd2,b respectively stand for the interference

channel gain from Dj
1 to BS and from Dj

2 to BS.
• hji,d1 and hji,d2 denote the interference channel gain

from CU i to Dj
1 and Dj

2 respectively.
• RSI is the residual self interference due to the imperfect

SI cancellation at the FD devices.
All direct/interference channels are assumed to be zero-
mean complex Gaussian random variables (i.e., channels
are expressing Rayleigh fading) with variance l−αij , where
i ∈ {c; d1; d2}, j ∈ {bs; d1; d2}, i 6= j, lij denotes the
distance between the nodes i and j, and α denotes the path
loss exponent. The RSI can be modeled as complex Gaussian
random variables with zero-mean and variance ηPtx [15],
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[22], [30]–[33], where Ptx is the transmission power of the
FD device, η denotes the SI cancellation capability of the FD
transmitter. Without loss of generality, assuming that all D2D
users have the same SI cancellation capability, the power of
RSI at Dj

1 and Dj
2 are respectively expressed by ηP jd1 and

ηP jd2, with P jd1, and P jd2 being respectively the transmission
powers of Dj

1, and Dj
2 .

Now, denote by P ic the transmit power of CU i, and let σ2
N

represents the power of white Gaussian noise on each UL
channel. Then, the Signal-to-Interference plus noise ratios
(SINR) of CU i, D

j
1, and Dj

2, when CU i shares its channel
with D2Dj , can be respectively expressed as

Γi(pij)=
Γ+
i

Γ−i
=

P icg
i
cb

P jd1h
j
d1,b + P jd2h

j
d2,b + σ2

N

, (1)

Γj1(pij)=
Γ+
j1

Γ−j1
=

P jd2g
j
d

P ich
j
i,d1 + ηP jd1 + σ2

N

, (2)

Γj2(pij)=
Γ+
j2

Γ−j2
=

P jd1g
j
d

P ich
j
i,d2 + ηP jd2 + σ2

N

. (3)

where pij = [P jd1, P
j
d2, P

i
c ] is the power allocation vector

for D2Dj and CU i on the ith channel. Moreover, in the
above equations, the SINR function Γk, k ∈ {i, j1, j2}, is
expressed as a fraction of two non-negative functions denoted
as Γ+

k (pij) and Γ−k (pij). The benefits of these functions will
appear later on when deriving the optimal RA scheme.

By applying Shannon’s theorem, the data rates (in bits/s)
of CUi, D

j
1, and Dj

2 can be respectively expressed as

Ri(pij)=Bi log2(1 + Γi), i ∈ {C} (4)
=Bi(log2(Γ+

i + Γ−i )− log2(Γ−i ))

=r+
i (pij)− r−i (pij)

Rj1(pij)=Bi log2(1 + Γj2), j ∈ D (4a)
=Bi log2(Γ+

j1
+ Γ−j1)−Bi log2(Γ−j1)

=r+
j1

(pij)− r−j1(pij)

Rj2(pij)=Bi log2(1 + Γj1), j ∈ D (4b)
=Bi log2(Γ+

j2
+ Γ−j2)−Bi log2(Γ−j2)

=r+
j2

(pij)− r−j2(pij)

where Bi is the bandwidth of the ith UL channel. Since
we are assuming that all the available channels are equally
shared by the active CUs, in the sequel we refer to Bi by B.
Besides, in the above equations, the achievable rate Rk, k ∈
{i, j1, j2}, is expressed as the difference of two non-negative
functions r+

k , B log2(Γ+
k + Γ−k ) and r−k , B log2(Γ−k ).

The application of this form will appear in Section IV when
deriving the optimal power allocation scheme. Now, before
terminating this section and started formulating the problem,
we introduce a useful remark to be used later to derive the
optimal RA scheme.

Remark 1: The functions r+
k , r

−
k ,Γ

+
k ,Γ

−
k , k ∈ {i, j1, j2}

are all increasing functions with pij . However, the rate func-
tionsRi(pij), Rj1(pij), andRj1(pij), and the SINRs Γi, Γj1 ,
and Γj2 are in general non-increasing functions with pij .

A. PROBLEM FORMULATION
In a fully loaded UL network, the FD-D2D communication
can be used to accommodate more users, and thus to enhance
the performance of the cellular network. However, since the
D2D pairs are reusing the cellular spectrum, a proper RA is
required to maintain the QoS of the D2D pairs and their reuse
CUs partners and mitigate the mutual interference between
the different type of links. In this work, we aim to maximize
the rate gain that can be brought by the D2D communication
and minimize the energy cost of the D2D communication.
Thus, we define two objective functions to be maximized
while guaranteeing the QoS of all the links and respect the
maximum allowed powers. The first utility function (U1) is
the weighted sum rate (WSR) of the admitted D2D pairs and
their corresponding CUs reuse partners, and it is defined as

U1(ρ, P )=
∑

i∈C

∑

j∈D
%ij [ωiR

i + ωj1R
j1 + ωj2R

j
d2]. (5)

where ωi, ωj1 , and ωj2 are positive weights used to control
the individual rates of CU i, D

j
1, and Dj

2 respectively. %ij is
the resource reuse indicator for D2Dj and CU i, when D2Dj
shares the CUi’s resources %ij = 1; otherwise %ij = 0. P =
[pij ] is the power allocation matrix for all CUs and DUs and
ρ = [%ij ] denotes the channel assignment matrix of the D2D
pairs.

The second utility function (U2) is the global energy
efficiency (GEE) of the D2D pairs and their reuse partners.
It is defined as the energy cost of the accepted D2D links and
their corresponding cellular links, and it can be expressed as

U2(ρ, P ) =
U1(ρ, P )∑

i∈C

∑
j∈D

ρijµ(pic+p
j
d1+pjd2) + 3MPcir

. (6)

wherein µ ≥ 1 is the inverse of the power amplifier efficiency
at each transmitter. Pcir denotes the fixed circuit power
consumption at each device, accounting for the dissipation
in analog hardware and digital signal processing [34].

Therefore, the resource allocation problem can be formu-
lated as follows

P1l : max
(ρ,P )∈Ω

Ul(ρ, P ), l = 1, 2. (7)

Ω=
{

Γi ≥ γ imin = 2r
i
min − 1,∀i ∈ C, (7a)

Γj1 ≥ γ j1min = 2r
j1
min − 1, ∀j ∈ D, (7b)

Γj2 ≥ γ j2min = 2r
j2
min − 1, ∀j ∈ D, (7c)∑

i

%ij ≤ 1, %ij ∈ {0, 1},∀j ∈ D, (7d)

∑

j

%ij ≤ 1, %ij ∈ {0, 1},∀i ∈ C, (7e)

03 � pij � pmax,∀j ∈ D, i ∈ C
}

(7f)

where Ω is the feasible set ofP1, pmax = [P d1
max, P

d2
max, P

c
max]

is the maximum power vector for any possible pair
(D2Dj ,CUi), and 03 = [0, 0, 0] is the minimum power
vector. γimin, γj1min, γj2min denote the minimum required SINR

VOLUME 7, 2019 5



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2914973, IEEE Access

H. Chour et al.: Preparation of Papers for IEEE ACCESS JOURNAL

to achieve the minimum rate requirements rimin, rj1min, and
rj2min for CU i, D

j
1, and Dj

2 respectively. Hence, constraints
(7a)-(7c) represent the QoS requirements (rate requirements)
for CU i, D

j
1, and Dj

2 respectively. Constraint (7d) ensures
that a D2D pair reuses at most the resource of one CU.
Constraint (7e) indicates that a CUi can share its resources
with at most one D2D pair. Constraint (7f) ensures that the
transmit power of any user is within the maximum limit.

III. PROBLEM DECOMPOSITION
The authors of [35] have proved that the power allocation
problem by itself is an NP problem in an interference limited
system. The resource allocation problem (P1) defined in the
previous section contains both power allocation and channel
assignment (CA) problems, and thus it is more complex than
the PA problem which is already NP-hard. In this section, we
show that the solution of both P11 and P12 can be found
by decoupling the original problem into two sub-problems.
The first one is the power allocation and the second is the
channel assignment problem. The decomposition technique
reduces the complexity of the original problem, but the NP-
hardness of the PA still exists. In the next sections, we present
efficient algorithms to globally solve the PA and the channel
assignment problems individually.

A. DECOMPOSITION OF P11

Observe that in the utility function U1 the variables %ij and
pij are disjoint and thus the maximization problem P11 can
be rewritten as follows:

P11 :maximize
ρij∈{0,1}

∑

i∈C

∑

j∈D
%ij maximize

Pij

U ij1 , s.t. (7a)−(7f), (8)

wherein U ij1 = ωiR
i
c + ωj1R

j1 + ωj2R
j
d2 is the WSR of the

pair (D2Dj ,UE i). Accordingly, P11 can be decomposed to
the following two sub-problems:

P21 : maximize
Pij∈Φ,i∈C,j∈D

U ij1 , s.t. Φ = {(7a), (7b), (7c), (7f)}, (9)

P31 : maximize
ρij∈{0,1}

∑

i∈C

∑

j∈D
%ijU

ij
1

?
, s.t. (7d), (7e), (10)

where U ij1
?

is the optimal solution of the PA sub-problem
(P21). Thus, the optimal solution of P11 can be found
by finding the optimal power allocation of all the possible
pairs (D2Dj ,UE i), and then selecting the optimal CU reuse
partner for each D2D pair.

B. DECOMPOSITION OF P12

Giving the fractional nature of the GEE utility function, it is
clear that P12 belongs to the class of fractional programming
theory. Thus, the solution of P12 can be found by means
of fractional programming tools [36], such as Dinkelbach’s

algorithm. The latter is an iterative process which requires to
solve the following auxiliary problem at iteration k:

F (λk) =

maximize
(ρ,P )∈Ω

∑
i∈C
∑
j∈D %ij [ωiR

i
c + ωj1R

j1 + ωj2R
j
d2]

− λk
(
∑
i∈C

∑
j∈D

ρijµ(pic+p
j
d1+pjd2) + 3MPcir

)

=maximize
(ρ,P )∈Ω

∑

i∈C

∑

j∈D
%ij

(
ωiR

i
c + ωj1R

j1 + ωj2R
j
d2

− λkµ
(
pic+p

j
d1+pjd2

)
)

︸ ︷︷ ︸
Uij

2

−Pcons

=maximize
ρ∈{0,1}

∑

i∈C

∑

j∈D
%ij maximize

pij
U ij2 (λk, pij) (11)

wherein Pcons = λk3MPcir. The last step in (11) is because
the variable %ij is disjoint than the variables (λk, pij), and
Pcons is a constant. Then, and similar to P11, the maximiza-
tion of GEE can be divided into PA and CA sub-problems.
The only difference is that PA has to be iteratively solved
until convergence. Mathematically, the PA and CA problems
can be expressed respectively as follows.

P22 : maximize
Pij ,i∈C,j∈D

U ij2 , s.t. (7a), (7b), (7c), (7f), (12)

P32 : maximize
ρij∈{0,1}

∑

i∈C

∑

j∈D
%ijU

ij
2

?
, s.t. (7d), (7e), (13)

where U ij2
?

is the optimal power allocation of problem P22.
For the reader’s convenience, we report in Algorithm 1 the
Dinkelbanch’s algorithm which solves P22. Despite the com-
plexity of solving U ij2 (λk, pij), the Dinkelbanch’s algorithm
exhibits a super-linear convergence rate, since λk is updated
according to Newton’s method [36]. For more detail about
the fractional programming and Dinkelbach’s algorithm, the
reader may refer to [37]. Solving efficiently U ij2 (λk, pij) at
each iteration is the target of the next section.

Remark 2: In the first iteration of Dinkelbach’s algorithm,
i.e., when λ0 = 0, Algorithm 1 finds the solution of the
WSR problem. Hence, it is highly desirable to develop an
algorithm which can solve both WSR and GEE problems.

Here it is worthy to note that the PA sub-problem (P2l)
and the CA sub-problem (P3l) must be sequentially solved
to obtain the global solution of the original RA problem P1l,
l ∈ {1, 2}. As indicated in the second column of Fig.1,
solving the PA sub-problem is the target of the next section
while the CA is the task of Section V.

IV. POWER ALLOCATION
The complicated interference coupling between the D2D
pairs and their reuse partners turns the PA problem to be a
non-convex problem. Thus, the global optimal solution of
PA is hard to obtain because it may require examining every
point in the feasible set. The monotonic optimization (MO)
theory provides a guaranteed convergence to the global op-
timal solution and reduces the computational complexity by
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Algorithm 1 Dinkelbach’s algorithm
1: Set ε > 0, λ0=0, and k = 0
2: repeat
3: Solve P22 defined in (12) and denote the optimal power

vector as p?k,ij .
4: k = k + 1

5: λk =
ωiR

i
c(pkij

?
)+ωj1

Rj1 (pkij
?
)+ωj2

Rj
d2(pkij

?
)

µ(pic
?+pjd1

?
+pjd2

?
)+3Pcir

6: until U ij2 (λk−1, p
?
k−1,ij) ≤ ε

exploiting the monotonicity property of the utility function
and the constraints to solve the optimization problem. The
key idea behind MO is to search for the global solution on
the outer boundary of the feasible set instead of exploring
the complete feasible set of the problem. Nevertheless, we
note that the complexity of MO increases exponentially with
the number of optimization variables. However, it is much
lower than general global optimization methods, which do
not exploit the monotonocity property of the problem. Natu-
rally, the usage of MO is limited to the problems enjoying a
monotonocity structure as indicated in the following defini-
tion.

Definition 1. An optimization problem belongs to the class
of MO if it can be written in the following form:

maximize
x

f(x) s.t. x ∈ G ∩H, (14)

where sets G and H are respectively normal and co-normal
closed sets and function, f(x) is an increasing function on
RN+ .

Recall that a function f : Rn 7→ R is increasing if f(x) �
f(y) when 0 � x � y. A set G ⊂ Rn is normal set, if for any
point x ∈ G, all other points x′ such that x′ ≤ x are also in
set G. A setH ⊂ Rn is co-normal set, if for any point x ∈ H,
all other points x′ such that x′ ≥ x are also in setH.

At a first sight and based on Definition 1 and Remark 1, the
monotonic optimization theory appears to be non-applicable
for P21 and P22. Thus, in an FD-D2D based cellular
network, the first step to efficiently obtain an optimal PA
scheme is to transform the non-convex PA problem to an MO
problem as shown in Subsection IV-A.

A. PROBLEM TRANSFORMATION

The aim of this subsection is to convert the PA problem in
an FD-D2D network to an MO problem. From Remark 2,
we know that Dinkelbach’s algorithm (Algorithm 1), which
is proposed to solve the GEE power allocation problem,
inherently solves the WSR problem at the first iteration when
λ = 0. Hence, in this subsection, we extract the hidden
monotonicity property only for P22 (the GEE PA problem).
The monotonocity structure of P11 can be found in the same
manner by setting λ = 0.

To that end, first we reshaped the objective function of
P12, i.e., U ij2 defined in (11), as follows:

U ij2 (pij , λk)=
∑

l∈{i,j1,j2}
ωlr

+
l (pij)−

∑

l∈{i,j1,j2}
ωlr
−
l (pij)

−λkµ(pic+p
j
d1+pjd2)

=u+(pij)− u−(pij , λk) (15)

wherein r+
l and r−l with l ∈ {i, j1, j2} are defined in

(4)-(4b), and they are increasing functions as indicated in
remark 1. The functions u+(pij) and u−(pij , λk) are also
increasing functions because each one is a summation of
several increasing functions (Remark 1). Next, we introduce
the slack variable t = u−(pmax, λk) − u−(pij , λk), and we
reformulate P22 as follows:

maximize
(pij ,t)∈Φ

U ij2 (pij , t) = u+(pij) + t (16)

Φ =
{

(t, p); 0 ≤ t+ u−(p) ≤ u−(pmax, λk)

Γ+
l (pij)︸ ︷︷ ︸
c+l (pij)

− γ lminΓ−l (pij)︸ ︷︷ ︸
c−l (pij)

≥ 0, l∈{i, j1, j2} (17)

03 � pij � pmax∀j∈D, i∈C
}
. (18)

The objective function of the above problem is now an
increasing function, and thus to show that (16) is a monotonic
optimization problem, it remains to verify that the feasible set
Φ is an intersection of a normal and a co-normal set.

According to [26], [27], for any continuous increasing
functions h(x) and g(x) on Rn+ the sets H = {x ∈
Rn+|h(x) ≤ 0} and G = {x ∈ Rn+|g(x) ≥ 0} are
respectively normal and co-normal sets. Hence, to extract
the hidden monotonicity property of P2 it only remains
to verify that all the constraints in the feasible sets are
continuous and increasing functions. It is easily verified that
in the feasible set Φ only the QoS constraints defined in (17)
are in general non-increasing function. By using the same
technique as before, i.e., introducing a slack variable, (17)
can be transformed to an increasing function. However, since
the complexity of monotonic optimization problem exponen-
tially increases with the number of optimization variables,
we first grouped the QoS constraints defined in (17) under a
single constraint as shown in (19), and then we introduce an
auxiliary variable.

(17)≡ min
v,l∈{i,j1,j2}

[
c+v (pij)−

(∑

v

c−v (pij)−
∑

l,l 6=v
c−l (pij)

)]
=

min
v,l∈{i,j1,j2}

[
c+k (pij)+

∑

l,l 6=v
c−l (pij)

]

︸ ︷︷ ︸
c+(pij)

−
∑

l

c−v (pij)

︸ ︷︷ ︸
c−(pij)

≥0 (19)

Now, by introducing the auxiliary variable s = c−(pmax) −
c−(p) the problem defined in (16) can be rewritten as follows,
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P2mo : maximize
v=[pij ,t,s]

U ij2 (v)=u+(pij)+t, s.t. v ∈ Sn ∩ Sc (20)

Sn=
{

(t, pij , s) : t+ u−(pij , λk) ≤ u−(pmax, λk),

s+ c−(pij) ≤ c−(pmax), pij � pmax

}

Sc =
{

(t, pij , s) : t ≥ 0, s+ c+(pij) ≥ c−(pmax), pij � 03

}
.

It is clear that all the functions in Sn and Sc are increasing
functions. Thus, Sn and Sc are respectively normal and
co-normal sets. Therefore, P2mo is an MO optimization
problem, and thus by using the MO tools such that the outer
Polyblock algorithm (OPA) [26, Algorithm 3], the global
optimal power allocation for any pair (CUi,D2Dj) can be
obtained. However, the OPA algorithm appears to have high
complexity [26]. Moreover, in our system model, we assume
that M D2D pairs coexist with N CUs, and thus OPA must
be applied N ×M times to calculate the global optimal
power allocation for all the possible (CUi,D2Dj) couples.
This make OPA intractable for deriving the optimal RA
scheme of an FD-D2D network. To overcome this issue,
we develop a new polyblock-based algorithm, referred to as
MARIO, which has a much lower complexity compared to
OPA. To easily understand MARIO, first, we present in the
next subsection the conventional polyblock-based algorithm
(OPA), then we develop in Subsection IV-C the new MARIO
algorithm.

B. OUTER POLYBLOCK APPROXIMATION ALGORITHM
The main idea of OPA is to construct a sequence of shrinking
polyblocks that eventually closely approximate the global
solution which is located on the upper boundary of the
feasible region. However, as mentioned earlier, OPA has high
complexity feature. Thus, we propose a novel polyblock-
based algorithm called MARIO. To understand MARIO the
OPA concept has to be very clear for the reader. Thus, in the
remaining of this subsection, the OPA process is made formal
and clarified.

Definition 2. (Upper boundary): A point x ∈ RN+ is called
an upper boundary point of a normal closed set F if F ∩
{x′ inRN+ |x′ > x} = ∅. The set of all upper boundary points
of F is the upper boundary of F and it is denoted as ∂+F .

Definition 3. (Box): Given any two vectors a and b ∈ RN+ ,
the hyper rectangle [a, b] = {x|a � x � b} is referred to as
a box.

Definition 4. (Polyblock): Given any finite set T ∈ RN+ with
elements vi, the union of all the boxes [0, v] is refereed to as a
polyblock with vertex set T . A polyblock is clearly a normal
set.

Definition 5. (Proper vertices): A vertex v ∈ T is said to be
proper if there is no v′ ∈ T such that v′ 6= v and v′ � v. A
vertex is said to be improper if it is not proper, and improper

vertices can be removed from T without affecting the shape
of the polyblock.

Definition 6. (Projection): Given any nonempty compact
normal set G ⊂ RN+ , and any v ∈ RN+ \ G, πF (z) is a
projection of z on F if πF (z) = αz with α = max{κ >
0|κz ∈ F}. In other words, πF(z) is the unique point where
the line segment joining 0 to z meets the upper boundry of F .

Remark 3: Due to the normality of G, the projection point,
i.e., α, can be found by the well known bisection algorithm
[26, Algorithm 1] .

G∩H

V1

πG(V1)

a) The Polyblock P1 with
vertex set T1 = {V1}

G∩H
V 1
1

V 2
1

πG(V 1
1)

b) The Polyblock P2 with
vertex set T2 = {V 1

1 , V 2
1 }

...
G∩H

c) The Polyblock Pn which
approximates the outer
boundary of the feasible set.

FIGURE 3. Illustration of the OPA process.

Based on the above concepts, the OPA which solves the
MO problem P2mo works as follows. First, a polyblock
P1 that contains the feasible set G ∩ H of an MO problem
is constructed (see Fig.3 a). Let T1 be the proper vertex
set of P1. By Proposition 2 of [26], the maximum of the
utility function of an MO problem over the polyblock P1

occurs at some proper vertex v1 ∈ T1. If the projection of
v1 on ∂+G happens to reside on G, i.e, πG(v1) ∈ G, then
v1 = πG(v1) solve the problem and the optimal solution
is equal to v1. Otherwise, based on Proposition 3 of [26],
a smaller polyblock P2 ⊂ P1 which still contains G ∩ H
but excludes v1 can be constructed (See Fig.3(b)). This is
achieved by constructing the vertex set T2 by replacing v1 in
T1 with N new vertices {v1

1 , . . . , v
N
1 } and then removing the

improper vertices, where vj1 = v1 − (vj1 − πG(v1))ej
1. This

procedure is repeated until an optimal solution is found. This
leads to a sequence of polyblocks containing G ∩ H:P1 ⊃
P2 ⊃ . . . ⊃ G ∩ H (See Fig.3). The algorithm terminates at
nth iteration when πG(vn) ∈ G. According to [26] the OPA
algorithm is guaranteed to converge to the global optimal

1In this paper, ej denotes the jth unit vector of RN .
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solution only if the optimal solution v? has a positive lower
bound vl � 0. Therefore, when at least one of the involved
user has γmin = 0 the origin has to be shifted to the negative
orthant to guarantee the convergence of the OPA.

Complexity analysis: The complexity and the convergence
speed of OPA depends on the number of iterations required to
search the outer boundary of the feasible set. The accuracy re-
quirement of the bisection method for finding the projection
point of the optimal vertex on the boundary of the feasible set
also affects the complexity of the OAP algorithm. Another
complexity key factor is the number of the optimization
variables (Nvar), i.e., the dimensionality of the optimization
problem. The latter highly affects the computational time of
each iteration. Indeed, at the nth iteration, the optimal vertex
over Pn needs to be found from (nNvar − n − Nvar + 2)
vertices. This is because the size of the vertex set Tn increases
by (Nvar − 1) after each iteration. Thus, the computational
time of each iteration linearly increases with Nvar. Let Niter
be the required number of iterations to find the optimal
solution by using the OPA algorithm, the complexity for
obtaining the solution is in the order of O(NvarN

2
iter). The

rapid growth of the size of the vertex set motivates us to
develop a more efficient algorithm based on the existing
OPA algorithm. For ease of notation, we denote the proposed
algorithm by MARIO (Polyblock vertices triMming bAsed
poweR allocatIOn).

C. MARIO ALGORITHM
In this section, we propose the MARIO algorithm to reduce
the complexity of OPA. The key idea of MARIO is to delete
the unnecessary vertices that mislead the PA algorithm.
Like the grass trimmer which trim down the quack grass
to improve the growth of a meadow, MARIO accelerates
the convergence time of PA by trimming down the hurtful
vertices which slow down the PA algorithm. To make the last
concept formal, first, we introduce the following proposition.

Proposition 1. In the first step of Dinkelbachs’ algorithm,
the optimal power vector p∗ij is achieved only if at least one
user is transmitting with its maximum allowed power.

Proof: For a scaling factor α > 1 and a power alloca-
tion vector pij satisfies the powers constraints we have the
following,

U ij1 (αpij)=ωi log2

(
1+

P icg
i
cb

P jd1 + hjd1,b+P
j
d2h

j
d2,b+

σ2
N

α

)
(21)

+ωj1 log2

(
1

P jd2g
j
d

P ich
j
i,d1+ηP jd1+

σ2
N

α

)

+ωj2 log2(1+
P jd1g

j
d

P ich
j
i,d2+ηP jd2+

σ2
N

α

) > U ij1 (pij)

The power constraints imply that the maximum of αP jd1,
αP jd2 is P dmax and the maximum of αP ic is P cmax. This means
that the optima p∗ij has at least one power bounded by the
peak power constraint.

By virtue of Proposition 1, we know that the non-
misleading vertices of a polyblock P are the vertices which
have at least one abscissa above or equal to the maximum
allowed power. Needless to say, these vertices must also
satisfy the QoS of the users defined in (7a)-(7c). Observe
that the extra auxiliary variables t and s defined in (20) may
lead to a vertex which does not meet the above requirements.
Hence, the misleading vertex is defined as follows.

Definition 7. A vertex v = [v1, v2, . . . , vN ] is said to be
misleading if it does not have any power equal to or larger
than the maximum power or if it cannot meet the QoS of the
users or both. A misleading vertex can be deleted without
affecting the PA process.

Fig.4 illustrates the above concept. In this figure x and y
are the optimization variables, the lines l1 and l2 represent
the QoS, and the shaded area denotes the feasible set. The
red triangle points stand for the vertices that do not have any
power at least bounded to the peak power. The blue square
points are the vertices that can not meet the QoS of all users.
The green diamond points are the vertices that cannot meet
the QoS and do not have any user at least transmitting with
the maximum allowed power. The black points represent the
non-misleading vertices which can be kept to generate the
new polyblock.

x

y

xmax

ymax

ymin l1

xmin

l2

FIGURE 4. Illustration of the misleading vertices that can be generated when
auxiliary variables have been added.

The above concept is valid for the WSR power allocation
problem. To apply it to the GEE power allocation problem,
the maximum transmission power of the users has to be
updated after each Dinkelbalch’s step as indicated in the
following proposition.

Proposition 2. Let p?k,ij and pkmax be the optimal transmis-
sion power and the maximum transmission power at the kth
iteration of Dinkelbach’s algorithm. The maximum transmis-
sion power in the k + 1th iteration is equal to the optimal
transmission power in the kth iteration, i.e., pk+1

max = p?k,ij .

Proof: Recall that maximizing a general fraction f(x)
g(x)

by means of Dinkelback’s algorithm requires to maximize
F (λk) = maxx∈S f(x) − λkg(x) at the kth iteration, with
S being the set of constraints of the problem (in our case
S = S∩Sc). Moreover, at each iteration k and for any x ∈ S,
F (λk) ≥ 0. In addition, at the next iteration, the value of λ
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is updated as follows λk+1 =
f(p?

k,ij)

g(p?
k,ij) . Hence, at the (k +

1)th iteration we have F (λk+1) = maxx f(x)− f(p?
k,ij)

g(p?
k,ij) g(x),

which in turn implies that the maximum power at the k +
1th iteration must be equal to the optimal power of the kth
iteration.

Now, since the utility function of the MO problem is
monotonically increasing function, the optimal point at the
kth iteration will have at least one abscissa bounded to the
maximum constraint. Thus, Definition 7 can also be used to
reduce the complexity of globally solving the power alloca-
tion problem. This concept is illustrated in Fig.5, in which
Ψk(k ∈ {1, 2, 3}) denotes the feasible set of the optimization
problem at the kth iteration and the magenta star point is the
optimal value. As it can be seen, the feasible set is getting
smaller at each iteration and thus by updating the maximum
power in PA algorithm the convergence time of PA will be
significantly decreased.

x

y

xmax

ymax

ymin l1
xmin

l2 ?

Ψ1:

Ψ2:

Ψ3:

FIGURE 5. The update process of the maximum powers.

Combining the OPA algorithm with Definition 7, Proposi-
tion 2 and Algorithm 1, the proposed MARIO algorithm can
be presented as in Algorithm 2.

Now, recall that one of the work’s targets is to derive the
global optimal RA scheme of an FD-D2D based cellular
network (see the second column of Fig.1). Up to now, we
have shown that the global RA scheme can be obtained by
decomposing the original RA problem to two sub-problems
as PA and CA and then globally solving each sub-problem
individually. Then, we proposed MARIO to derive the global
optimal PA scheme. Thus, to achieve the optimal RA scheme,
it only remains to globally solve the CA sub-problem. The
latter is the target of the following section.

V. CHANNEL ASSIGNMENT
So far, we find the global optimal power allocation for all
the possible pairs (D2Dj ,UEi). In this section, we aim at
finding the optimal reuse candidate for each pair D2Dj ,
i.e., solving the channel assignment problems P31 and P32

defined in (10) and (13) respectively. Both problems P31 and
P32 consist only of the channel reuse indicator variable %ij .
Moreover, according to the channel assignment constraints
defined in (7d) and (7e), the D2D pairs can share at most one
CU’s resources and the resources of a CU can be allocated
at most to one D2D pair. Therefore, the channel assignment
problems P3l and P32 can be seen as a maximum weight
bipartite matching problem. Fig.6 illustrates the maximum

Algorithm 2 The proposed MARIO algorithm
1: Input: The increasing utility function of P2mo defined

in (20), the compact normal set Sn and the closed co-
normal set Sc such that Sn ∩ Sc 6= ∅.

2: Output: The optimal solutions of P21 and P22.
3: Set the accuracy of Dinkelbach’s algorithm ε1 > 0, the

counter of Dinkelback’s algorithm k = 0, and λ0 = 0.
4: while F (λk) ≥ ε1 do
5: Solve (20) as shown below:
6: Initialization: Define an accuracy ε2 > 0, a counter
n = 0, and an initial vertex v0 = [pkmax, smax, tmax],
with smax and tmax being the maximum values of the
introduced auxiliary variables in P2mo. Let the initial
polyblock P1 be box [0, v0] which contains Sn∩Sc. The
vertex set T1 = {v0}. Denote by v?n the optimal vertex at
the nth iteration.

7: repeat
8: n = n+ 1.
9: Find the best vertex v?n in Pn, i.e., v?n =

arg max{f(v)|v ∈ Tn}.
10: Obtain πG(v?n), the projection of v?n on the upper

boundary of G.
11: if πG(v?n) = v?n, i.e., v?n ∈ G then
12: v? = v?n, break.
13: else
14: Replace v?n with N new vertices {v11, . . . , v1N}.
15: Delete the improper and the misleading vertices.
16: end if
17: until |f(v?n)− f(πG(v?n))| ≤ ε2
18: v?n=v?=[p?k,ij , s

?, t?]
19: k = k + 1
20: set pkmax = p?k−1,ij

21: update λk =
ωiR

i
c(pkij

?
)+ωj1

Rj1 (pkij
?
)+ωj2

Rj
d2(pkij

?
)

µ(pic
?+pjd1

?
+pjd2

?
)+3Pcir

.
22: end while

weight bipartite problem in P31 and P32, where the set of
D2D pairs D, and the set of the cellular users C are assumed
to be the two disjoint groups of vertices in the bipartite graph.
The pair (D2Dj ,UEi) is joined by an edge ij when CUi is a
reuse candidate of D2Dj . The weight of edge ij is assumed
to be the optimal objective function of P3l, and it is denoted
by U ijl

?
with l ∈ {1, 2}. The well known Khun-Munkres

algorithm (Hungarian algorithm) [28] can be used to solve
such assignment problems.

A. RESOURCE ALLOCATION IN HD-D2D NETWORK
As a complement, we introduce the resource allocation prob-
lem in an HD-D2D network. For a fair comparison with the
FD-D2D network, we assume that when D2Dj reuses the
bandwidth of CU i (Bi), the users Dj

1 and Dj
2 will operate on

two equally orthogonal portions of the bandwidthBi. Hence,
when D2Dj shares the resources of CU i in HD mode, the
SINR of the CU i will remain the same as in (1). However,
the SINRs of Dj

1 and Dj
2 do not longer contain the self
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FIGURE 6. The bipartite graph representation of the channel assignment
problem.

interference part. Consequently, the solution of the resource
allocation problem of an HD-D2D based cellular network is
similar to the FD-D2D network, with the only difference that
in HD mode we have η = 0 and the bandwidth of Dj

1 and Dj
2

is equal to half of the CUi bandwidth.
The optimal solution of both FD-D2D and HD-D2D re-

source allocation problem is reported in Algorithm 3.

Algorithm 3 Optimal Resource allocation algorithm
1: C: The set of existing cellular users
2: D: The set of D2D pairs
3: Ul(ρ, P ): The function to be maximized
4: if HD mode then
5: Set η = 0
6: Set the bandwidth of Dj

1 and Dj
2 to B/2

7: end if
8: Step 1: Power Control
9: for all j ∈ D and i ∈ C do

10: Solve P2l for the pair (D2Dj ,CUi) by using MARIO
algorithm.

11: end for
12: Step 2: Channel Assignment
13: Get the optimal CUi for each D2Dj by using Khun-

Munkres algorithm

B. COMPLEXITY ANALYSIS
As shown earlier, solving the resource allocation problem
requires sequentially solving the power allocation problem
(P2l) and the channel assignment (P3l) problems, with
l ∈ {1, 2}. Hence, the complexity of Algorithm 3 depends
on the complexity of the power allocation problem and the
complexity of the channel assignment problem. The com-
plexity of finding the global optimal power allocation for
one couple (D2Dj , CU i) has been derived in the previous
section, and it is in the order of O(N2

iterNvar). Since we
have M D2D pairs and N CUs, the total number of possible

couples is MN , and thus the complexity of (P2l) is in
the order of MNO(N2

iterNvar). On the other hand, the
Khun-Munkres algorithm [28] requires at most max3(M,N)
iteration to finish the assignment problem. Therefore, the
overall complexity of the resource allocation problem can be
described as MNO(N2

iterNvar) + O(max3{M,N}). Due
to the high complexity of this problem, in the following, we
present a heuristic algorithm to efficiently solve the resource
allocation problem. The proposed algorithm follows a reverse
path, i.e., first, it assigns the channels to the different D2D
pairs and then it allocates the power for the different couples
(D2Dj , CU i). We denote this algorithm by Channel Assign-
ment Then Power Allocation algorithm (CATPA) and it is
described thereafter.

VI. THE PROPOSED CATPA ALGORITHM
From the above description, the global optimal solution of the
resource allocation problem can be found by first deriving
the optimal power allocation for all the possible couples
(D2Dj , CU i) and then assigning the channels to the users by
using the well known Hungarian algorithm. In the considered
scenario, this will lead to solve N×M PA problems via the
proposed MARIO algorithm and then apply the Hungarian
algorithm, with N×M being the number of all the possible
couplings between the M D2D pairs that coexist with the N
CUs. The conventional RA sub-optimal solutions presented
in [24] [25] have the same structure of the proposed MO
based solution, and thus they also require solving N×M PA
problems (refer to the first column of Fig.1). Hence, both the
conventional sub-optimal solution and the MO based solution
will be inapplicable for deriving the optimal RA scheme in a
real FD-D2D network especially when N or M increases.

To reduce the complexity we develop in this section, the
CATPA algorithm that first assigns the channels to the D2D
pairs and then allocates the powers for all the involved users
as shown in the third column of Fig.1. Hence, by using
CATPA we will only need to solve M instead of N×M PA
problems to achieve a solution for the RA problem.

First focusing on the channel assignment step, we propose
to assign the available channels for the D2D pairs that are
expressing good channel conditions. To that end, we define
a profit for each possible couple (D2Dj , CU i) as shown
below:

Profit ij =
gicb + gjd + gjd
Ii + Ij1 + Ij2

(22)

Ii = γimin(hjd1,b + hjd2,b + σ2
N )

Ij1 =γj1min(hji,d1 +η+ σ2
N ), and Ij2 =γj2min(hji,d2 + η + σ2

N ).

The numerator of (22) can be seen as a measure of the
possible gain when allocating the channel CHi to D2Dj

while the denominator of (22) can be observed as the cost
of reusing the bandwidth of CU i. Hence, Profit ij is a metric
that quantifies the profit of each couple (D2Dj , CU i). Since
we are assuming that the BS has full-knowledge about the
channel state information of the users, the Profit ij of all
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the possible couples (D2Dj , CU i) can be easily computed
at the BS. Having the profit table of all the possible couples
in the network, we propose to allocate the channels to the
couples with high profits. Moreover, to respect the channel
allocation constraints defined in (7a)- (7c), we first assign the
ith channel to the D2D pair that has the highest profit, and
then we remove the assigned channel and the assigned D2D
pair after each assignment. The following example clearly
explains the proposed channel assignment method.

Assume a cellular network with 4 CUs and 4 D2D pairs
with a profit table as shown in Fig.7(a). From this figure, it is
clear that the Profit1,3 is the highest value. Thus we assign
the third channel to the first D2D pair and then we remove the
first row and the third column. After this deletion, the profit
table will reduce to the matrix shown in Fig.7(b). We repeat
this process until all the D2D pairs get assigned channel (See
Fig.7(a)-(d)). It is clear that by following this process each
channel will be assigned to only one D2D pair, and each D2D
pair will reuse the channel of only one CU.

108 124 127 6

71 74 7 106
29 5 29 28
40 92 6 111
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CH1 CH2 CH3 CH4

D2D1

D2D2
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FIGURE 7. The process of of the proposed CA.

The proposed algorithm requires at most min{M,N} it-
erations to finish the assignment problem, and thus it reduces
the assignment complexity by 1/min{M,N} comparing to
the Hungarian algorithm. In addition, for that specific profit
function, both the Hungarian algorithm and the proposed
CA algorithm lead to the same value as shown in the next
proposition.

Proposition 3. For pairwise different profits, the proposed
CA algorithm leads to the global optimal assignment solu-
tion.

Proof: First recall that the Hungarian algorithm achieves
the best assignment problem for a maximum-weight bipartite
matching problem. In particular, The Hungarian algorithm
assigns the channel to the users who give the higher WSR
or GEE. Now, assume that all the weights of the assignment
problem are different. Then, the best assignment will be
achieved by finding the maximum weights that are locating
in different rows and different columns. This is exactly the
objective of our proposed CA algorithm.

By examining the profit equation defined in (22), we see
that two profit values are identical only when the related D2D
pairs and the CUs are locating at the same locations. Hence,
in practice, the proposed CA algorithm leads to the optimal
assignment solution as shown in the following Remark.

Remark 4: In a real network, each node occupies a
specific area in the cell, and thus two nodes cannot reside
at the same point which in turns implies that all the profit
values are different. Thus, the proposed CA algorithm will
lead to an optimal assignment solution.

Now, after assigning the channels for all the D2D pairs,
the power allocation problem can be solved using the SCO
method presented in [24], [25]. Algorithm 4 summarizes
all the previous discussion and shows the different steps of
CATPA.

Algorithm 4 The proposed CATPA algorithm
1: C: The set of existing cellular users
2: D: The set of D2D pairs
3: Step 1: Channel Assignment
4: for all j ∈ D and i ∈ C do
5: Compute Profit i,j by using (22).
6: end for
7: for j = 1 : min{M,N} do
8: Find the highest Profit i,j element.
9: Let Ijrow and Ijcol be the indices of the row and

the column of the highest element at the jth iteration
respectively.

10: Allow the Ijrowth D2D pair to reuse the channel of
the Ijcolth CU.

11: Delete the Ijrowth row and the Ijcolth column of the
profit table.

12: end for
13: Step 2: Power Control
14: Allocate the power for each (D2Dj , CU i) bu using the

SCO theory.

VII. NUMERICAL ASSESSMENT
We consider a single cell network, where CUs are uniformly
distributed in the cell. The D2D users are usually within
a short distance, and thus we distribute them in the cell
according to the cluster distribution model [38]. In particular,
the D2D users are uniformly distributed within a randomly
located cluster. Moreover, in our simulation, we assume
different D2D pairs are within different clusters. The CUs are
assumed to share the total bandwidth equally. In addition, in
our simulation, we only focused on the egalitarian solution,
i.e., we set the weights ωi, ωj1 , and ωj2 to one. Table 1
summarizes our simulation parameters.

A. MARIO VS OPA
The aim of this subsection is to compare the complexity of
the proposed MARIO algorithm and the complexity of the
traditional OPA algorithm. To that end, we consider a simple
scenario in which a single D2D pair coexists with one CU.
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TABLE 1. Simulation parameter

Cell radius (R) 0.5 Km
D2D cluster radius (r) 20, 30, 40, ..., 100 (m)
Uplink channel bandwidth 180 KHz
Noise power (σ2

N ) -114 dBm
Path-loss exponent (α) 4
Maximum Tx power 24 dBm
Multiple-path fading Exponential distribution with unit mean
Egaleterian Solution ωi = ωj1 = ωj2 = 1, ∀i ∈ C, j ∈ D

The center of the D2D cluster is located at 300m from the
BS, and the CU is located at 100m from the BS.

Giving this scenario, Fig.8 shows the behavior of both
MARIO and OPA algorithms in the last iteration of Dinkel-
bach’s algorithm, i.e., when λk equals the optimal GEE
value. The y-axis of this figure is the difference between the
GEE values of the best vertex point (v?n) and its projection
point (πG(v?n)), i.e., the line 17 in Algorithm 2. As can be
seen in Fig.8, in both algorithms, the difference between the
GEE values of v?n and πG(v?n) reaches zero after several num-
bers of iterations which in turn validates that both algorithms
have already converged to the global maximum point. Fig.8
also shows the typical bounding behavior of the polyblock
based algorithm [39]. For instance, both algorithms quickly
find a feasible solution within a relatively small difference
between the GEE values of v?n and πG(v?n), but many more
iterations are required to squeeze the difference to zero. In
addition, Fig.8 clearly shows the superiority of MARIO in
term of the required number of iterations to achieve the
optimal GEE value. For instance, the proposed MARIO
algorithm achieved the optimal GEE value after 2.2 × 104

iterations while the regular OPA algorithm required five-
times more iterations (11 × 104) to obtain the optimal GEE
value. A similar behavior is obtained at the first iteration of
Dinkelback’s algorithm, i.e., when maximizing WSR, but it
is omitted for sake of clarity.

This is because MARIO deletes the misleading vertices
that delay the convergence time. To illustrate this concept,
we show in Fig. 9 the generated vertices of both algorithms
after 400 iterations, in the first iteration of Dinkelbach’s
algorithm. As illustrated in Fig. 9(a)-(b), MARIO generates a
much lower number of vertices compared to the regular OPA
algorithm, and thus it has faster convergence time.

To emphasize the superiority of MARIO, we compare in
Table 2 the complexity of both OPA and MARIO algorithms
in terms of the average number of iterations and the average
number of vertices to achieve the optimal GEE value for
different cluster radii. As expected, MARIO requires less
number of iterations and generate less number of vertices to
attain the optimal GEE value.

B. THE OPTIMALITY GAP
As mentioned in the introduction, all the related RA works (
[24], [25]) provide the solution of the RA problem by using
the sequential convex optimization theory (SCO). The latter
guarantees only a first-order optimal solution, and up to now
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FIGURE 8. Convergence behavior of the proposed MARIO algorithm and the
regular OPA algorithm, in the last iteration of Dinkelbach’s algorithm. The
behavior shows the convergence to the global GEE optimal solution and
illustrates the superiority of the proposed MARIO algorithm.
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FIGURE 9. The feasible set and the generated vertices of (a) the proposed
MARIO algorithm and (b) the regular OPA algorithm after 400 iterations.

the optimality gap of the SCO method in the RA problem
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TABLE 2. The average number of Iterations and Vertices for the proposed
MARIO algorithm and the regular OPA algorithm.

r (m) Number of Iterations Number of vertices
MARIO OPA MARIO OPA

10 80990 100000 388.0699 1253
20 74604 980000 413.4425 1258.9
40 77263 950000 400.2299 871.4
80 68395 100000 632.9584 800

of an FD-D2D network is not identified yet. Fig.10(a) and
Fig.10(b) compare the achieved GEE and the achieved rate
using the MO theory with that achieved by using the SCO for
different self-interference cancellation factor (η). As can be
seen, the optimality gap is less than 1%. This result is inline
with the works in [26], [40]. Another remarkable observation
is that both the achieved GEE and the achieved rate increase
with the decline of the SI cancellation factor. This is expected
because when η decreases the RSI power decreases and thus
the total interference will also decrease.
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FIGURE 10. Achieved GEE versus SI cancellation factor, using 1) the
proposed method, 2) SCO method ( [24], [25]).
(r = 20m,γi

min = γ
j1
min = γ

j2
min = 3dB)

While in the above figure we have shown the optimality
gap in terms of the achieved rate or the achieved GEE, in Ta-
ble 3 we present the average number of iterations to achieve
both the global optimal solution (MO based method) and the
sub-optimal solution (SCO based method). As can be seen,
the global optimal solution can be achieved at the price of a

high number of iterations. Hence, given the low optimality
gap of the SCO method and the high complexity of the MO
based method, the SCO method is an interesting candidate to
analyze the FD-D2D network while the MO-based method is
an interesting tool to benchmark the results. Thus, in the next
sub-section, we will analyze the performance of our proposed
sub-optimal RA algorithm, CAPTA, in the FD-D2D network
as compared to the SCO optimization method applied in [24]
and [25].

TABLE 3. The average number of Iterations for the proposed MARIO
algorithm and SCO algorithm.

η (dB) Number of Iterations
SCO MARIO

-60 63.2 77378
-70 51.65 76628
-80 46.9 75828
-90 41.29 74721

-100 34.26 72934

C. THE PERFORMANCE OF THE SUB-OPTIMAL
RESOURCE ALLOCATION CATPA ALGORITHM
Here we aim to identify the performance of the proposed
CATPA algorithm. To that end, we assume a single cell
network where M = 4 D2D pairs coexist with N = 4 CUs.
The CUs are uniformly distributed in the cell, and the D2D
users are uniformly distributed within a randomly located
cluster. To cover all the possible location, we generate the
D2D users and the CUs 500 times, and then we averaged
the results. Fig. 11(a) and 11(b) respectively compare the
achieved GEE and WSR values of the FD-D2D network with
the achieved GEE and WSR values of the HD-D2D network.
The GEE and the WSR values of the FD-D2D network are
obtained through the proposed CATPA algorithm and the
SCO method adopted in [24], [25].
Fig. 11 shows that the GEE and WSR values of both FD-D2D
and HD-D2D networks decline as the cluster radii increases.
This is expected, since when r increases the proximity
distance between the D2D users also increases, and thus
more power is needed to maintain the same QOS. However,
increasing the power also increases the interference, and thus
the total rate and the GEE decrease. In addition, Fig. 11 also
shows that the GEE and the WSR values of the FD-D2D
network decline with the increasing of η which in turn re-
validate the result of the previous sub-section. Hence, the
FD-D2D network’s performance highly depends on both the
SI cancellation capability and the proximity distance of the
D2D users. For instance, the HD-D2D network outperforms
the FD-D2D network when η = −60dB and the D2D users
are within a 10m distance from each other. Thus, to achieve
the maximum gain of a D2D based cellular network, the
transmission mode must always alternate between HD and
FD based on the channel situation, the SIC factor, and the
proximity distance.
In addition, Fig. 11(a)-(b) clearly indicate that the proposed
CATPA algorithm can achieve GEE and WSR values that are
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within the 91%− 98% of the optimal value obtained by SCO
method which in turn validates the accuracy of the proposed
CATPA algorithm. Now, to shed the light on the low com-
plexity feature of the proposed CATPA algorithm, we present
in Table 4 the required number of iterations to obtain the
optimal GEE value for both CATPA and the SCO algorithm
for different SIC cancellation factors and different cluster
radii values. As expected, the proposed CATPA solution
decreases the number of iterations by at least min{M,N}.
This is because CATPA does not compute the optimal power
allocation for all the possible couples (D2Dj , CU i) as in the
global optimal solution. For instance, the adopted scenario in
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FIGURE 11. Comparison between the performance of FD-D2D network and
the HD-D2D network when applying the proposed CATPA algorithm or the
SCO solution adopted in [24], [25] for (a) maximizing GEE, and (b) maximizing
WSR. (γi

min = γ
j1
min = γ

j2
min = 3dB)

Table 4 contains 4 D2D pairs and 4 CUs, and thus CATPA
will lead to at least a 4-fold decrease in the number of
iterations as shown in Table 4.

TABLE 4. The number of Iterations for the proposed CATPA algorithm and
SCO algorithm.

η (dB)
r = 10 (m) r = 20 (m) r = 40 (m)

CATPA SCO CATPA SCO CATPA SCO
-60 108.6 425.9 121.64 481.8 52 216
-70 95.63 362.7 116.43 444.6 119.6 472.9
-80 74.38 279.19 96.39 360.3 106.9 410.6
-90 53.05 203.8 68.58 257.9 78.6 302.1
-100 38.48 153.06 46.03 182.7 55.1 220.8

D. PERFORMANCE ANALYSIS OF THE FD-D2D
NETWORK
In the previous subsections, we saw the effect of the RSI
power and the D2D cluster radius on the performance of the
FD-D2D network. Moreover, we observed that the FD-D2D
network requires a small D2D proximity distance and high SI
cancellation capability to achieve its ultimate gain. Hence, in
this subsection, we aim to analyze the effect of the remaining
network’s parameters, such as the maximum transmission
power and the required QoS, on the performance of the FD-
D2D network by assuming η = −100dB and r = 20m.

Fig. 12 presents the effect of the maximum allowed power
on the achieved GEE value considering three power allo-
cation strategies:1) the obtained powers when maximizing
GEE; 2) the obtained optimal powers when maximizing
WSR; 3) the maximum allowed powers. In this figure, P dmax

denotes the maximum power of Dj
1 and Dj

2 with j ∈ D.
From Fig. 12(a) it is seen that the GEE obtained by GEE
maximizing first increases by the increasing of pmax and
then it saturates at large pmax. This is because when pmax

is large enough to allow achieving the optimal GEE value,
the excess power is no longer utilized. However, the GEE
attained by WSR maximizing first increased by the increase
of pmax until pmax = −30dBw, and then it started to decline
for larger pmax. This indicates that the global optimal GEE
value can be achieved if at least one user is transmitting at
−30dBw. This result also confirms our proposed MARIO
algorithm in which we update the maximum power level at
each step on Dinkelbach’s algorithm. In addition, transmit-
ting with full power at all users highly degrades the GEE
performance. Now, looking at Fig. 12(b), it can be observed
that the achieved WSR when maximizing WSR increases
as the maximum power increases. This result confirms our
observation that the maximum achieved rate can be obtained
only if at least one of the users is transmitting with the
maximum allowed power. However, the achieved WSR when
maximizing GEE saturate at large pmax which is inline with
the results of Fig.12(a). In addition, Fig. 12 also confirms
that the full power transmission strategy is not suitable for
the FD-D2D network since it failed to achieve good WSR or
GEE values. Another interesting observation can be extracted
from Fig.12 is that the difference between the achieved WSR
when maximizing GEE or maximizing WSR is relatively
smaller than the difference between the obtained GEE when
maximizing GEE or maximizing WSR. Giving this result, in
a resource allocation problem, maximizing the GEE is much
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FIGURE 12. The effect of the maximum transmission power on the (a)
achieved GEE value and (b) achieved WSR value considering three power
allocation strategies: 1) the obtained powers when maximizing GEE; 2) the
obtained optimal powers when maximizing WSR; 3) the maximum allowed
powers. (r = 20m, γi

min = γ
j1
min = γ

j2
min = 3dB)

attractive than maximizing the overall rate.
Next, to see the effect of the QOS on the perfor-

mance of FD-D2D network, we set the maximum transmit
power pmax = [−6,−6,−6](dBw), and then we draw in
Fig. 13(a)-(b) the variation of the achieved GEE and WSR
w.r.t γcmin and γdmin with γdmin being equal to γd1

min and γd2
min.

Since the maximum power allocation strategy is not suitable
for FD-D2D network (see Fig.12-(b)), in this figure we only
consider the remaining two power allocation schemes: 1)
the obtained powers when maximizing GEE; 2) the achieved
powers when maximizing WSR. As expected the achieved
GEE and WSR decline with the increase of the minimum
required SINR for all power allocation strategies since at
large SINR requirement less number of FD-D2D pairs can
be admitted. In addition, Fig. 13 affirm the previous results
obtained in Fig. 12 which says that in a FD-D2D network
maximizing GEE will be more attractive than maximizing the
overall rate. This is because the gap between the achieved
GEE when maximizing GEE and maximizing WSR (see
Fig. 13(a)) is much larger than the gap between the achieved
WSR when maximizing GEE and maximizing WSR (see

Fig. 13(b)). To have full knowledge of the performance of
an FD-D2D network when maximizing GEE or maximizing
WSR a joint optimization framework must be developed
which is left for future work.
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FIGURE 13. The effect of the QoS requirement (a) achieved GEE value and
(b) achieved WSR value considering two power allocation strategies: 1) the
obtained powers when maximizing GEE; 2) the obtained optimal powers when
maximizing WSR. (r = 10m, pmax = [−6,−6,−6](dBw))

VIII. CONCLUSION
In this paper, we have investigated the resource allocation
problem for a full duplex D2D communication underlaying
cellular network. To maximize the overall throughput and the
energy efficiency while guaranteeing the data rate require-
ment of both D2D users and CUS, first we formulate the
resource allocation optimization problem, and then we find
the global optimal solution through two steps: power control
for all the possible couples (D2Dj , CU i); maximum weight
matching to obtain the optimal cellular user for each D2D
pair. By means of monotonic optimization theory, we pro-
posed a new polyblock-based algorithm denoted as MARIO
that can efficiently find the global optimal power control for
the involved users. The Khun-Munkers algorithm is used to
solve the matching problem. Due to the high complexity
of the global optimal solution, we proposed the CATPA
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algorithm that can find an efficient sub-optimal solution by
first assigning the channels and then controlling the users’
powers. Simulation results verified the proposed algorithms
and showed that the performance of the FD-D2D network
highly depends on the self-interference capability and the
proximity distance. In future work, we will investigate the
effect of the imperfect channel state information on the
optimal resource allocation. Meanwhile, the scenario when
an FD-D2D pair can share the resources of multiple CUs, and
when multiple FD-D2D pairs can reuse the same resource
should be also studied.
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