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This paper tackles the resource allocation (RA) problem of a Full-Duplex (FD) device-todevice (D2D) communications enabled cellular network. In the considered scenario, multiple FD-D2D pairs share the uplink channels of the regular cellular users (CUs) which leads to mutual interference between the two communication types. Within this interference environment, this work aims to properly allocate the network's resources, such as the transmit power and the channels, to maximize a network-centric metric like the weighted-sum rate (WSR) and the global energy efficiency (GEE). The complex coupling between the mutual interference of the different links, as well as the flexibility of assigning the channels to the users, results in a non-convex RA optimization problem, for which the global optimal solution is hard to obtain. This paper is a first and innovative approach that globally solves the RA problem of an FD-D2D based cellular network. In particular, we show that the global optimal solution can be achieved by decoupling the original problem into two sub-problems as power allocation (PA) and channel assignment (CA). The PA subproblem is solved by means of monotonic optimization theory. Precisely, we propose a new polyblock-based algorithm, MARIO, which efficiently converges to the global solution of the PA problem. Then, based on the optimal PA solution, the CA problem reduces to an assignment problem, which can be solved by Khun-Munkers algorithm. Further, we propose a sub-optimal solution by solving the original RA problem in the reverse order, i.e., first assigning the channel and then allocating the power. Simulation results show the effectiveness of the proposed algorithms and provide important insights on the solution design parameters such as the proximity distance and the self-interference cancellation capability.

I. INTRODUCTION

T HE proliferation of mobile devices and data-hungry ap- plications imposes severe challenges to current wireless communication networks. For example, it is expected that the number of connected devices will surpass 50 billion by 2020 and that a 1000-fold increase in data rate is required to accommodate such an enormous number of devices [START_REF] Mobile | Cisco visual networking index: Global mobile data traffic forecast update[END_REF]. Given the strict requirements defined for the future wireless networks, the increasing data rate should not lead to crush-ing the available cellular spectrum as well as consuming more energy. Full-Duplex communication (FD) and deviceto-device communication (D2D) are emerging as two candidates technologies for the next cellular network (5G) [START_REF] Tehrani | Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions[END_REF], [START_REF] Zhang | Full-duplex transmission in PHY and MAC layers for 5G mobile wireless networks[END_REF].

D2D allows two devices in proximity of each other to initiate a direct link in a peer-to-peer fashion without the base station (BS) participation or with limited participation [START_REF] Tehrani | Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions[END_REF]. In literature, two different D2D scenarios are proposed named as D2D overlay communication and D2D underlay VOLUME 7, 2019 communication [START_REF] Mumtaz | Smart device to smart device communication[END_REF]. The former prevents the co-channel interference between the D2D and the traditional cellular signals by allocating dedicated cellular resources for the D2D links. On the contrary, in the underlaying scenario the D2D devices reuse the spectrum resources of the cellular users (CUs) [START_REF] Doppler | Device-todevice communication as an underlay to LTE-advanced networks[END_REF]. Thus in the underlaying scenario, rigorous interference management is required to improve the network performance. Due to the spectrum scarcity problem, the underlay D2D communication has gained much attention [START_REF] Mumtaz | Smart device to smart device communication[END_REF], [START_REF] Doppler | Device-todevice communication as an underlay to LTE-advanced networks[END_REF], and several resource allocation techniques, including channel assignment, mode selection, and power control have been extensively explored [START_REF] Feng | Deviceto-device communications underlaying cellular networks[END_REF]- [START_REF] Yin | Joint spectrum and power allocation for D2D communications underlaying cellular networks[END_REF].

On the other hand, FD technology enables a network node to simultaneously transmit and receive in the same time slot at the same frequency band [START_REF] Zhang | Full-duplex transmission in PHY and MAC layers for 5G mobile wireless networks[END_REF]. However, FD introduces a new interference type to the cellular network named as self-interference (SI) [START_REF] Sabharwal | In-band full-duplex wireless: Challenges and opportunities[END_REF]. This is because the receiver of an FD device may receive the transmitted signal by its own transmitter. Thus, the FD device may not always outperform the traditional half-duplex (HD) device. Fortunately, the recent antenna architecture of FD devices can achieve a high level of SI cancellation especially for the devices with low transmission power [START_REF] Kolodziej | Multitap rf canceller for in-band full-duplex wireless communications[END_REF], [START_REF] Laughlin | A widely tunable full duplex transceiver combining electrical balance isolation and active analog cancellation[END_REF]. Thus, the FD technology is getting closer to being applied in the 5G network.

Given the short distance property of the D2D communication, the transmission power of the D2D devices is relatively lower than the traditional CUs. Hence, integrating FD with D2D would be an excellent choice to further improve the spectrum efficiency and increase the data rate [START_REF] Tapio | System scenarios and technical requirements for full-duplex concept[END_REF]. However, the practical FD devices cannot perfectly eliminate the SI. Thus, the residual SI (RSI) highly affects the performance of FD transmission, and in some situation, it might be worse than the HD technology. In addition, applying FD into D2D technology invokes additional co-channel interference in the network which may degrade its performance when compared with the traditional HD-D2D communication. Despite the complicated interference environment of an FD-D2D underlaying cellular network, a non-trivial gain can be earned if efficient interference management between the FD-D2D devices and the CUs is adopted [START_REF] Ali | Modeling cellular networks with full-duplex D2D communication: A stochastic geometry approach[END_REF]. An overview of the different resource allocation techniques is provided below.

A. RELATED WORK AND CONTRIBUTION

Similar to the traditional HD-D2D network, the envisioned FD-D2D network can be classified into FD-D2D overlay/underlay cellular network. The works in [START_REF] Kim | Full duplex device to device communication in cellular networks[END_REF]- [START_REF]Heterogeneous statistical QoS provisioning for full-duplex D2D communications over 5G wireless networks[END_REF] analyze the overlay FD-D2D scenario. Specifically, the work in [START_REF] Kim | Full duplex device to device communication in cellular networks[END_REF] proposed a simple protocol to improve the rate of a single FD-D2D pair which is allocated a dedicated spectrum. Moreover, in [START_REF] Cheng | Optimal power allocation for fullduplex D2D communications over wireless cellular networks[END_REF] a power allocation scheme is developed to maximize the ergodic bitrate of an FD-D2D pair overlay cellular network. Besides, the authors of [START_REF]Heterogeneous statistical QoS provisioning for full-duplex D2D communications over 5G wireless networks[END_REF] aimed to maximize the effective capacity of an FD-D2D network while satisfying the statistical delay-bound QoS requirements. However, allocating a dedicated spectrum for the FD-D2D pairs as in the overlay scenario would lead to a low spectrum efficiency and diminish the gain of FD transmission. That is why the focus is more about FD-D2D underlay cellular network [START_REF] Vu | On coverage probabilities and sum-rate of full-duplex device-to-device cellular networks[END_REF]- [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF].

The authors of [START_REF] Vu | On coverage probabilities and sum-rate of full-duplex device-to-device cellular networks[END_REF] investigated the performance of an underlay cellular FD-D2D network by using the stochastic geometry. Simulation results showed that an FD-D2D network has a significant gain over its counterpart HD-D2D especially when the SI is low. However, in their work, only a simple on-off power allocation was used. To limit the D2D interference at the cellular link, an upper bound transmit power was derived in [START_REF] Ali | Full duplex device-to-device communication in cellular networks[END_REF]. Moreover, an interference limited area method was used to mitigate the interference from the cellular users to the D2D link. The ergodic sum rate of a single FD-D2D pair which coexist with a cellular user was derived and analyzed in [START_REF] Hemachandra | Sum-rate analysis for full-duplex underlay device-to-device networks[END_REF], [START_REF] Chour | Full-duplex or half-duplex D2D mode? closed form expression of the optimal power allocation[END_REF]. In [START_REF] Zuo | Power allocation optimization for full-duplex D2D communications underlaying cellular networks[END_REF] a convex optimization problem that maximizes the FD-D2D link rate while satisfying the data rate requirement of the CU was derived. Aiming to maximize the energy efficiency of an FD-D2D link, the authors of [START_REF] Ding | Energy-efficient power control for underlaying full-duplex device-to-device communications[END_REF] proposed an energy-efficient power control algorithm for an FD-D2D network. However, all the above mentioned works only focus on the Power Allocation (PA) problem of an FD-D2D network with single D2D pair and single cellular user. In addition, and due to the non-convexity feature of the PA problem, they only provide a sub-optimal power allocation solution by approximating the original PA problem with a more simpler convex problem.

The resource allocation problem of an FD-D2D network when multiple FD-D2D pairs coexist with multiple CUs has been addressed only in [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF] and [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF]. The authors of [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF] aimed to maximize the sum-rate of an FD-D2D network by considering both the power allocation PA and the channel assignment (CA) problems. Besides the sum-rate, the energy consumption became an important criteria design for the 5G network. In [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF] an energy-efficient resource allocation for FD-D2D based cellular network was provided. However, both works provided the sub-optimal solution of the RA optimization problem. In particular, both [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF] and [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF] rely on the sequential convex optimization (SCO) theory to solve the PA problem of an FD-D2D based cellular network. The latter is guaranteed to provide only the first-order optimal solution. Thus, both works do not find the global optimal gain of an FD-D2D network, and the gap to the optimal solution is still unknown. To fill this blank, in this paper we derive the maximum gain of an FD-D2D network by providing an efficient global optimization framework. To that end, first, we formulate the RA problem as a maximization problem of a general signal to interference plus noise ratio (SINR) based network-centric metrics such as the weighted sumrate (WSR) and the global energy efficiency (GEE). Next, we show that both the WSR maximization problem and the GEE optimization problem can be decomposed into two subproblems as PA and CA. Hence, the global solution of the original RA problem can be found by globally solving the PA and CA sub-problems sequentially. The PA sub-problem is known to be a non-convex problem in an interference limited scenario, and thus it is hard to achieve the global optimal solution. To overcome this issue, we propose to use the Monotonic Optimization theory (MO) to globally solve the PA problem. The MO theory can globally solve the optimization problems where the utility and the constraints are monotonically increasing functions of the optimization variables, even if the optimization problem is non-convex [START_REF] Zhang | Monotonic optimization in communication and networking systems[END_REF], [START_REF] Tuy | Monotonic optimization: Problems and solution approaches[END_REF]. In general, both WSR and GEE are non-monotone functions of the transmit power. However, they are monotone functions of SINR, and thus they exhibit hidden monotonocity structure that allows us to find the global solution by means of MO framework.

The MO problem can be solved by using the existing Outer Polyblock Approximation algorithm (OPA) at the expense of high complexity [START_REF] Zhang | Monotonic optimization in communication and networking systems[END_REF]. In particular, the OPA tries to approximate the outer boundary of the feasible set by a tight polyblock, and thus the global optimal point can be found by searching the set of the polyblock vertices. Using the existing OPA leads to a rapid growth in the number of vertices, and thus to high complexity. To solve this issue, we propose in this work a new power allocation algorithm which aims to decline the complexity of the OPA by trimming down the unnecessary vertices. For the sake of clarity, we denote this new algorithm as Polyblock vertices triMming bAsed poweR allocatIOn (MARIO). Then, based on the optimal PA solution, the CA sub-problem becomes an assignment problem which can be well addressed by Khun-Munkers algorithm (Hungarian algorithm) [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF]. Hence, the optimal RA solution can be obtained by finding the global optimal transmit powers by means of MO theory for all the possible couplings between the FD-D2D pairs and the CUs and then assigning the best CU reuse partner for each FD-D2D pair by means of Khun-Munkers algorithm. Hence even with the proposed MARIO algorithm, the global optimal solution still has high complexity. Motivated by the need of an efficient RA solution, we propose a novel algorithm, CATPA, which first assigns the channels for the different FD-D2D pairs and then allocates the transmit power for each FD-D2D pair and its reuse partner. In particular, we propose a new metric, denoted as Profit, that quantifies the profit of an FD-D2D pair when reusing the channel of a CU, and then we assign the CU reuse partner for each D2D pair based on the highest profit values. After that, we allocate the transmit power for each D2D pair and its CU reuse partner by means of the SCO framework. This new algorithm highly reduces the complexity of the solution, since it avoids solving the PA problem for all the possible couplings between the FD-D2D pairs and the CUs. An outline of the conventional RA solution adopted in [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF], [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF] as well as the proposed RA solutions for an FD-D2D network is depicted in Fig. 1. In this figure, N×M counts the number of all the possible couplings between M D2D pairs that coexist with N CUs. Besides, to ease following the paper, we show in Fig. 1 the sections or the references where every step is developed.

The main contribution of this work can be summarized as follows:

• Deriving the ultimate gain of an FD-D2D network by globally solving the RA problem of an FD-D2D based
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The Proposed CATPA Solution

Solve PA via SCO [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF] Solve PA via MARIO (Section IV) Solve CA via the proposed profit-based algorithm (Section VI)

Solve CA via Hungarian algorithm [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF] Solve CA via Hungarian algorithm [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF] Allocate Powers via SCO [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF] Pros: cellular network, unlike the previous related works that only provide a sub-optimal RA scheme. The global solution is found by first decomposing the original RA problem into two sub-problems as PA and CA, and then globally solving each sub-problem individually.


• Providing insights into the importance of monotonic optimization theory in globally solving the PA optimization problem for an FD-D2D networks and more generally for any wireless cellular network. To the best of our knowledge, this is the first time in which the MO theory is applied to find the global RA solution in an FD-D2D based cellular network.

• Proposing a novel algorithm, referred to as MAPEL, to obtain the global optimal solution of the PA problem. validated through numerical simulation which employs OPA as a benchmark. The results show that MARIO can achieve the same optimal point as OPA but within less number of iterations.

• Proposing an effective heuristic RA algorithm, referred to as CATPA, which first assigns the channels for the different users and then allocates the powers. We believe that this is the first work that provides such a methodology to solve the RA problem. To validate the proposed CATPA algorithm a numerical simulation is applied that employs the global optimal solution as a benchmark. Simulation results show that CATPA can achieve a solution within the 90% of the global optimal within a much lower number of iterations.

• Providing a comprehensive analysis of the FD-D2D network, by comparing the performance of the FD-D2D network with its counterpart HD-D2D network. Moreover, the effect of the different network parameters such as the QoS of the users, the maximum transmit powers of the devices, the D2D proximity distances, and the SI cancellation capability of the FD nodes, on the FD-D2D network performance have also been addressed.

B. OUTLINE AND NOTATION

The remainder of this paper is organized as follows. Section II presents the system model considered in this work while in Section III the resource allocation problem is formulated.

Sections IV and V develop the MO-based solution of the derived RA problem, and Section VII presents the proposed CATPA solution. The numerical results are shown in Section VII whereas the conclusion is made in Section VIII.

The following notation is used throughout this paper. Boldface lower case letters stand for vectors, while lower case letter denotes scalars. R N is the N ×1 real space vector and R N + represents its non-negative orthant. The superscript T denotes the transpose of a matrix, and 0 N is the N dimensional all zeros vector. The gradient of a function f (x) with respect to (w.r.t) x is represented by ∇ x f . Moreover, we use x y (x y) to indicate that x ∈ R N is greater than or equal (less than or equal) to y ∈ R N in a component-wise manner.

II. SYSTEM MODEL

This work tackles the resource allocation problem for an FD-D2D enabled cellular network. As depicted in Fig. 2 (a), we consider an uplink resource allocation scenario where N cellular users (CUs) share the uplink spectrum with M D2D pairs in a single cell system. In particular, uplink (UL) spectrum sharing is considered since UL resources are underutilized comparing to that of downlink (DL) [START_REF] Feng | Deviceto-device communications underlaying cellular networks[END_REF], [START_REF] Wellens | Evaluation of spectrum occupancy in indoor and outdoor scenario in the context of cognitive radio[END_REF]. Furthermore, reusing UL resources in D2D links only affects the BS and incurred interference can be handled by BS coordination. The N CUs and the M D2D pairs are respectively organized in the sets C = {CU 1 , . . . , CU N } and D = {D2D 1 , . . . , D2D M }, where CU i and D2D j stand for the ith cellular user and the jth D2D pair respectively. Each D2D j consists of two nearby devices denoted as D j 1 and D j 2 , and they have the capability to operate in FD mode while the CUs are assumed to operate only in HD mode. The available UL bandwidth is composed of N orthogonal channels, and it is organized in the index set CH = {1, . . . , N }. Without loss of generality, the ith channel is assumed to be pre-assigned to CU i . Thus, in this paper, we aim to allocate these channels to the M D2D pairs efficiently. Sharing the UL spectrum between the D2D users (DUs) and the CUs generates co-channel interference between the users sharing the same channel. Therefore, to limit the interference from the D2D pairs on the cellular links and avoid the interference between the D2D pairs, similar to [START_REF] Feng | Deviceto-device communications underlaying cellular networks[END_REF], [START_REF] Zhang | Radio resource allocation for deviceto-device underlay communication using hypergraph theory[END_REF], [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF], [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF] , we require that each UL channel is allowed to be shared with at most one D2D pair, and each D2D j can reuse at most one UL channel.
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With the above channel assignment constraints and assuming imperfect SI cancellation, the interference model when D2D j and CU i transmit on the ith channel can be depicted as in Fig. 2 (b). In this Figure, we define the channel gains as follows:

• g i cb denotes the direct channel gain between CU i and BS.

• g j d stands for the direct channel gain between the D2D users of D2D j . Here, the D2D channel is assumed reciprocal, since both D j 1 and D j 2 are using the same UL channel and they are close to each other.

• h j d1,b and h j d2,b respectively stand for the interference channel gain from D j 1 to BS and from D j 2 to BS. • h j i,d1 and h j i,d2 denote the interference channel gain from CU i to D j 1 and D j 2 respectively. • RSI is the residual self interference due to the imperfect SI cancellation at the FD devices. All direct/interference channels are assumed to be zeromean complex Gaussian random variables (i.e., channels are expressing Rayleigh fading) with variance l -α ij , where i ∈ {c; d1; d2}, j ∈ {bs; d1; d2}, i = j, l ij denotes the distance between the nodes i and j, and α denotes the path loss exponent. The RSI can be modeled as complex Gaussian random variables with zero-mean and variance ηP tx [START_REF] Cheng | Optimal power allocation for fullduplex D2D communications over wireless cellular networks[END_REF], [START_REF] Zuo | Power allocation optimization for full-duplex D2D communications underlaying cellular networks[END_REF], [START_REF] Liu | On the performance of mode selection for hybrid-duplex D2D communications[END_REF]- [START_REF] Riihonen | Mitigation of loopback selfinterference in full-duplex MIMO relays[END_REF], where P tx is the transmission power of the FD device, η denotes the SI cancellation capability of the FD transmitter. Without loss of generality, assuming that all D2D users have the same SI cancellation capability, the power of RSI at D j 1 and D j 2 are respectively expressed by ηP j d1 and ηP j d2 , with P j d1 , and P j d2 being respectively the transmission powers of D j 1 , and D j 2 . Now, denote by P i c the transmit power of CU i , and let σ 2

N

represents the power of white Gaussian noise on each UL channel. Then, the Signal-to-Interference plus noise ratios (SINR) of CU i , D j 1 , and D j 2 , when CU i shares its channel with D2D j , can be respectively expressed as

Γ i (p ij )= Γ + i Γ - i = P i c g i cb P j d1 h j d1,b + P j d2 h j d2,b + σ 2 N , (1) 
Γ j1 (p ij )= Γ + j1 Γ - j1 = P j d2 g j d P i c h j i,d1 + ηP j d1 + σ 2 N , (2) 
Γ j2 (p ij )= Γ + j2 Γ - j2 = P j d1 g j d P i c h j i,d2 + ηP j d2 + σ 2 N . (3) 
where p ij = [P j d1 , P j d2 , P i c ] is the power allocation vector for D2D j and CU i on the ith channel. Moreover, in the above equations, the SINR function Γ k , k ∈ {i, j 1 , j 2 }, is expressed as a fraction of two non-negative functions denoted as

Γ + k (p ij ) and Γ - k (p ij ).
The benefits of these functions will appear later on when deriving the optimal RA scheme.

By applying Shannon's theorem, the data rates (in bits/s) of CU i , D j 1 , and D j 2 can be respectively expressed as

R i (p ij )=B i log 2 (1 + Γ i ), i ∈ {C} (4) =B i (log 2 (Γ + i + Γ - i ) -log 2 (Γ - i )) =r + i (p ij ) -r - i (p ij ) R j1 (p ij )=B i log 2 (1 + Γ j2 ), j ∈ D (4a) =B i log 2 (Γ + j1 + Γ - j1 ) -B i log 2 (Γ - j1 ) =r + j1 (p ij ) -r - j1 (p ij ) R j2 (p ij )=B i log 2 (1 + Γ j1 ), j ∈ D (4b) =B i log 2 (Γ + j2 + Γ - j2 ) -B i log 2 (Γ - j2 ) =r + j2 (p ij ) -r - j2 (p ij )
where B i is the bandwidth of the ith UL channel. Since we are assuming that all the available channels are equally shared by the active CUs, in the sequel we refer to B i by B. Besides, in the above equations, the achievable rate R k , k ∈ {i, j 1 , j 2 }, is expressed as the difference of two non-negative functions r

+ k B log 2 (Γ + k + Γ - k ) and r - k B log 2 (Γ - k ).
The application of this form will appear in Section IV when deriving the optimal power allocation scheme. Now, before terminating this section and started formulating the problem, we introduce a useful remark to be used later to derive the optimal RA scheme.

Remark 1:

The functions r + k , r - k , Γ + k , Γ - k , k ∈ {i, j 1 , j 2 
} are all increasing functions with p ij . However, the rate functions R i (p ij ), R j1 (p ij ), and R j1 (p ij ), and the SINRs Γ i , Γ j1 , and Γ j2 are in general non-increasing functions with p ij .

A. PROBLEM FORMULATION

In a fully loaded UL network, the FD-D2D communication can be used to accommodate more users, and thus to enhance the performance of the cellular network. However, since the D2D pairs are reusing the cellular spectrum, a proper RA is required to maintain the QoS of the D2D pairs and their reuse CUs partners and mitigate the mutual interference between the different type of links. In this work, we aim to maximize the rate gain that can be brought by the D2D communication and minimize the energy cost of the D2D communication. Thus, we define two objective functions to be maximized while guaranteeing the QoS of all the links and respect the maximum allowed powers. The first utility function (U 1 ) is the weighted sum rate (WSR) of the admitted D2D pairs and their corresponding CUs reuse partners, and it is defined as

U 1 (ρ, P )= i∈C j∈D ij [ω i R i + ω j1 R j1 + ω j2 R j d2 ]. ( 5 
)
where ω i , ω j1 , and ω j2 are positive weights used to control the individual rates of CU i , D j 1 , and D j 2 respectively. ij is the resource reuse indicator for D2D j and CU i , when D2D j shares the CU i 's resources ij = 1; otherwise ij = 0. P = [p ij ] is the power allocation matrix for all CUs and DUs and ρ = [ ij ] denotes the channel assignment matrix of the D2D pairs.

The second utility function (U 2 ) is the global energy efficiency (GEE) of the D2D pairs and their reuse partners. It is defined as the energy cost of the accepted D2D links and their corresponding cellular links, and it can be expressed as

U 2 (ρ, P ) = U 1 (ρ, P ) i∈C j∈D ρ ij µ(p i c +p j d1 +p j d2 ) + 3M P cir . (6) 
wherein µ ≥ 1 is the inverse of the power amplifier efficiency at each transmitter. P cir denotes the fixed circuit power consumption at each device, accounting for the dissipation in analog hardware and digital signal processing [START_REF] Buzzi | A survey of energy-efficient techniques for 5G networks and challenges ahead[END_REF]. Therefore, the resource allocation problem can be formulated as follows

P1 l : max (ρ,P )∈Ω U l (ρ, P ), l = 1, 2. ( 7 
)
Ω= Γ i ≥ γ i min = 2 r i min -1, ∀i ∈ C, (7a) 
Γ j1 ≥ γ j1 min = 2 r j 1 min -1, ∀j ∈ D, (7b) 
Γ j2 ≥ γ j2 min = 2 r j 2 min -1, ∀j ∈ D, ( 7c 
) i ij ≤ 1, ij ∈ {0, 1}, ∀j ∈ D, (7d) 
j ij ≤ 1, ij ∈ {0, 1}, ∀i ∈ C, (7e) 
0 3 p ij p max , ∀j ∈ D, i ∈ C (7f)
where Ω is the feasible set of P 1, p max = [P d1 max , P d2 max , P c max ] is the maximum power vector for any possible pair (D2D j ,CU i ), and 0 3 = [0, 0, 0] is the minimum power vector. γ i min , γ j1 min , γ j2 min denote the minimum required SINR VOLUME 7, 2019 to achieve the minimum rate requirements r i min , r j1 min , and r j2 min for CU i , D j 1 , and D j 2 respectively. Hence, constraints (7a)-(7c) represent the QoS requirements (rate requirements) for CU i , D j 1 , and D j 2 respectively. Constraint (7d) ensures that a D2D pair reuses at most the resource of one CU. Constraint (7e) indicates that a CU i can share its resources with at most one D2D pair. Constraint (7f) ensures that the transmit power of any user is within the maximum limit.

III. PROBLEM DECOMPOSITION

The authors of [START_REF] Luo | Dynamic spectrum management: Complexity and duality[END_REF] have proved that the power allocation problem by itself is an NP problem in an interference limited system. The resource allocation problem (P1) defined in the previous section contains both power allocation and channel assignment (CA) problems, and thus it is more complex than the PA problem which is already NP-hard. In this section, we show that the solution of both P 1 1 and P 1 2 can be found by decoupling the original problem into two sub-problems. The first one is the power allocation and the second is the channel assignment problem. The decomposition technique reduces the complexity of the original problem, but the NPhardness of the PA still exists. In the next sections, we present efficient algorithms to globally solve the PA and the channel assignment problems individually.

A. DECOMPOSITION OF P 11

Observe that in the utility function U 1 the variables ij and p ij are disjoint and thus the maximization problem P 1 1 can be rewritten as follows:

P1 1 : maximize ρij ∈{0,1} i∈C j∈D ij maximize Pij U ij 1 , s.t. (7a)-(7f ), (8) 
wherein

U ij 1 = ω i R i c + ω j1 R j1 + ω j2 R j d2
is the WSR of the pair (D2D j , UE i ). Accordingly, P 1 1 can be decomposed to the following two sub-problems:

P2 1 : maximize Pij ∈Φ,i∈C,j∈D U ij 1 , s.t. Φ = {(7a), (7b), (7c), (7f )}, (9) 
P3 1 : maximize ρij ∈{0,1} i∈C j∈D ij U ij 1 , s.t. (7d), (7e), (10) 
where

U ij 1
is the optimal solution of the PA sub-problem (P 2 1 ). Thus, the optimal solution of P 1 1 can be found by finding the optimal power allocation of all the possible pairs (D2D j , UE i ), and then selecting the optimal CU reuse partner for each D2D pair.

B. DECOMPOSITION OF P 12

Giving the fractional nature of the GEE utility function, it is clear that P 1 2 belongs to the class of fractional programming theory. Thus, the solution of P 1 2 can be found by means of fractional programming tools [START_REF] Crouzeix | Algorithms for generalized fractional programming[END_REF], such as Dinkelbach's algorithm. The latter is an iterative process which requires to solve the following auxiliary problem at iteration k:

F (λ k ) = maximize (ρ,P )∈Ω i∈C j∈D ij [ω i R i c + ω j1 R j1 + ω j2 R j d2 ] -λ k i∈C j∈D ρ ij µ(p i c +p j d1 +p j d2 ) + 3M P cir =maximize (ρ,P )∈Ω i∈C j∈D ij ω i R i c + ω j1 R j1 + ω j2 R j d2 -λ k µ p i c +p j d1 +p j d2 U ij 2 -P cons =maximize ρ∈{0,1} i∈C j∈D ij maximize pij U ij 2 (λ k , p ij ) (11) 
wherein P cons = λ k 3M P cir . The last step in [START_REF] Laughlin | A widely tunable full duplex transceiver combining electrical balance isolation and active analog cancellation[END_REF] is because the variable ij is disjoint than the variables (λ k , p ij ), and P cons is a constant. Then, and similar to P 1 1 , the maximization of GEE can be divided into PA and CA sub-problems. The only difference is that PA has to be iteratively solved until convergence. Mathematically, the PA and CA problems can be expressed respectively as follows.

P2 2 : maximize Pij ,i∈C,j∈D U ij 2 , s.t. (7a), (7b), (7c), (7f ), (12) 
P3 2 : maximize ρij ∈{0,1} i∈C j∈D ij U ij 2 , s.t. (7d), (7e), (13) 
where U ij 2 is the optimal power allocation of problem P 2 2 . For the reader's convenience, we report in Algorithm 1 the Dinkelbanch's algorithm which solves P 2 2 . Despite the complexity of solving U ij 2 (λ k , p ij ), the Dinkelbanch's algorithm exhibits a super-linear convergence rate, since λ k is updated according to Newton's method [START_REF] Crouzeix | Algorithms for generalized fractional programming[END_REF]. For more detail about the fractional programming and Dinkelbach's algorithm, the reader may refer to [START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF]. Solving efficiently U ij 2 (λ k , p ij ) at each iteration is the target of the next section.

Remark 2: In the first iteration of Dinkelbach's algorithm, i.e., when λ 0 = 0, Algorithm 1 finds the solution of the WSR problem. Hence, it is highly desirable to develop an algorithm which can solve both WSR and GEE problems.

Here it is worthy to note that the PA sub-problem (P 2 l ) and the CA sub-problem (P 3 l ) must be sequentially solved to obtain the global solution of the original RA problem P 1 l , l ∈ {1, 2}. As indicated in the second column of Fig. 1, solving the PA sub-problem is the target of the next section while the CA is the task of Section V.

IV. POWER ALLOCATION

The complicated interference coupling between the D2D pairs and their reuse partners turns the PA problem to be a non-convex problem. Thus, the global optimal solution of PA is hard to obtain because it may require examining every point in the feasible set. The monotonic optimization (MO) theory provides a guaranteed convergence to the global optimal solution and reduces the computational complexity by Algorithm 1 Dinkelbach's algorithm 1: Set > 0, λ 0 =0, and k = 0 2: repeat 3: Solve P 2 2 defined in ( 12) and denote the optimal power vector as p k,ij .

4: k = k + 1 5: λ k = ωiR i c (p k ij )+ωj 1 R j 1 (p k ij )+ωj 2 R j d2 (p k ij ) µ(p i c +p j d1 +p j d2 )+3Pcir 6: until U ij 2 (λ k-1 , p k-1,ij ) ≤
exploiting the monotonicity property of the utility function and the constraints to solve the optimization problem. The key idea behind MO is to search for the global solution on the outer boundary of the feasible set instead of exploring the complete feasible set of the problem. Nevertheless, we note that the complexity of MO increases exponentially with the number of optimization variables. However, it is much lower than general global optimization methods, which do not exploit the monotonocity property of the problem. Naturally, the usage of MO is limited to the problems enjoying a monotonocity structure as indicated in the following definition.

Definition 1. An optimization problem belongs to the class of MO if it can be written in the following form:

maximize x f (x) s.t. x ∈ G ∩ H, (14) 
where sets G and H are respectively normal and co-normal closed sets and function, f (x) is an increasing function on

R N + . Recall that a function f : R n → R is increasing if f (x) f (y) when 0 x y. A set G ⊂ R n is normal set, if for any point x ∈ G, all other points x such that x ≤ x are also in set G. A set H ⊂ R n is co-normal set, if for any point x ∈ H, all other points x such that x ≥ x are also in set H.
At a first sight and based on Definition 1 and Remark 1, the monotonic optimization theory appears to be non-applicable for P 2 1 and P 2 2 . Thus, in an FD-D2D based cellular network, the first step to efficiently obtain an optimal PA scheme is to transform the non-convex PA problem to an MO problem as shown in Subsection IV-A.

A. PROBLEM TRANSFORMATION

The aim of this subsection is to convert the PA problem in an FD-D2D network to an MO problem. From Remark 2, we know that Dinkelbach's algorithm (Algorithm 1), which is proposed to solve the GEE power allocation problem, inherently solves the WSR problem at the first iteration when λ = 0. Hence, in this subsection, we extract the hidden monotonicity property only for P 2 2 (the GEE PA problem). The monotonocity structure of P 1 1 can be found in the same manner by setting λ = 0.

To that end, first we reshaped the objective function of P 1 2 , i.e., U ij 2 defined in [START_REF] Laughlin | A widely tunable full duplex transceiver combining electrical balance isolation and active analog cancellation[END_REF], as follows:

U ij 2 (p ij , λ k )= l∈{i,j1,j2} ω l r + l (p ij ) - l∈{i,j1,j2} ω l r - l (p ij ) -λ k µ(p i c +p j d1 +p j d2 ) =u + (p ij ) -u -(p ij , λ k ) (15) 
wherein r + l and r - l with l ∈ {i, j 1 , j 2 } are defined in ( 4)-(4b), and they are increasing functions as indicated in remark 1. The functions u + (p ij ) and u -(p ij , λ k ) are also increasing functions because each one is a summation of several increasing functions (Remark 1). Next, we introduce the slack variable t = u -(p max , λ k )u -(p ij , λ k ), and we reformulate P 2 2 as follows: maximize

(pij ,t)∈Φ U ij 2 (p ij , t) = u + (p ij ) + t (16) 
Φ = (t, p); 0 ≤ t + u -(p) ≤ u -(p max , λ k ) Γ + l (p ij ) c + l (pij ) -γ l min Γ - l (p ij ) c - l (pij ) ≥ 0, l ∈ {i, j 1 , j 2 } ( 17 
)
0 3 p ij p max ∀j ∈ D, i ∈ C . (18) 
The objective function of the above problem is now an increasing function, and thus to show that ( 16) is a monotonic optimization problem, it remains to verify that the feasible set Φ is an intersection of a normal and a co-normal set.

According to [START_REF] Zhang | Monotonic optimization in communication and networking systems[END_REF], [START_REF] Tuy | Monotonic optimization: Problems and solution approaches[END_REF], for any continuous increasing functions h(x) and g(x) on R n + the sets H = {x ∈ R n + |h(x) ≤ 0} and G = {x ∈ R n + |g(x) ≥ 0} are respectively normal and co-normal sets. Hence, to extract the hidden monotonicity property of P 2 it only remains to verify that all the constraints in the feasible sets are continuous and increasing functions. It is easily verified that in the feasible set Φ only the QoS constraints defined in [START_REF] Vu | On coverage probabilities and sum-rate of full-duplex device-to-device cellular networks[END_REF] are in general non-increasing function. By using the same technique as before, i.e., introducing a slack variable, [START_REF] Vu | On coverage probabilities and sum-rate of full-duplex device-to-device cellular networks[END_REF] can be transformed to an increasing function. However, since the complexity of monotonic optimization problem exponentially increases with the number of optimization variables, we first grouped the QoS constraints defined in [START_REF] Vu | On coverage probabilities and sum-rate of full-duplex device-to-device cellular networks[END_REF] under a single constraint as shown in [START_REF] Wang | Exploiting full duplex for device-to-device communications in heterogeneous networks[END_REF], and then we introduce an auxiliary variable. 

(17)≡ min v,l∈{i,j1,j2} c + v (p ij )- v c - v (p ij )- l,l =v c - l (p ij ) = min v,l∈{i,j1,j2} c + k (p ij )+ l,l =v c - l (p ij ) c + (pij ) - l c - v (p ij ) c -(pij ) ≥ 0 (
U ij 2 (v) = u + (p ij )+t, s.t. v ∈ S n ∩ S c (20) S n = (t, p ij , s) : t + u -(p ij , λ k ) ≤ u -(p max , λ k ), s + c -(p ij ) ≤ c -(p max ), p ij p max S c = (t, p ij , s) : t ≥ 0, s + c + (p ij ) ≥ c -(p max ), p ij 0 3 .
It is clear that all the functions in S n and S c are increasing functions. Thus, S n and S c are respectively normal and co-normal sets. Therefore, P2 mo is an MO optimization problem, and thus by using the MO tools such that the outer Polyblock algorithm (OPA) [26, Algorithm 3], the global optimal power allocation for any pair (CU i ,D2D j ) can be obtained. However, the OPA algorithm appears to have high complexity [START_REF] Zhang | Monotonic optimization in communication and networking systems[END_REF]. Moreover, in our system model, we assume that M D2D pairs coexist with N CUs, and thus OPA must be applied N × M times to calculate the global optimal power allocation for all the possible (CU i ,D2D j ) couples. This make OPA intractable for deriving the optimal RA scheme of an FD-D2D network. To overcome this issue, we develop a new polyblock-based algorithm, to as MARIO, which has a much lower complexity compared to OPA. To easily understand MARIO, first, we present in the next subsection the conventional polyblock-based algorithm (OPA), then we develop in Subsection IV-C the new MARIO algorithm.

B. OUTER POLYBLOCK APPROXIMATION ALGORITHM

The main idea of OPA is to construct a sequence of shrinking polyblocks that eventually closely approximate the global solution which is located on the upper boundary of the feasible region. However, as mentioned earlier, OPA has high complexity feature. Thus, we propose a novel polyblockbased algorithm called MARIO. To understand MARIO the OPA concept has to be very clear for the reader. Thus, in the remaining of this subsection, the OPA process is made formal and clarified. 

G ∩ H V 1 π G (V 1 )
a) The Polyblock P 1 with vertex set

T 1 = {V 1 } G ∩ H V 1 1 V 2 1 π G (V 1 1 )
b) The Polyblock P 2 with vertex set

T 2 = {V 1 1 , V 2 1 } ... G ∩ H
c) The Polyblock P n which approximates the outer boundary of the feasible set. Based on the above concepts, the OPA which solves the MO problem P2 mo works as follows. First, a polyblock P 1 that contains the feasible set G ∩ H of an MO problem is constructed (see Fig. 3 a). Let T 1 be the proper vertex set of P 1 . By Proposition 2 of [START_REF] Zhang | Monotonic optimization in communication and networking systems[END_REF], the maximum of the utility function of an MO problem over the polyblock P 1 occurs at some proper vertex

v 1 ∈ T 1 . If the projection of v 1 on ∂ + G happens to reside on G, i.e, π G (v 1 ) ∈ G, then v 1 = π G (v 1 )
solve the problem and the optimal solution is equal to v 1 . Otherwise, based on Proposition 3 of [START_REF] Zhang | Monotonic optimization in communication and networking systems[END_REF], a smaller polyblock P 2 ⊂ P 1 which still contains G ∩ H but excludes v 1 can be constructed (See Fig. 3(b)). This is achieved by constructing the vertex set T 2 by replacing v 1 in T 1 with N new vertices {v 1 1 , . . . , v N 1 } and then removing the improper vertices, where

v j 1 = v 1 -(v j 1 -πG(v 1 
))e j 1 . This procedure is repeated until an optimal solution is found. This leads to a sequence of polyblocks containing G ∩ H:P 1 ⊃ P 2 ⊃ . . . ⊃ G ∩ H (See Fig. 3). The algorithm terminates at nth iteration when π G (v n ) ∈ G. According to [START_REF] Zhang | Monotonic optimization in communication and networking systems[END_REF] the OPA algorithm is guaranteed to converge to the global optimal 1 In this paper, e j denotes the jth unit vector of R N . solution only if the optimal solution v has a positive lower bound v l 0. Therefore, when at least one of the involved user has γ min = 0 the origin has to be shifted to the negative orthant to guarantee the convergence of the OPA.

Complexity analysis: The complexity and the convergence speed of OPA depends on the number of iterations required to search the outer boundary of the feasible set. The accuracy reof the bisection method for finding the projection point of the optimal vertex on the boundary of the feasible set also affects the complexity of the OAP algorithm. Another complexity key factor is the number of the optimization variables (N var), i.e., the dimensionality of the optimization problem. The latter highly affects the computational time of each iteration. Indeed, at the nth iteration, the optimal vertex over P n needs to be found from (nN varn -N var + 2) vertices. This is because the size of the vertex set T n increases by (N var -1) after each iteration. Thus, the computational time of each iteration linearly increases with N var . Let N iter be the required number of iterations to find the optimal solution by using the OPA algorithm, the complexity for the solution is in the order of O(N var N 2 iter ). The rapid growth of the size of the vertex set motivates us to develop a more efficient algorithm based on the existing OPA algorithm. For ease of notation, we denote the proposed algorithm by MARIO (Polyblock vertices triMming bAsed poweR allocatIOn).

C. MARIO ALGORITHM

In this section, we propose the MARIO algorithm to reduce the complexity of OPA. The key idea of MARIO is to delete the unnecessary vertices that mislead the PA algorithm. Like the grass trimmer which trim down the quack grass to improve the growth of a meadow, MARIO accelerates the convergence time of PA by trimming down the hurtful vertices which slow down the PA algorithm. To make the last concept formal, first, we introduce the following proposition.

Proposition 1. In the first step of Dinkelbachs' algorithm, the optimal power vector p * ij is achieved only if at least one user is transmitting with its maximum allowed power.

Proof: For a scaling factor α > 1 and a power allocation vector p ij satisfies the powers constraints we have the following,

U ij 1 (αp ij )=ω i log 2 1+ P i c g i cb P j d1 + h j d1,b +P j d2 h j d2,b + σ 2 N α ( 21 
)
+ω j1 log 2 1 P j d2 g j d P i c h j i,d1 +ηP j d1 + σ 2 N α +ω j2 log 2 (1+ P j d1 g j d P i c h j i,d2 +ηP j d2 + σ 2 N α ) > U ij 1 (p ij )
The power constraints imply that the maximum of αP j d1 , αP j d2 is P d max and the maximum of αP i c is P c max . This means that the optima p * ij has at least one power bounded by the peak power constraint.

By virtue of Proposition 1, we know that the nonmisleading vertices of a polyblock P are the vertices which have at least one abscissa above or equal to the maximum allowed power. Needless to say, these vertices must also satisfy the QoS of the users defined in (7a)-(7c). Observe that the extra auxiliary variables t and s defined in (20) may lead to a vertex which does not meet the above requirements. Hence, the misleading vertex is defined as follows.

Definition 7. A vertex v = [v 1 , v 2 , . . . , v N ]
is said to be misleading if it does not have any power equal to or larger than the maximum power or if it cannot meet the QoS of the users or both. A misleading vertex can be deleted without affecting the PA process. Fig. 4 illustrates the above concept. In this figure x and y are the optimization variables, the lines l 1 and l 2 represent the QoS, and the shaded area denotes the feasible set. The red triangle points stand for the vertices that do not have any power at least bounded to the peak power. The blue square points are the vertices that can not meet the QoS of all users. The green diamond points are the vertices that cannot meet the QoS and do not have any user at least transmitting with the maximum allowed power. The black points represent the non-misleading vertices which can be kept to generate the new polyblock. The concept is valid for the WSR power allocation problem. To apply it to the GEE power allocation problem, the maximum transmission power of the users has to be updated after each Dinkelbalch's step as indicated in the following proposition. Proposition 2. Let p k,ij and p k max be the optimal transmission power and the maximum transmission power at the kth iteration of Dinkelbach's algorithm. The maximum transmission power in the k + 1th iteration is equal to the optimal transmission power in the kth iteration, i.e., p k+1 max = p k,ij . Proof: Recall that maximizing a general fraction f (x)

g(x)
by means of Dinkelback's algorithm requires to maximize F (λ k ) = max x∈S f (x)λ k g(x) at the kth iteration, with S being the set of constraints of the problem (in our case S = S ∩S c ). Moreover, at each iteration k and for any x ∈ S, F (λ k ) ≥ 0. In addition, at the next iteration, the value of λ . Hence, at the (k + 1)th iteration we have F (λ k+1 ) = max x f (x)-

f (p k,ij ) g(p k,ij ) g(x)
, which in turn implies that the maximum power at the k + 1th iteration must be equal to the optimal power of the kth iteration. Now, since the utility function of the MO problem is monotonically increasing function, the optimal point at the kth iteration will have at least one abscissa bounded to the maximum constraint. Thus, Definition 7 can also be used to reduce the complexity of globally solving the power allocation problem. This concept is illustrated in Fig. 5, in which Ψ k (k ∈ {1, 2, 3}) denotes the feasible set of the optimization problem at the kth iteration and the magenta star point is the optimal value. As it can be seen, the feasible set is getting smaller at each iteration and thus by updating the maximum power in PA algorithm the convergence time of PA will be significantly decreased. Combining the OPA algorithm with Definition 7, Proposition 2 and Algorithm 1, the proposed MARIO algorithm can be presented as in Algorithm 2.

Now, recall that one of the work's targets is to the optimal RA scheme of an FD-D2D based cellular network (see the second column of Fig. 1). Up to now, we have shown that the global RA scheme can be obtained by decomposing the original RA problem to two sub-problems as PA and CA and then globally solving each sub-problem individually. Then, we proposed MARIO to derive the global optimal PA scheme. Thus, to achieve the optimal RA scheme, it only remains to globally solve the CA sub-problem. The latter is the target of the following section.

V. CHANNEL ASSIGNMENT

So far, we find the global optimal power allocation for all the possible pairs (D2D j ,UE i ). In this section, we aim at the optimal reuse candidate for each pair D2D j , i.e., solving the channel assignment problems P 3 1 and P 3 2 defined in [START_REF] Kolodziej | Multitap rf canceller for in-band full-duplex wireless communications[END_REF] and ( 13) respectively. Both problems P 3 1 and P 3 2 consist only of the channel reuse indicator variable ij . Moreover, according to the channel assignment constraints defined in (7d) and (7e), the D2D pairs can share at most one CU's resources and the resources of a CU can be allocated at most to one D2D pair. Therefore, the channel assignment problems P 3 l and P 3 2 can be seen as a maximum weight bipartite matching problem. Fig. 6 illustrates the maximum Initialization: Define an accuracy 2 > 0, a counter n = 0, and an initial vertex v 0 = [p k max , s max , t max ], with s max and t max being the maximum values of the introduced auxiliary variables in P 2 mo . Let the initial polyblock P 1 be box [0, v 0 ] which contains S n ∩ S c . The vertex set T 1 = {v 0 }. Denote by v n the optimal vertex at the nth iteration. 

9:

Find the best vertex v n in P n , i.e., v n = arg max{f (v)|v ∈ T n }.

10:

Obtain π G (v n ), the projection of v n on the upper boundary of G. 

11: if π G (v n ) = v n , i.e., v n ∈ G then 12: v = v n , break
until |f (v n ) -f (π G (v n ))| ≤ 2 18: v n =v =[p k,ij , s , t ] 19: k = k + 1 20: set p k max = p k-1,ij 21: update λ k = ωiR i c (p k ij )+ωj 1 R j 1 (p k ij )+ωj 2 R j d2 (p k ij ) µ(p i c +p j d1 +p j d2 )+3Pcir
.

22: end while weight bipartite problem in P 3 1 and P 3 2 , where the set of D2D pairs D, and the set of the cellular users C are assumed to be the two disjoint groups of vertices in the bipartite graph.

The pair (D2D j ,UE i ) is joined by an edge ij when CU i is a reuse candidate of D2D j . The weight of edge ij is assumed to be the optimal objective function of P 3 l , and it is denoted by U ij l with l ∈ {1, 2}. The well known Khun-Munkres algorithm (Hungarian algorithm) [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF] can be used to solve such assignment problems.

A. RESOURCE ALLOCATION IN HD-D2D NETWORK

As a complement, we introduce the resource allocation problem in an HD-D2D network. For a fair comparison with the FD-D2D network, we assume that when D2D j reuses the bandwidth of CU i (B i ), the users D j 1 and D j 2 will operate on two equally orthogonal portions of the bandwidth B i . Hence, when D2D j shares the resources of CU i in HD mode, the SINR of the CU i will remain the same as in [START_REF] Mobile | Cisco visual networking index: Global mobile data traffic forecast update[END_REF]. However, the SINRs of D j 1 and D j 2 do not longer contain the self 

U 2 M -1 l U 3M -1 l U N M -1 l U N-2 M l U N -1M l FIGURE 6.
The bipartite graph representation of the channel assignment problem.

interference part. Consequently, the solution of the resource allocation problem of an HD-D2D based cellular network is similar to the FD-D2D network, with the only difference that in HD mode we have η = 0 and the bandwidth of D j 1 and D j 2 is equal to half of the CU i bandwidth.

The optimal solution of both FD-D2D and HD-D2D resource allocation problem is reported in Algorithm 3. Solve P 2 l for the pair (D2D j , CU i ) by using MARIO algorithm. 11: end for 12: Step 2: Channel Assignment 13: Get the optimal CU i for each D2D j by using Khun-Munkres algorithm

B. COMPLEXITY ANALYSIS

As shown earlier, solving the resource allocation problem requires sequentially solving the power allocation problem (P 2 l ) and the channel assignment (P 3 l ) problems, with l ∈ {1, 2}. Hence, the complexity of Algorithm 3 depends on the complexity of the power allocation problem and the complexity of the channel assignment problem. The complexity of finding the global optimal power allocation for one couple (D2D j , CU i ) has been derived in the previous section, and it is in the order of O(N 2 iter N var ). Since we have M D2D pairs and N CUs, the total number of possible couples is M N , and thus the complexity of (P 2 l ) is in the order of M N O(N 2 iter N var ). On the other hand, the Khun-Munkres algorithm [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF] requires at most max 3 (M, N ) iteration to finish the assignment problem. Therefore, the overall complexity of the resource allocation problem can be described as M N O(N 2 iter N var ) + O(max 3 {M, N }). Due to the high complexity of this problem, in the following, we present a heuristic algorithm to efficiently solve the resource allocation problem. The proposed algorithm follows a reverse path, i.e., first, it assigns the channels to the different D2D pairs and then it allocates the power for the different couples (D2D j , CU i ). We denote this algorithm by Channel Assignment Then Power Allocation algorithm (CATPA) and it is described thereafter.

VI. THE PROPOSED CATPA ALGORITHM

From the above description, the global optimal solution of the resource allocation problem can be found by first deriving the optimal power allocation for all the possible couples (D2D j , CU i ) and then assigning the channels to the users by using the well known Hungarian algorithm. In the considered scenario, this will lead to solve N ×M PA problems via the proposed MARIO algorithm and then apply the Hungarian algorithm, with N ×M being the number of all the possible couplings between the M D2D pairs that coexist with the N CUs. The conventional RA sub-optimal solutions presented in [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF] [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF] have the same structure of the proposed MO based solution, and thus they also require solving N ×M PA problems (refer to the first column of Fig. 1). Hence, both the conventional sub-optimal solution and the MO based solution will be inapplicable for deriving the optimal RA scheme in a real FD-D2D network especially when N or M increases.

To reduce the complexity we develop in this section, the CATPA algorithm that first assigns the channels to the D2D pairs and then allocates the powers for all the involved users as shown in the third column of Fig. 1. Hence, by using CATPA we will only need to solve M instead of N ×M PA problems to achieve a solution for the RA problem.

First focusing on the channel assignment step, we propose to assign the available channels for the D2D pairs that are expressing good channel conditions. To that end, we define a profit for each possible couple (D2D j , CU i ) as shown below:

Profit ij = g i cb + g j d + g j d I i + I j1 + I j2 (22) 
I i = γ i min (h j d1,b + h j d2,b + σ 2 N ) I j1 = γ j1 min (h j i,d1 +η+ σ 2 N ), and 
I j2 = γ j2 min (h j i,d2 + η + σ 2 N
). The numerator of ( 22) can be seen as a measure of the possible gain when allocating the channel CH i to D2D j while the denominator of ( 22) can be observed as the cost of reusing the bandwidth of CU i . Hence, Profit ij is a metric that quantifies the profit of each couple (D2D j , CU i ). Since we are assuming that the BS has full-knowledge about the channel state information of the users, the Profit ij of all VOLUME 7, 2019 the possible couples (D2D j , CU i ) can be easily computed at the BS. Having the profit table of all the possible couples in the network, we propose to allocate the channels to the couples with high profits. Moreover, to respect the channel allocation constraints defined in (7a)-(7c), we first assign the ith channel to the D2D pair that has the highest profit, and then we remove the assigned channel and the assigned D2D pair after each assignment. The following example clearly explains the proposed channel assignment method.

Assume a cellular network with 4 CUs and 4 D2D pairs with a profit table as shown in Fig. 7(a). From this figure, it is clear that the Profit 1,3 is the highest value. Thus we assign the third channel to the first D2D pair and then we remove the first row and the third column. After this deletion, the profit table will reduce to the matrix shown in Fig. 7(b). We repeat this process until all the D2D pairs get assigned channel (See Fig. 7(a)-(d)). It is clear that by following this process each channel will be assigned to only one D2D pair, and each D2D pair will reuse the channel of only one CU. The proposed algorithm requires at most min{M, N } iterations to finish the assignment problem, and thus it reduces the assignment complexity by 1/min{M, N } comparing to the Hungarian algorithm. In addition, for that specific profit function, both the Hungarian algorithm and the proposed CA algorithm lead to the same value as shown in the next proposition.

              (a) 
Proposition 3. For pairwise different profits, the proposed CA algorithm leads to the global optimal assignment solution.

Proof: First recall that the Hungarian algorithm achieves the best assignment problem for a maximum-weight bipartite matching problem. In particular, The Hungarian algorithm assigns the channel to the users who give the higher WSR or GEE. Now, assume that all the weights of the assignment problem are different. Then, the best assignment will be achieved by finding the maximum weights that are locating in different rows and different columns. This is exactly the objective of our proposed CA algorithm.

By examining the profit equation defined in [START_REF] Zuo | Power allocation optimization for full-duplex D2D communications underlaying cellular networks[END_REF], we see that two profit values are identical only when the related D2D pairs and the CUs are locating at the same locations. Hence, in practice, the proposed CA algorithm leads to the optimal assignment solution as shown in the following Remark.

Remark 4: In a real network, each node occupies a specific area in the cell, and thus two nodes cannot reside at the same point which in turns implies that all the profit values are different. Thus, the proposed CA algorithm will lead to an optimal assignment solution.

Now, after assigning the channels for all the D2D pairs, the power allocation problem can be solved using the SCO method presented in [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF], [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF]. Algorithm 4 summarizes all the previous discussion and shows the different steps of CATPA. Compute Profit i,j by using [START_REF] Zuo | Power allocation optimization for full-duplex D2D communications underlaying cellular networks[END_REF]. 6: end for 7: for j = 1 : min{M, N } do 8:

Find the highest Profit i,j element.

9:

Let I j row and I j col be the indices of the row and the column of the highest element at the jth iteration respectively.

10:

Allow the I j row th D2D pair to reuse the channel of the I j col th CU.

11:

Delete the I j row th row and the I j col th column of the profit table. 12: end for 13: Step 2: Power Control 14: Allocate the power for each (D2D j , CU i ) bu using the SCO theory.

VII. NUMERICAL ASSESSMENT

We consider a single cell network, where CUs are uniformly distributed in the cell. The D2D users are usually within a short distance, and thus we distribute them in the cell according to the cluster distribution model [START_REF] Kaufman | Cellular networks with an overlaid device to device network[END_REF]. In particular, the D2D users are uniformly distributed within a randomly located cluster. Moreover, in our simulation, we assume different D2D pairs are within different clusters. The CUs are assumed to share the total bandwidth equally. In addition, in our simulation, we only focused on the egalitarian solution, i.e., we set the weights ω i , ω j1 , and ω j2 to one. Table 1 summarizes our simulation parameters.

A. MARIO VS OPA

The aim of this subsection is to compare the complexity of the proposed MARIO algorithm and the complexity of the traditional OPA algorithm. To that end, we consider a simple scenario in which a single D2D pair coexists with one CU. 

ω i = ω j1 = ω j 2 = 1, ∀i ∈ C, j ∈ D
The center of the D2D cluster is located at 300m from the BS, and the CU is located at 100m from the BS. Giving this scenario, Fig. 8 shows the behavior of both MARIO and OPA algorithms in the last iteration of Dinkelbach's algorithm, i.e., when λ k equals the optimal GEE value. The y-axis of this figure is the difference the values of the best vertex point (v n ) and its projection point (π G (v n )), i.e., the line 17 in Algorithm 2. As can be seen in Fig. 8, in both algorithms, the difference between the GEE values of v n and π G (v n ) reaches zero after several numbers of iterations which in turn validates that both algorithms have already converged to the global maximum point. Fig. 8 also shows the typical bounding behavior of the polyblock based algorithm [START_REF] Björnson | Optimal Resource Allocation in Coordinated Multi-Cell Systems[END_REF]. For instance, both algorithms quickly find a feasible solution within a relatively small difference between the GEE values of v n and π G (v n ), but many more iterations are required to squeeze the difference to zero. In addition, Fig. 8 clearly shows the superiority of MARIO in term of the required number of iterations to achieve the optimal GEE value. For instance, the proposed MARIO algorithm achieved the optimal GEE value after × 10 4 iterations while the regular OPA algorithm required fivetimes more iterations (11 × 10 4 ) to obtain the optimal GEE value. A similar behavior is obtained at the first iteration of Dinkelback's algorithm, i.e., when maximizing WSR, but it is omitted for sake of clarity. This is because MARIO deletes the misleading vertices that delay the convergence time. To illustrate this concept, we show in Fig. 9 the generated vertices of both algorithms after 400 iterations, in the first iteration of Dinkelbach's algorithm. As illustrated in Fig. 9(a)-(b), MARIO generates a much lower number of vertices compared to the regular OPA algorithm, and thus it has faster convergence time.

To emphasize the superiority of MARIO, we compare in Table 2 the complexity of both OPA and MARIO algorithms in terms of the average number of iterations and the average number of vertices to achieve the optimal GEE value for different cluster radii. As expected, MARIO requires less number of iterations and generate less number of vertices to attain the optimal GEE value.

B. THE OPTIMALITY GAP

As mentioned in the introduction, all the related RA works ( [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF], [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF]) provide the solution of the RA problem by using the sequential convex optimization theory (SCO). The latter guarantees only a first-order optimal solution, and up to now of an FD-D2D network is not identified yet. Fig. 10(a) and Fig. 10(b) compare the achieved GEE and the achieved rate using the MO theory with that achieved by using the SCO for different self-interference cancellation factor (η). As can be seen, the optimality gap is less than 1%. This result is inline with the works in [START_REF] Zhang | Monotonic optimization in communication and networking systems[END_REF], [START_REF] Chiang | Power control by geometric programming[END_REF]. Another remarkable observation is that both the achieved GEE and the achieved rate increase with the decline of the SI cancellation factor. This is expected because when η decreases the RSI power decreases and thus the total interference will also decrease. While in the above figure we have shown the optimality gap in terms of the achieved rate or the achieved GEE, in Table 3 we present the average number of iterations to achieve both the global optimal solution (MO based method) and the sub-optimal solution (SCO based method). As can be seen, the global optimal solution can be achieved at the price of a high number of iterations. Hence, given the low optimality gap of the SCO method and the high complexity of the MO based method, the SCO method is an interesting candidate to the FD-D2D network while the MO-based method is an interesting tool to benchmark the results. Thus, in the next sub-section, we will analyze the performance of our proposed sub-optimal RA algorithm, CAPTA, in the FD-D2D network as compared to the SCO optimization method applied in [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF] and [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF]. 

C. THE PERFORMANCE OF THE SUB-OPTIMAL RESOURCE ALLOCATION CATPA ALGORITHM

Here we aim to identify the performance of the proposed CATPA algorithm. To that end, we assume a single cell network where M = 4 D2D pairs coexist with N = 4 CUs. The CUs are uniformly distributed in the cell, and the D2D users are uniformly distributed within a randomly located cluster. To cover all the possible location, we generate the D2D users and the CUs 500 times, and then we averaged the results. The GEE and the WSR values of the FD-D2D network are through the proposed CATPA algorithm and the SCO method adopted in [START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF], [START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF]. Fig. 11 shows that the GEE and WSR values of both FD-D2D and HD-D2D networks decline as the cluster radii increases. This is expected, since when r increases the proximity distance between the D2D users also increases, and thus more power is needed to maintain the same QOS. However, increasing the power also increases the interference, and thus the total rate and the GEE decrease. In addition, Fig. 11 also shows that the GEE and the WSR values of the FD-D2D network decline with the increasing of η which in turn revalidate the result of the previous sub-section. Hence, the FD-D2D network's performance highly depends on both the SI cancellation capability and the proximity distance of the D2D users. For instance, the HD-D2D network outperforms the FD-D2D network when η = -60dB and the D2D users are within a 10m distance from each other. Thus, to achieve the maximum gain of a D2D based cellular network, the transmission mode must always alternate between HD and FD based on the channel situation, the SIC factor, and the proximity distance. In addition, Fig. 11 within the 91% -98% of the optimal value obtained by SCO method which in turn validates the accuracy of the proposed CATPA algorithm. Now, to shed the light on the low complexity feature of the proposed CATPA algorithm, we present in Table 4 the required number of iterations to obtain the optimal GEE value for both CATPA and the SCO algorithm for different SIC cancellation factors and different cluster radii values. As expected, the proposed CATPA solution decreases the number of iterations by at least min{M, N }. This is because CATPA does not compute the optimal power allocation for all the possible couples (D2D j , CU i ) as in the global optimal solution. For instance, the adopted scenario in 

D. PERFORMANCE ANALYSIS OF THE FD-D2D NETWORK

In the previous subsections, we saw the effect of the RSI power and the D2D cluster radius on the performance of the FD-D2D network. Moreover, we observed that the FD-D2D network requires a small D2D proximity distance and high SI cancellation capability to achieve its ultimate gain. Hence, in this subsection, we aim to analyze the effect of the remaining network's parameters, such as the maximum transmission power and the required QoS, on the performance of the FD-D2D network by assuming = -100dB and r = 20m. Fig. 12 presents the effect of the maximum allowed power on the achieved GEE value considering three power allocation strategies:1) the obtained powers when maximizing GEE; 2) the obtained optimal powers when maximizing WSR; 3) the maximum allowed powers. In this figure, P d max denotes the maximum power of D j 1 and D j 2 with j ∈ D. From Fig. 12(a) it is seen that the GEE obtained by GEE maximizing first increases by the increasing of p max and then it saturates at large p max . This is because when p max is large enough to allow achieving the optimal GEE value, the excess power is no longer utilized. However, the GEE attained by WSR maximizing first increased by the increase p max until p max = -30dBw, and then it started to decline for larger p max . This indicates that the global optimal GEE value can be achieved if at least one user is transmitting at -30dBw. This result also confirms our proposed MARIO algorithm in which we update the maximum power level at each step on Dinkelbach's algorithm. In addition, transmitting with full power at all users highly degrades the GEE performance. Now, looking at Fig. 12(b), it can be observed that the achieved WSR when maximizing WSR increases as the maximum power increases. This result confirms our observation that the maximum achieved rate can be obtained only if at least one of the users is transmitting with the maximum allowed power. However, the achieved WSR when maximizing GEE saturate at large p max which is inline with the results of Fig. 12(a). In addition, Fig. 12 also confirms that the full power transmission strategy is not suitable for the FD-D2D network since it failed to achieve good WSR or GEE values. Another interesting observation can be extracted from Fig. 12 is that the difference between the achieved WSR when maximizing GEE or maximizing WSR is relatively smaller than the difference between the obtained GEE when maximizing GEE or maximizing WSR. Giving this result, in a resource allocation problem, maximizing the GEE is much attractive than maximizing the overall rate. Next, to see the effect of the QOS on the performance of FD-D2D network, we set the maximum transmit power p max = [-6, -6, -6](dBw), and then we draw in Fig. 13(a)-(b) the variation of the achieved GEE and WSR w.r.t γ c min and γ d min with γ d min being equal to γ d1 min and γ d2 min . Since the maximum power allocation strategy is not suitable for FD-D2D network (see Fig. 12-(b)), in this figure we only consider the remaining two power allocation schemes: 1) the obtained powers when maximizing GEE; 2) the achieved powers when maximizing WSR. As expected the achieved GEE and WSR decline with the increase of the minimum required SINR for all power allocation strategies since at large SINR requirement less number of FD-D2D pairs can be admitted. In addition, Fig. 13 affirm the previous results obtained in Fig. 12 which says that in a FD-D2D network maximizing GEE will be more attractive than maximizing the overall rate. This is because the gap between the achieved GEE when maximizing GEE and maximizing WSR (see Fig. 13(a)) is much larger than the gap between the achieved WSR when maximizing GEE and maximizing WSR (see Fig. 13(b)). To have full knowledge of the performance of an FD-D2D network when maximizing GEE or maximizing WSR a joint optimization framework must be developed which is left for future work. 

VIII. CONCLUSION

In this paper, we have investigated the resource allocation problem for a full duplex D2D communication underlaying cellular network. To maximize the overall throughput and the energy efficiency while guaranteeing the data rate requirement of both D2D users and CUS, first we formulate the resource allocation optimization problem, and then we find the global optimal solution through two steps: power control for all the possible couples (D2D j , CU i ); maximum weight matching to obtain the optimal cellular user for each D2D pair. By means of monotonic optimization theory, we proposed a new polyblock-based algorithm denoted as MARIO that can efficiently find the global optimal power control for the involved users. The Khun-Munkers algorithm is used to solve the matching problem. Due to the high complexity of the global optimal solution, we proposed the CATPA 16 VOLUME 7, 2019 algorithm that can find an efficient sub-optimal solution by first assigning the channels and then controlling the users' powers. Simulation results verified the proposed algorithms and showed that the performance of the FD-D2D network highly depends on the self-interference capability and the proximity distance. In future work, we will investigate the effect of the imperfect channel state information on the optimal resource allocation. Meanwhile, the scenario when an FD-D2D pair can share the resources of multiple CUs, and when multiple FD-D2D pairs can reuse the same resource should be also studied.

FIGURE 1 .

 1 FIGURE 1. A comparison between the existing RA solution and the proposed RA solutions for an FD-D2D network.

FIGURE 2 .

 2 FIGURE 2. The adopted system model in which (a) multiple FD-D2D pairs coexist with multiple cellular users, and (b) the interference model when the cellular user CU i shares its uplink resources with D2Dj .

Definition 2 .

 2 (Upper boundary): A point x ∈ R N + is called an upper boundary point of a normal closed set F if F ∩ {x inR N + |x > x} = ∅. The set of all upper boundary points of F is the upper boundary of F and it is denoted as ∂ + F. Definition 3. (Box): Given any two vectors a and b ∈ R N + , the hyper rectangle [a, b] = {x|a x b} is referred to as a box. Definition 4. (Polyblock): Given any finite set T ∈ R N + with elements v i , the union of all the boxes [0, v] is refereed to as a polyblock with vertex set T . A polyblock is clearly a normal set. Definition 5. (Proper vertices): A vertex v ∈ T is said to be proper if there is no v ∈ T such that v = v and v v. A vertex is said to be improper if it is not proper, and improper vertices can be removed from T without affecting the shape of the polyblock. Definition 6. (Projection): Given any nonempty compact normal set G ⊂ R N + , and any v ∈ R N + \ G, π F (z) is a projection of z on F if π F (z) = αz with α = max{κ > 0|κz ∈ F}. In other words, πF(z) is the unique point where the line segment joining 0 to z meets the upper boundry of F.

Remark 3 :

 3 Due to the normality of G, the projection point, i.e., α, can be found by the well known bisection algorithm [26, Algorithm 1] .

FIGURE 3 .

 3 FIGURE 3. Illustration of the OPA process.

2 FIGURE 4 .

 24 FIGURE 4. Illustration of the misleading vertices that can be generated auxiliary variables have been added.
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FIGURE 5 .

 5 FIGURE 5. The update process of the maximum powers.

Algorithm 2

 2 The proposed MARIO algorithm 1: Input: The increasing utility function of P 2 mo defined in[START_REF] Hemachandra | Sum-rate analysis for full-duplex underlay device-to-device networks[END_REF], the compact normal set S n and the closed conormal set S c such that S n ∩ S c = ∅. 2: Output: The optimal solutions of P 2 1 and P 2 2 . 3: Set the accuracy of Dinkelbach's algorithm 1 > 0, the counter of Dinkelback's algorithm k = 0, and λ 0 = 0. 4: while F (λ k ) ≥ 1 do

  .

14 :

 14 Replace v n with N new vertices {v 11 , . . . , v 1N }.

15 :

 15 Delete the improper and the misleading vertices.
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Algorithm 3 5 :Set η = 0 6 :

 356 Optimal Resource allocation algorithm 1: C: The set of existing cellular users 2: D: The set of D2D pairs 3: U l (ρ, P ): The function to be maximized 4: if HD mode then Set the bandwidth of D j 1 and D j 2 to B/2 7: end if 8: Step 1: Power Control 9: for all j ∈ D and i ∈ C do 10:

FIGURE 7 .

 7 FIGURE 7. The process of of the proposed CA.

Algorithm 4

 4 The proposed CATPA algorithm 1: C: The set of existing cellular users 2: D: The set of D2D pairs 3: Step 1: Channel Assignment 4: for all j ∈ D and i ∈ C do 5:

4 FIGURE 8 . 25 (

 4825 FIGURE 8. Convergence behavior of the proposed MARIO algorithm and the regular OPA algorithm, in the last iteration of Dinkelbach's algorithm. The behavior shows the convergence to the global GEE optimal solution and illustrates the superiority of the proposed MARIO algorithm.

FIGURE 9 .

 9 FIGURE 9. The feasible set and the generated vertices of (a) the proposed MARIO algorithm and (b) the regular OPA algorithm after 400 iterations.

FIGURE 10 .

 10 FIGURE 10.Achieved GEE versus SI cancellation factor, using 1) the proposed method, 2) SCO method ([START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF],[START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF]). (r = 20m,γ i min = γ j 1 min = γ j 2 min = 3dB)

Fig. 11 (

 11 a) and 11(b) respectively compare the achieved GEE and WSR values of the FD-D2D network with the achieved GEE and WSR values of the HD-D2D network.

  (a)-(b) clearly indicate that the proposed CATPA algorithm can achieve GEE and WSR values that are 14 VOLUME 7, 2019

FIGURE 11 . 1 min = γ j 2 min

 1112 FIGURE 11.Comparison between the performance of FD-D2D network and the HD-D2D network when applying the proposed CATPA algorithm or the SCO solution adopted in[START_REF] Li | Resource allocation for weighted sumrate maximization in multi-user full-duplex device-to-device communications: Approaches for perfect and statistical csis[END_REF],[START_REF] Tang | Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication[END_REF] for (a) maximizing GEE, and (b) maximizing WSR. (γ i min = γ j 1 min = γ j 2 min = 3dB)

FIGURE 12 .γ j 1 min = γ j 2 min

 1212 FIGURE 12. The effect of the maximum transmission power on the (a) achieved GEE value and (b) achieved WSR value considering three power allocation strategies: 1) the obtained powers when maximizing GEE; 2) the obtained optimal powers when maximizing WSR; 3) the maximum allowed powers. (r = 20m, γ i min = γ j 1 min = γ j 2 min = 3dB)

FIGURE 13 .

 13 FIGURE[START_REF] Ali | Modeling cellular networks with full-duplex D2D communication: A stochastic geometry approach[END_REF]. The effect of the QoS requirement (a) achieved GEE value and (b) achieved WSR value considering two power allocation strategies: 1) the obtained powers when maximizing GEE; 2) the obtained optimal powers when maximizing WSR. (r = 10m, pmax = [-6, -6, -6](dBw))

TABLE 1 .

 1 Simulation parameter

	Cell radius (R) D2D cluster radius (r) Uplink channel bandwidth	0.5 Km 20, 30, 40, ..., 100 (m) 180 KHz
	Noise power (σ 2 N ) Path-loss exponent (α) Maximum Tx power Multiple-path fading Egaleterian Solution	-114 dBm 4 24 dBm Exponential distribution with unit mean

TABLE 2 .

 2 The average number of Iterations and Vertices for the proposed MARIO algorithm and the regular OPA algorithm.

	r (m) 10 20 40 80	Number of Iterations MARIO OPA 80990 100000 74604 980000 77263 950000 68395 100000	Number of vertices MARIO OPA 388.0699 1253 413.4425 1258.9 400.2299 871.4 632.9584 800

TABLE 3 .

 3 The average number of Iterations for the proposed MARIO algorithm and SCO algorithm.

	η (dB) -60 -70 -80 -90 -100	Number of Iterations SCO MARIO 63.2 77378 51.65 76628 46.9 75828 41.29 74721 34.26 72934

Table 4

 4 

contains 4 D2D pairs and 4 CUs, and thus CATPA will lead to at least a 4-fold decrease in the number of iterations as shown in Table

4

.

TABLE 4 .

 4 The number of Iterations for the proposed CATPA algorithm and SCO algorithm.

	η (dB) -60 -70 -80 -90 -100	r = 10 (m) CATPA SCO 108.6 425.9 95.63 362.7 74.38 279.19 53.05 203.8 38.48 153.06	r = 20 (m) CATPA SCO 121.64 481.8 116.43 444.6 96.39 360.3 68.58 257.9 46.03 182.7	r = 40 (m) CATPA SCO 52 216 119.6 472.9 106.9 410.6 78.6 302.1 55.1 220.8
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