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ABSTRACT:  

The low density (smaller than 10% of the bulk density) and the nanostructured porosity of silica aerogels provide their 

extremely low thermal conductivities but also impact their poor mechanical properties. Atomic scale simulation is the 

appropriate tool to predict the thermal and mechanical properties of such materials. For such simulations, the interatomic 

potential should be carefully chosen to ensure result validity but also reasonable computational times. A truncated BKS 

potential has been used for aerogels as it fairly reproduces the nanostructure. It allows reducing the computational time by a 

3000 gain factor on the CPU time per atom per step compared to the original BKS interatomic potential while predicting 

correctly the mechanical properties. However, when it comes to skeletal thermal conductivity of nanoporous silica, the 

associated computation times are too large for a representative volume. This is due to the low thermal diffusivity of the 

material. Here, a new method that takes advantage of the amorphous structure of silica and the diffusive nature of phonon 

heat transfer at the scale of an aerogel aggregate is proposed. The time dependent temperature profile in the system obtained 

from Non-Equilibrium Molecular Dynamics simulations is compared to the classical solution of the thermal diffusion 

equation and an identification procedure is used to determine the thermal conductivity of silica aerogels. 

 
Keywords: silica aerogels, thermal conductivity, nanoscale, molecular dynamics. 

 

1. Introduction 

Silica aerogels are highly porous materials (more 

than 90% porosity) with pore size distribution of the 

order of a few nanometers. Such a size gives silica 

aerogels extremely low values of thermal conductivity, 

which is interesting if they are used as high-performance 

thermal insulators. However, these properties are 

obtained at the expense of their mechanical properties. 

Due to their nanostructure, the understanding and the 

prediction of their properties require atomic scale 

simulations. As silica aerogels are a porous 

heterogeneous material, the representative volume of the 

matter that has to be considered to predict its properties 

should contain several millions of atoms. With such a 

number of atoms, molecular dynamics simulations 

remain appropriate. However, the choice of an 

interatomic potential is challenging since the 

computational time has to be minimized.  
Silica is a polar material, each atom thus carries an 

equivalent charge, inducing long range Coulombic 

interactions. Those have to be accounted for to calculate 

interatomic forces. Electrostatic forces have long-range 

interactions, which are costly in term of computation time. 

Using a BKS potential [1], Rajappa et al. [2] have shown 

that the contribution of long-range Coulomb interactions to 

the total energy is lower for the amorphous phase than 

for the crystalline phase at the same density. This result is 

coherent with the previous work done of Carré et al. [3] 

who proposed a BKS potential with truncated coulomb 

interactions to successfully predict the static and dynamic 

properties of bulk silica. Recently, Gonçalves et al. [4] 

investigated the properties of (SiO2)n clusters and silica 

aggregates. For small aggregates of silica, the truncated 

BKS potential leads to the same1 structural properties and 

surface energies as compared to the original BKS 

potential. This means that significant reduction of 

computation time (evaluated to a gain factor of 3000 on 

the CPU time per atom per time-step) is possible even 

when the ratio between the surface to the volume ratio of 

material increases drastically as for silica aerogels. 

Gonçalves et al. [5,6] further used the truncated BKS 

potential to generate realistic silica aerogel structures. 

They have shown that the representative volume that has 

to be used to predict reliable mechanical properties of 

such material is of the order of 803 nm3. This is much 

larger than the maximum volume (203 nm3) previously 

reached to predict mechanical behavior of silica aerogel 

from molecular dynamics simulations [7–9].  

Heat transfer in silica aerogel is a combination of 

radiative and conductive heat transfer, both of which are 

coupled. Coquart et al. [10] and Wei et al. [11] predicted 

the equivalent thermal conductivity of aerogels, solving 

the coupled radiative transfer and conduction heat 

transfer equations. Coquart et al. [10] assumed that 

aerogels are made of a net of connected silica spheres, 

which diameter varies between 5 and 10 nm and they 

accounted for a variation of the thermal conductivity with 

the sphere diameter. This is not coherent with 

experimental observation [12] showing that silica 

                                                 
* Corresponding author at : Université de Lyon, INSA-Lyon, CNRS, 

MATEIS, 25, Avenue Jean Capelle, 69621 Villeurbanne cedex, France. 

E-mail address: Julien.morthomas@insa-lyon.fr (J. Morthomas). 

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022309319302364
Manuscript_755cbcb80f6c7a1d73bf3fe7340579c7

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022309319302364
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022309319302364


2 

    
aerogels may be considered as (SiO2)n clusters connected 

via nanometric SiO2 ligaments. Several authors have 

already used molecular dynamics simulations to predict 

the thermal conductivity of silica aerogel [9,13–16]. In 

these studies, due to computation time, the volume of the 

systems was smaller than 203 nm3 and the minimum 

density is higher than the typical density of silica 

aerogels (around 70 − 250��. 	
�). Thus these system 

are not large enough to accurately describe the typical 

pore size distribution (centered on 10nm) observed 

experimentally [12,17,18]. Truncated BKS potential 

proposed by Carré et al. [3] could open new avenue to 

calculate silica aerogel thermal conductivity at a 

reasonable cost. Although if this interatomic potential 

leads to appropriate surface properties [4], nanoporous 

silica aerogel structures and pore size distribution [5,6], it 

does not warrant that the value of the thermal 

conductivity is reliable. In addition, in order to calculate 

the thermal conductivity of the silica aerogels the same 

conclusion could be made as for the mechanical 

properties, where it is necessary to study a sufficiently 

representative volume close to 100� � � 3. 
Two methods based on molecular dynamics 

simulations are widely used to determine the thermal 

conductivity from molecular dynamics simulations [19]: 

Equilibrium Molecular Dynamics (EMD) and Non-

Equilibrium Molecular Dynamics (NEMD). In EMD 

simulations, the instantaneous variation of the heat flux 

in a system at equilibrium is calculated; the thermal 

conductivity is then extracted thanks to the Green Kubo 

Formulae [20–23]. NEMD simulations are equivalent to 

well-known guarded hot plate experiments. It consists in 

simulating heat transfer in one direction of space by 

imposing a temperature difference between a hot zone 

and a cold zone. The technique to maintain the constant 

temperature in the hot and cold zones depends on the 

simulation strategy. Either the heat flux between the hot 

and cold zone is imposed [24–26], or the hot and cold 

zones are thermostated [27–30]. It has been shown by 

several authors that the two methods give consistent 

results [31–34]. EMD exhibits larger uncertainties than 

NEMD since it requires a larger number of time steps to 

calculate an accurate correlation function of the 

instantaneous heat flux. Moreover, it appears that when 

the system is not homogeneous, then significant 

differences may appear [35]. This is because the EMD 

method is based on the Green Kubo formula, which is 

only valid for homogeneous systems. In this study the 

NEMD method, detailed in section II.C.1., is used to 

determine the thermal conductivity of silica aerogels.  

The duration of NEMD simulations (number of time 

steps) and thus the computation time is governed by the 

characteristic time, 
, to reach the steady state for heat 

transfer. To evaluate 
, we consider a solid system made 

of a continuous material. The system is defined by its 

volume, � , which a characteristic length, � , a specific 

heat, � , a density, � and its thermal conductivity, �. If 

the material is opaque (no radiative heat transfer) and if 

�  is much larger than the phonon mean free path of the 

material �, then the Fourier’s law applies to describe heat 

transfer within this system. If the system, initially at a 

temperature � � , is placed in a heat source at temperature 

� �  then the temperature of the system will tend towards 

the temperature of the medium. The duration of the 

transient state is proportional to the characteristic time 

� = � � � 2/� . 

For the silica aerogel systems studied here, the 

density varies between 2255 � � . � 
3 (dense silica) and 

250 � � . � 
3 (silica aerogel which porosity is about 

90%), and the characteristic length between 20 � �  and 

90 � � . At ambient temperature, the specific heat �  is 

equal to 720 � . � � 
1. � 
1. However, Molecular 

Dynamics (MD) simulations are based on the Newton 

equation and there is no quantification of energy, so 

whatever the temperature level, the specific heat of each 

atom is 3� �  (with �� the Boltzmann constant), which is 

equivalent to a specific heat of 1240 � . � � 
1. � 
1. The 

thermal conductivity is approximately 1.5 � � 
1. � 
1 for 

dense silica and we expect that it decreases for silica 

aerogels down to values of the order of 0.05 � . � 
1. � 
1 
[13–16]. Using these orders of magnitude, we may 

expect simulation durations should be performed within 10 to 100��. This would lead to prohibitive computation 

times that would prevent a large number of systems of 

being tested especially those close to 100� � � 3 in size. 

A new simulation strategy to optimize the 

computational time and extract the value of the thermal 

conductivity from NEMD simulations with large 

volumes of nanoporous silica has been developed and is 

described in section II. This method is used to study the 

minimum size of the volume of silica aerogel that has to 

be considered to predict the thermal conductivity of silica 

aerogel which density is 250 � � . � 
3. It is also used to 

assess the relationship between the silica aerogel density 

and its thermal conductivity. Results are compared to 

previous theoretical predictions and experimental values 

in section III. 

 

2. Models and methods 

2.1  Simulation strategy 

Considering that silica aerogel has an amorphous 

structure, the phonon mean free path is of the same order 

of magnitude as the atomic distances and heat transfer 

through silica is diffused. Thus, during the transient state, 

the temperature profile in the system obtained with 

NEMD simulations should be the same than in an 

equivalent system made of a continuous material of the 

same geometry and thermal properties than the system 

described at the atomic system. To optimize the 

computational time, a three steps simulation strategy to 

calculate the thermal conductivity of silica aerogels has 

been developed here: (i) The evolution of temperature 
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profiles during the transient state is calculated by NEMD 

from silica aerogel simulation boxes. (ii) The evolution 

of the temperature profile is also calculated by solving 

the one dimension second order heat transfer differential 

equation (HTDE) based on a guess of thermal 

conductivity. (iii) The evolutions of these two 

temperature profiles are then compared in order to extract 

a new value for thermal conductivity � by identification 

using a least mean square algorithm. Steps (ii) and (iii) 

are thus repeated until a satisfactory convergence for 

thermal conductivity is achieved. Details on these 

different steps are given below. 

(i) We start from cubic simulation boxes of 

nanoporous silica of volume � 3 with a prescribed density 

and equilibrated at 300� . A given energy quantity �  is 

removed from the cold zone and given to the hot zone at 

each time step using a velocity rescaled technic, see Fig. 

1a. As periodic conditions are used, to avoid direct heat 

transfer from the hot to the cold zones, atoms have been 

fixed between these two zones. Thus, heat transfer may 

only occur between the two zones through the silica 

aerogel. The temperature profiles  � � �� � , � � � are stored 

in regularly spaced slices at positions � �  (the middle of 

each slice � ) of 4Å thickness and at different times � � . 

The value of the energy quantity �  and the number of 

time steps has to be adapted for each system size and 

density to ensure both a large enough temperature 

gradient compared to temperature fluctuations and a good 

convergence. 

(ii) The temperature profiles  � � �� � , � � � of a 1D 

system of length �  initially at temperature � � ��, 0� =
300�  (see Fig. 1b) is calculated at the same locations and 

times than for the NEMD simulation, solving the second 

order heat transfer differential equation (HTDE): 

�� �����, ��
�� = � � ����, ��

��  

To reproduce the same condition of heat transfer 

than for the MD simulations, the heat flux � = !/�" ∆��, with $�  the time step used in MD simulation, is 

imposed on both sides of the system: 

� = %0, "&, ∀�:  � �����, ��
�� = ) 

At the first time this step, a guess of the thermal 

conductivity � is used ranging between 1.5 � � 
1 � 
1 and 

0.05 � � 
1 � 
1.  
(iii) Using a least mean square algorithm, a new value 

of the thermal conductivity is calculated by minimizing 

the functional 

*��� = + + ,��-�. , �/0 − �1-�., �/02 34

/56

37

.56
 

We observed that the temperature field calculated with 

MD simulations is submitted to fluctuations, 

8� � � �~:� /�  with �  the number of atoms and �  the 

temperature level. This is due to the fact that the number 

of atoms is relatively small. These fluctuations inhibit the 

functional �  to converge towards zero. The variation of 

the thermal conductivity between two iterations should 

decrease towards zero if there were no temperature 

fluctuations. Due to temperature fluctuations, when the 

iteration number is large enough, the thermal 

conductivity oscillates around a mean value with a 

relative variation of less than 1% which is the chosen 

convergence criterion. The quality of the results may be 

checked by looking at the mean deviation ; between the 

temperature calculated using the HTDE and the one 

obtained from MD simulation. The mean deviation is 

divided by the mean value of the temperature fluctuation 8��1� for the interpretation: 

; = 1
8��1��.�/ + +<��-�., �/0 − �1-�., �/0<

34

/56

37

.56
 

where  � �  and � �  are the number of slices and the 

number of consecutive time steps used for the summation 

average at the time � � , respectively. After convergence, 

�  should be almost equal unity. Values of �  much 

smaller than unity means that the numerical solution of 

the HTDE gives almost the same results than MD 

simulations despite the temperature fluctuations, which is 

not physical. This might happen if the number of times 

used for the comparison is too small. Values of �  much 

larger than unity means that the numerical solution of 

HTDE differs significantly from MD simulations. In that 

case, the two models might differ physically.  

 

 



4 

    
Fig.1. Configuration for a) the NEMD simulations and for b) the 

classical 1D transient simulation of heat transfer in a homogeneous 

continuous medium. 

In step (i) and (ii), the initial temperature is chosen equal 

to 300� . However, as already stated, MD only solves the 

classical equation of Newton and no quantification of 

energy is accounted for. So, the comparison of MD 

results for the thermal conductivity is theoretically 

reliable (if the interatomic potential is accurate) for 

temperatures higher than the Debye temperature. In our 

case, our aim is to compare thermal conductivity values 

for different system sizes and densities. Qualitatively, the 

choice of the temperature range is not important. 

Choosing a higher temperature range would have resulted 

in higher temperature fluctuations. The ambient 

temperature offers a good compromise between the 

temperature gradient and temperature fluctuations.  

2.2. Interatomic potential and boxes preparation 

In this study, all MD simulations are performed 

using the Wolf BKS potential (van Beest, Kramer and 

van Santen), proposed by Carré et al. [3,36], which 

mainly differs from the original BKS potential by the 

introduction of a cut-off on Coulombic long-range 

interactions (shifted Wolf method [37]) and ensuring the 

continuity of both the potential and the force at the cut-

off radius as proposed by Fennell et al. [38]. Fennell et 

al. [38] have shown very good agreement between this 

method and the full Ewald summation used for the 

original BKS potential. In a previous study [4], we 

confirmed the transferability of the potential of Carré et 

al. [3] for reproducing silica surface properties. The gain 

in computation time obtained by the truncation of 

Coulombic interactions opens the possibility to generate 

sufficiently large volumes of silica aerogel to account for 

the pore size distribution observed experimentally [5,6]. 

Further, Carré et al. [3] showed that the vibrational 

density of state is well reproduced in comparison with the 

original BKS. Moreover, considering the large surface to 

volume ratio of highly porous materials such as silica 

aerogels, it is critical that the interatomic potential be 

able to reproduce the structure and energy of amorphous 

silica surfaces. Both truncated and original BKS 

potentials have been extensively used to study the surface 

properties of amorphous silica [4,39,40]. Those studies 

suggest that the BKS potential is a reliable choice to 

investigate thermal properties of highly porous materials. 

The Wolf BKS potential, proposed by Carré et al. 

[3], writes: 

Φ>?@
ABC�D� = E>E?F GH�D�IH�D�
+ KL>?F
 MNOP − Q>?DR

− SL>?F
MT,UVNOP − Q>?
DW,�XR YZ I�X�D� 

where 

GH�D� = S1
D − 1

DW,HY + D − DW,HDW,H , 

IH�D� = F
 [\]
-M
MT,\0]

 

I�X�D� = F
 [UV]
-M
MT,UV0]

 

^, _ stand for Silicon or Oxygen and F is the elementary 

charge. Effective charge values, E>, E?, and parameters, 

L>?, �>? and Q>? can be found in [1]. The expression 

GH�D� introduces a finite distance cut-off DW,H on the 

coulombic interactions and it ensures the continuity of 

both the potential and the forces at D = DW,H [37,38].  IH�D� and I�X�D� functions are introduced to smooth 

interactions at the cut-off distance DW,�X and DW,H. Here, 

DW,H = 10.17L̀ and DW,�X = 5.5L̀ and the widths of the 

smoothing function are aH = a�X = 0.5L̀ [36]. The 

original BKS potential, which pertains to the Coulomb-

Buckingham type, does not tend to positive infinity as D 

tends to zero. Thus, atoms may approach too close from 

each other if the temperature or the pressure of the 

system are too high. This may induce chaotic dynamics. 

A solution proposed by Shcheblanov et al. [36], and 

adopted here, is to add a strong repulsive term for short 

range interactions: 

Φ>?Mbc�D� = d;>?D e6 + !>?D + *>? 

 where ;>?, !>? and *>? parameters are listed in [36]. 

Simulations are performed with the Large-scale 

Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) [41]. The integration of the equations of 

motion is achieved using a velocity-Verlet algorithm and 

a 0.25 � �  timestep needed for stability. Temperature and 

pressure are respectively maintained by a Langevin 

thermostat and a Berendsen barostat.  

Dense amorphous silica samples are prepared from 

melting of β-cristobalite cubic structures of 52728 atoms 

at 5000 K. The resulting silica liquid is then quenched to 

300 K at 4.7× 1012 � . � 
1. Simulations boxes are 

equilibrated during 200 � �  in the NPT ensemble at 300 

K and zero stress. This box is then replicated in the three 

directions of space in order to get the required system 

size. It is then equilibrated during 1� �  in the NPT 

ensemble at 300 K and zero stress. This procedure is 

similar to the “melt-quench-duplicate” procedure 

described in [42–44] and used to create “big samples” of 

metallic glasses. Periodic boundary conditions are used 

in all directions. The final amorphous silica box has a 

density of 2255 ± 1 � � . � 
3.  

Silica aerogel simulations boxes are generated with 

Kieffer’s method [45] by isostatically and 

instantaneously stretching by approximately 10% by 

steps a dense amorphous silica box in all directions. 
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Between each stretch, a relaxation stage in the NPT 

ensemble is applied during 50 i� to maintain a 300 K 

temperature and a zero pressure. The 

stretching/relaxation stages are repeated until the desired 

density is reached. More details can be found in 

Gonçalves et al. [5].  With this method and the truncated 

BKS interatomic potential, the pore size distribution is 

around 10�	 for a � = 250 ��. 	
�. This pore size is 

comparable to the experimental values [12,17,18] as for 

commercial silica aerogel obtained from sol-gel process 

[46] and leading to monolith like aerogel particles or 

composite made of aerogels. 

3. Results 

3.1. Amorphous dense silica 

The thermal conductivity of dense amorphous silica 

is calculated by two methods: first by using classical 

NEMD simulations and second by relying on the 

simulation strategy described in section II.A. The aim is 

to validate our simulation strategy for a simple and well-

known case of dense amorphous silica. 

 

Fig.2. Temperature profile in steady state in a dense amorphous silica 

which section is 14.1×14.1 nm². 

Formally, in the classical NEMD simulation, the 

average temperature gradient ��/�k of the linear 

temperature profile is determined for the steady state 

conditions. The thermal conductivity is calculated from 

the Fourier’s law: 

� = − )
��/�k 

As the steady state has to be reached, the system size 

should not be too large to minimize the computation 

time. However, the value of the thermal conductivity is 

not reliable if the system size is too small. Thus, several 

simulations for different system sizes are run. The 

inverse of the thermal conductivity is plotted against the 

inverse of the system size to extrapolate the value of the 

thermal conductivity for an infinite system size. In our 

case, the optimum section of the system is 14.1 × 14.1 

nm² and the system length varied between 3.5 to 28.3 nm. 

The temperature level is imposed in the hot and cold 

source using a temperature rescale method, allowing the 

calculation of the heat flux exchanged between the 

sources. Figure 2 shows the temperature profile in the 

longest system. The duration of the simulation to reach 

the steady state is 1.3 ns. In steady state, the heat flux 

flowing between the hot and cold sources is equal to 

3.3 � � . � 
2. The temperature profile between the sources 

is approximatively linear which means that the phonon 

mean free path is much lower than the system size, as it 

should since the structure is amorphous. 

 

Fig.3. Inverse of the thermal conductivity function of the inverse of 

the system size for dense silica. 

 Figure 3 shows the inverse of the thermal 

conductivity against the inverse of the system size. The 

thermal conductivity increases when the system length 

increases. Compared to previous calculations [13–15] 

with the original BKS potential, our thermal conductivity 

values are larger. This might be due to the choice of the 

system section of the system which is larger than 

previous works. Indeed, the thermal conductivity also 

varies when the section of the system increases. Thus, we 

increased the section of our systems such that the value 

of the thermal conductivity does not change significantly. 

The thermal conductivity for an infinite length is 

obtained from the extrapolation of the linear fitting of the 

points towards 1/" = 0; it is equal to  2.4 ±
0.1 � . � 
1. � 
1. Despite our values for each system 

length being larger than previous results, the extrapolated 

value for the infinite system length is of the same order 

as the one obtained with the original BKS interatomic 

potential. All these values are almost twice as large as the 

experimental values (1.4 � . � 
1. � 
1). Indeed, Yeo et al. 

[15] also calculated the thermal conductivity of dense 

silica aerogel using the Tersoff interatomic potential 

proposed by Munetoh et al. [47]. They obtained a value 

of the thermal conductivity equal to 1.19 � . � 
1. � 
1. 
Actually, the choice of an interatomic potential to study 

thermal properties is not that straight. First MD 

simulations are classical simulations that do not account 

for the energy quantification of the phonon. Second, the 

interatomic potential should reproduce the harmonic 

(dispersion curves) and anharmonic behavior (phonon 

relaxation time) of the material. So, whatever the 

interatomic potential, MD simulations may result in over 

or under-estimation of the thermal conductivity for 
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temperatures lower than the Debye temperature. So, as 

already discussed for the choice of the interatomic 

potential, the optimization of computational time and the 

ability of the BKS interatomic potential to reproduce the 

surface and structural properties of silica aerogel confirm 

our interatomic potential choice to investigate silica 

aerogel thermal properties. Since the bulk thermal 

conductivity of silica aerogel obtained with the BKS 

interatomic potential is not correct, only relative 

variations of the thermal conductivity of silica aerogel 

from the bulk value will be considered. 

The new methodology for the thermal conductivity 

prediction is used for comparison with these first results. 

The system is a dense amorphous silica prepared as 

mention in section II.B. To test the ability of the method 

to tackle with large systems, the volume of amorphous 

silica is set to 37��	�, containing approximately 3.3 

million of atoms. The initial temperature is equal to 300 

K. The system is submitted to a heat flux of 1.18 IG. 	
  during 0.78 �� on the opposite sides of 

the sample in the x direction. With this value the 

temperature variation between the hot and cold sources is 

around 18 K, which is one order of magnitude larger than 

the temperature fluctuations (0.43 K). 

 

Fig.4. Identified thermal conductivity of dense silica function of the 

simulation duration. 

 

Fig.5. Temperature variation in bulk silica during heat transfer 

simulations, comparing MD and HTDE results for thermal 

conductivity identification. 

Figure 4 shows the variation of the thermal 

conductivity against the simulation duration of the heat 

transfer. The thermal conductivity tends to a limit value 

equal to 2.35 � . � 
1. � 
1when the simulation duration 

increases. This value is very close to the value obtained 

from the classical NEMD method. Figure 5 compares the 

temperature profiles obtained from the MD and HTDE 

simulations near the hot and cold sources. The quality of 

the diffusive model in dense silica is good: we find that 

the mean deviation ; is almost equal to 1. This validates 

the new methodology to determine the thermal 

conductivity from MD simulation for amorphous 

material. It is thus used for silica aerogel in the remaining 

of the paper. 

As explained in section 2.2, all big dense amorphous 

silica systems are constructed by replications of a small 

dense amorphous silica configuration which are then 

relaxed during 1 �� at 300 K and zero stress before heat 

transfer simulation. After replications, the samples can be 

annealed at high temperature in order to eliminate 

possible artifacts of periodicity from replication [48]. In 

order to prove that our procedure of replication without 

annealing have no influence on the thermal conductivity, 

the dense amorphous silica system of dimension 14.1 ×14.1 × 28.3 �	� obtained by replication has been 

annealed at 1000 o for 0.5 �� then quenched to 300 K at 4.7 × 106 o. �
6 and relaxed for 0.5 ��. The thermal 

conductivity of this annealed system obtained by NEMD 

simulation is 2.31 G. 	
6o
6 which is very close to the 

one previously obtained without annealing 2.32 G. 	
6o
6. This confirms the reliability of our 

simulation strategy. 

3.2. Silica aerogel 

In previous studies, due to the used of the original 

BKS interatomic potential, the maximum system size that 

was considered was 20 nm, which is of the order of 

magnitude of the pore characteristic size in silica 

aerogels. Moreover, the minimum value of the density 

(300��/� 3 in Yeo et al. [15]) is larger than the one 

investigate here (250��/� 3). Thanks to the use of the 

truncated BKS interatomic potential and the new 

simulation strategy to determine the thermal conductivity 

larger systems may be considered. Our first aim is to 

study the influence of the system size on the thermal 

conductivity of silica aerogel to look for the system size 

that would lead to the thermal conductivity of the bulk 

silica aerogel. Thus, using the Kieffer’s method [45], 

seven aerogel volumes, all with a density equal to � =
250 � � . � 
3, with different volumes are generated, 

� = 303, 403, 50
3
, 603, 703, 803 and 903 � � 3. A heat 

flux of p = 8.34, 6.57, 4.77, 4.38, 3.82, 4.08, and 4.09 × 10rG. 	
  is imposed on the opposite sides of 

the sample. This procedure is repeated on all three 

directions (�, s or k) in order to induce a 1D temperature 

field variation.  

Results are detailed for the largest system �903 � � 3� 

first. As for the dense silica, the thermal conductivity has 

been identified as a function of the simulation duration 
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(figure 6). The thermal conductivity also tends towards a 

limit value after 2.6��, a time smaller than the evaluated 

characteristic time 
 to reach the permanent regime larger 

than 10��. However, in this case, the mean temperature 

deviation ; is not constant and increases when the 

simulation duration increases (figure 6) and becomes 

larger than the temperature fluctuation of the MD 

simulation (0.53 K). The comparison between 

temperatures obtained from MD and HTDE simulations 

on figure 7 suggests that the two models (MD and 

HTDE) differ slightly. This disagreement might be 

explained by the small variation of the potential energy 

of the system during MD simulation due to the relaxation 

of the system. This effect cannot be accurately described 

in the HTDE but actually has a negligible influence on 

the value of the thermal conductivity (see discussion in 

appendix). Therefore, for all the systems considered 

hereafter, the value of the thermal conductivity is 

determined with the same methodology than for the 

dense silica.  

 

Fig.6. Thermal conductivity (point) and adimensional mean deviation ; (square) versus the simulation duration. 

 

Fig.7. Temperature profile obtained from MD and HTDE for the 

(90��	�) system. 

All the values of the thermal conductivities obtained 

for all the system sizes and directions of heat transfer are 

gathered on figure 8. For smaller systems, the values are 

quite different in the x, y and z directions while for large 

systems, this difference decreases and almost vanishes. 

As the characteristic size of the pores is 10 �	  then the 

anisotropy of the thermal conductivity for the smaller 

systems is due to the anisotropy of the geometry of the 

system. This anisotropy originates from the pore 

coalescence during the negative pressure cycles applied 

for the aerogel’s generation process due to the very low 

target density. For larger systems, the geometry becomes 

isotropic, so does the thermal conductivity. This result is 

coherent with the one already shown by Gonçalves et al. 

[5] for the elastic modulus. 

These predicted values of the thermal conductivity 

of silica aerogel might be quite different from the real 

one since, as discussed in the previous section, the 

prediction for dense amorphous silica is an 

overestimation of the experimental value. Moreover, our 

silica aerogel systems are quite different from real 

systems that have already been experimentally 

characterized. Real systems exhibit a two-scale 

organization: the nanoscale that has the same geometric 

characteristic than our silica aerogel and a larger scale 

due to the forming process of the final insulators.  

However, in previous studies, it has been shown that the 

macroscopic properties actually depend on the nanoscale. 

This is the case for the variation of the elastic modulus 

and thermal conductivity which depends on the system 

density [49,50]. Gonçalves et al. [5] has also shown that 

the elastic modulus power law dependence has the same 

exponent value as modeling or experimental studies [51–

53]. So, the aim is to predict the density variation of the 

thermal conductivity of silica aerogel, to be compared 

with the experimental one. 

 

Fig.8. Thermal conductivity values obtained for different system size. 

The density of silica aerogel is 250��. 	
�. 

Eleven aerogel systems of different densities � =
250, 280, 320, 375, 450, 530, 660, 780, 1050, 1590  

and 2255��. 	
�, with respectively volume t = 90�, 

743, 703, 683, 643, 603, 563, 533, 483, 423 and 373 � � 3,  

are generated. The number of atoms is almost the same 

for all these systems. The absolute value of the heat flux 

imposed on each side of the simulation boxes are 

respectively: p = 4.09, 3.81 3.82, 3.81, 3.90, 39.6, 40.9, 42.5, 46.2, 53.4 and 118.2 × 10rG. 	
 . The 

heat flux for systems with high density is higher in order 

to prevent that the temperature fluctuations are of the 

same order as the temperature difference imposed on 

each side of the simulation box. The variation of the 
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thermal conductivity is then plotted as a function of the 

system density (figure 9). For each density, the values of 

the thermal conductivities in the �, s and k directions are 

almost the same, indicating that for each density, the 

system size is large enough to be considered 

homogeneous. Also, the thermal conductivity clearly 

varies as a power law function of the density: 

� = u�� 

Our coefficient v = 1.77 is much larger than the one 

predicted by Ng and Yeo [14] �v = 1.01�, for a density 

range from � = 320 to 990��. 	
�, but their system 

size was almost five time smaller than ours. However, 

note that the system size has to be large enough to ensure 

that the system is representative of bulk silica aerogel.  

Fricke et al. [54] derived a model for the thermal 

conductivity of aerogels. Based on this model and the 

sound velocity measurements in aerogels Gross et al. 

[55] and Hrubesh et al. [56] calculated a value of b = 

1.88. Thus, our value of b is in good agreement with this 

prediction. This coefficient b has also already been 

experimentally determined by Fricke et al. [57] and Jain 

et al. [58]. The reported experimental values of b range 

between 1 and 1.65. In these two papers, it has been 

highlighted that b strongly depends on the elaboration 

process.  

 Another empirical model has been proposed by 

Emmerling et al. [59]. It is based on the fractal 

dimension wx of silica aerogels. As wx is around 2 for the 

density range of interest here (around 200 � � . � 
3) they 

determined a value b = 1.5, which seems to be in good 

agreement with experimental results [60]. However, for 

our silica aerogel systems, wx varies when the density 

varies [5], the value of b should also varies with the 

density. To summarize, the relative variation of the 

thermal conductivity as a function of the density in our 

simulated silica aerogel is in good agreement with 

previous results. However, the comparison with 

experimental results is quite difficult since the 

interatomic potential does not allow for the real 

complexity of chemical interactions and chemical 

diversity to be reproduced.  

 

 

Fig.9. Thermal conductivity of silica aerogel function of the density. 

4. Summary 

 

The prediction of silica aerogel thermal conductivity 

is of great interest for material engineering. Due to the 

nanostructure of silica aerogel, the atomic description of 

the material is mandatory for the conduction contribution 

to the thermal conductivity. Molecular Dynamics 

simulation is an appropriate tool but the drawback of this 

technique is the large computational time linked to the 

choice of the interatomic potential and also due to the 

simulation strategy to predict the thermal conductivity.  

In this paper, the computational time is first 

significantly reduced thanks to the use of the interatomic 

potential from Carré et al. [3] which has already been 

evaluated for MD simulation of silica aerogel mechanical 

properties [5,6]. Secondly, we took advantage of the 

diffusive nature of heat transfer in silica aerogel to 

propose a new methodology for the thermal conductivity 

prediction. It is based on the comparison of the transient 

temperature field given by the MD simulation and by the 

solution of the heat transfer diffusive equation. This new 

methodology makes it possible to reduce the computing 

time from above 10�� with classical NEMD to 2.6�� for 

our large systems of almost 903 � � 3. 
The method has been validated by comparing the 

prediction of the thermal conductivity of dense silica 

using classical NEMD and the proposed methodology. It 

is then used to predict the thermal conductivity of silica 

aerogels. The thermal conductivity of silica aerogels has 

been determined as a function of the system size for a 

density of 250 � � . � 
3. For such a density, the average 

pore size is 10 nm. The anisotropy of the thermal 

conductivity due to the presence of pores in the aerogel 

decreases when the system size increases and the system 

may be considered isotropic when it reaches 90 nm. This 

is the first time such a system size has been considered 

for heat transfer simulation. 

The thermal conductivity of silica aerogel has also 

been calculated as a function of the aerogel density. As 

expected, the thermal conductivity exhibits a power law 

dependence with the density. The power factor is in good 

agreement with the experimental results.  

This new methodology to predict the thermal 

conductivity might be used to study materials in which 

conduction heat transfer is diffusive but which require 

the atomic description of large volume. 
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Appendix 

Model difference between HTDE and MD simulations 

 For dense silica, the temperature fields calculated 

solving the HTDE (equations 1 and 2) and Molecular 

Dynamics simulations match quite well (see figure 5). 

Thus, the identification of the thermal conductivity is 

reliable. For silica aerogel, there is a difference between 

the HTDE solution and the MD simulation: this is shown 

on figure 7 and moreover the mean deviation ; is larger 

than 1 (figure 6). Thus, one has to discuss the reason of 

this difference. To illustrate the discussion, the largest 

system (903 � � 3) with the lowest density (250 � � . � 
3) 
is considered. First, it is important to understand the 

origin of the difference between the temperature fields, 

since it might help to modify the model used to simulate 

heat transfer in the aerogel considered as a continuous 

medium. 
The main point is that the mean temperature of the 

system (so its kinetic energy) during the MD varies 

between 300.8K and 302.1K (figure A1). This is not 

expected since during heat transfer simulation the same 

quantity of energy is given to the hot source and taken 

from the cold source of the system (Fig. 1a); the mean 

temperature of the system must remain constant during 

all the simulation. We also noted that during the MD 

simulation, the total energy is constant, which is coherent 

with the boundary condition for heat transfer simulation 

while the potential energy decreases (Figure A2) and the 

kinetic energy (so its temperature) increases. Thus, we 

think that the scenario that leads to the temperature 

increase is the following (Figure A3): during the 

simulation, the system experiences relaxations, giving 

rise to a decrease of potential energy by the value !M 

corresponding to a virtual state of the system which 

correspond to the relaxed system. As the total energy of 

the system is constant and due to the equipartition 

theorem, the energy !M due to the relaxation is given 

back to the system in the virtual state, half of it is 

transformed into kinetic energy (which is equivalent to a 

temperature rise) and the other part into potential energy. 

So, between the initial state and the final state of the 

simulation, the kinetic energy increases while the 

potential energy decreases. For the heat transfer model, 

this is equivalent to add a term source in the HTDE:         

�� �����, ��
�� = � � ����, ��

�� + � 

 Using the time variation of the temperature and 

potential energy, it is possible to identified a source term 

function of time. To identify the thermal conductivity, 

the only change to do in the methodology is to add the 

source term in the HTDE. 

 

Fig.A1. Mean temperature of the system obtained from the solution of 

the HTDE with the source term compared to MD mean temperature. 

 

 

Fig.A2. Potential energy variation of the system during MD heat 

transfer simulation. 
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Fig.A3. Principle of the energy variation during the transient NEMD 

simulation. 

 The results are shown on figure A4 and 

compared to the one obtained without the source term. 

Accounting for the source term do not change the value 

of the thermal conductivity, but it decreases significantly 

the mean deviation ;. However, ; is still larger than 1. 

To our point of view, this is due to the fact that in our 

model, the source term is homogeneous while in MD 

simulation, this source term is due to local relaxation. 

This is however not possible to describe the spatial 

variation of the source term. So, there will always be a 

model difference between the HTDE and the MD 

simulation. The figure A5 confirms this assumption: the 

new temperature histories near the heat sources with MD 

simulation and the solution of HTDE with the source 

term exhibit a better agreement near the hot source and it 

seems that the agreement is less good near the cold 

source (see figure 7 for the same comparison without the 

source term) : due to the local nature of the source term it 

is not possible to have a perfect agreement between the 

two solutions in the whole system. 

 

 

 

Fig.A5. Temperature history near the hot and cold sources. 

Comparison between MD results and the HTDE with source term. 

 As a conclusion, it is clear that the value of the 

thermal conductivity does not change if the term source 

is considered or not in the HTDE (several tests have been 

done for other system sizes and density), thus the results 

for the thermal conductivity are all obtained solving 

equation 1 of the paper without the source term. 

 

 

 

 

 

 

 

Fig.A4. Thermal conductivity and mean deviation ; as a function 

of the simulation duration without (points and filled squares) or 

with (circles and empty squares) source term. 
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