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abstract: We investigate the evolution of parental care and can-
nibalism in a spatially structured population where adults can either
help or kill juveniles in their neighborhood. We show that spatial
structure can reverse the selective pressures on adult behavior, leading
to the evolution of parental care, whereas the nonspatial model pre-
dicts that cannibalism is the sole evolutionary outcome. Our analysis
emphasizes that evolution of such spatially structured populations is
best understood at the level of the cluster of invading mutants, and
we define invasion fitness as the growth rate of that cluster. We derive
an analytical expression for the selective pressures on the trait and
show that relatedness and Hamilton’s rule are recovered as emergent
properties of the spatial ecological dynamics. When adults can also
help other adults, the benefits to each class of recipients are weighted
by the class reproductive value, a result consistent with that of other
models of kin selection. Finally, we advocate a different approach to
moment equations and argue that even though the development of
moment closure approximations is a necessary line of research,
much-needed ecological and evolutionary insight can be gained by
studying the unclosed moment equations.

Keywords: altruism, moment equations, invasion fitness, age struc-
ture, cannibalism, kin selection.

Parental care is a particular form of altruism where an
individual conveys benefits to its offspring at a cost to
itself. Explaining how such a behavior can evolve therefore
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runs up against the fundamental puzzle of altruism: be-
cause it does not pay to behave altruistically in a selfish
population, one can expect that altruism cannot evolve in
the absence of mechanisms counterbalancing the fitness
cost of altruism. Kin selection has been argued to be one
of the main forces driving the evolution of parental care:
parents that help their offspring have an indirect fitness
benefit because parent and offspring are related. As Ham-
ilton (1964, p. 2) argued in his seminal paper, “there is
nothing special about the parent-offspring relationship ex-
cept its close degree and a certain fundamental asym-
metry.” Indeed, parental care is just a special form of co-
operation and a special case of the general theory of kin
selection. The fact that there is “nothing special about the
parent-offspring relationship” can be more clearly seen if
one considers the alternative behavior of infanticide or
cannibalism. In some cases, it can pay more to a parent
to kill or eat its offspring than to provide them with care
(Polis 1981).

Parental care and cannibalism are opposite but wide-
spread behaviors. Whereas studies of the evolution of pa-
rental care abound, mainly in relation to sexual selection
theory and parent-offspring conflict (Clutton-Brock
1991), the evolution of cannibalism has received less at-
tention, perhaps because it has long been considered an
abnormal behavior. Nevertheless, there is now a large body
of evidence showing that adaptive cannibalism occurs in
a wide range of taxa, from ciliates to vertebrates. Current
predictions and evidence suggest that cannibalism should
be favored under conditions of high population density,
food shortage, and increased competition for resources
(Polis 1981; van den Bosch et al. 1988; Elgar and Crespi
1992) or an increase of the cost-to-benefit ratio of parental
care (Manica 2004). Often, cannibalism is an asymmetric
interaction (typically, adults eating juveniles), where, ac-
cording to kin selection theory, the main cost for the can-
nibal should be the risk of eating a relative. Despite this,
filial (or sibling) cannibalism is common, especially in fish
(Manica 2002).

It is often thought that mechanisms of recognition or
discrimination of related individuals are required for kin
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selection to opeate (see, e.g., Pfennig 1997). Although pa-
rental care is usually directed toward related individuals
(Waldman 1988; Clutton-Brock 1991), examples of indis-
criminate care exist, for instance, communal nursing in
mammals (Hoogland et al. 1989) and communal breeding
in birds (Brown 1987). Besides, parental care in many
noncolonial birds involves indirect recognition through
spatial cues, and those birds treat any young in their nest
as offspring (Beecher et al. 1981), which creates oppor-
tunities for brood parasites (Rohwer and Freeman 1989).
Examples also exist in other species, such as ground squir-
rels (Holmes and Sherman 1982) and beetles (Müller et
al. 1990).

Also as expected, cannibalism is generally directed away
from relatives (for reviews and also for examples of kin-
biased cannibalism, see Elgar and Crespi 1992; Pfennig
1997), but several studies have given evidence of indis-
criminate cannibalism, including egg cannibalism by
hatchling snails (Baur 1987) and by nestmate ant queens
(Bourke 1994), larval cannibalism in the Indian meal moth
(Boots 2000) and in tree-hole mosquitoes (Sherratt et al.
1999), filial cannibalism in four species of fish (DeWoody
et al. 2001; Bandoli 2006), cannibalism in poison frogs
(Summers and Symula 2001), and occasionally pup can-
nibalism in rodents (Elwood and Ostermeyer 1984; Hoog-
land 1985).

These findings do not imply that kin selection is unable
to explain such behaviors. Hamilton’s (1964) derivation
makes it clear that an altruistic behavior (e.g., parental
care) will be selected if one meets, on average, sufficiently
many related individuals without having to discriminate
between kin and nonkin (Mateo 2004; van Baalen and
Jansen 2006). Limited dispersal is one of the ecological
mechanisms that can lead to individuals having a higher
probability of meeting kin than nonkin.

Hamilton (1964) coined the term “viscous population”
to refer to populations with low dispersal. He conjectured
that in such viscous populations, altruism should be fa-
vored because individuals tend to be surrounded by rel-
atives. This has led to a wealth of theoretical studies on
spatial models of cooperation. Hamilton’s conjecture was
at first dismissed by patch models in which increased local
competition caused by population viscosity could cancel
the benefits of local altruistic interactions (Taylor 1992a;
Wilson et al. 1992; Queller 1994). These models assume
that local population regulation is inelastic (Taylor 1992b),
with fixed patch density, so that groups (patches) con-
taining more altruists suffer from increased competition.
This has led to the idea that for altruism to be favored,
competition must take place at a more global scale than
altruistic interactions (Kelly 1992, 1994; West et al. 2002).
At the same time, Matsuda et al. (1992), Harada et al.
(1995), and Nakamaru et al. (1997) have shown that al-

truists and nonaltruists can coexist in a viscous population
but not when the population is well mixed. In these mod-
els, space is modeled as a network of sites where altruistic
interactions and competition for space both take place
locally. Building on these models, van Baalen and Rand
(1998) have shown that the invasion condition of altruists
can be interpreted as an emergent Hamilton’s rule. Le
Galliard et al. (2003, 2005) have further studied the in-
terplay of altruism and mobility and have shown that low
habitat saturation could cause kin competition to become
negligible. Despite the variety of approaches, we begin to
have a clearer theoretical picture of how spatial structure
affects both kin selection and kin competition, and the
general conclusion is that spatial structure can provide a
subtle yet decisive advantage to cooperation (but see
Hauert and Doebeli 2004 for a discussion).

The role of spatial self-structuring as a template for
evolution has drawn much attention during the past 20
years (Boerlijst et al. 1993; Keeling and Rand 1995; Rand
et al. 1995; Read and Keeling 2002). Spatial structure is
an important component of the feedback loop between
ecological and evolutionary dynamics: the evolution of a
given trait shapes the local structure of the population,
which in turn creates new selective pressures acting on the
evolving trait (Le Galliard et al. 2005; Lion et al. 2006).
As a consequence, the evolution of spatially structured
populations often displays features different from the evo-
lution of well-mixed populations. For instance, parasite
virulence and transmission have been shown to evolve
toward lower levels in viscous populations (Boots and Sa-
saki 1999; Read and Keeling 2002; van Baalen 2002); the
potential for evolutionary branching can be reduced (Má-
gori et al. 2005), and, as discussed above, cooperation is
generally favored in viscous populations.

A novel aspect of this work is that we extend previous
analyses of the evolution of cooperation in spatially struc-
tured populations by incorporating a stage structure. In
our model, adults can either help or kill juveniles de-
pending on the value of a continuous trait, and we examine
whether population viscosity can favor the evolution of
care from adults to juvenile, as can be expected from pre-
vious spatial models of cooperation. We recover a spatial
version of Hamilton’s rule and show that spatial clustering
can provide an explanation for the origin of parental care
in the absence of kin recognition. We discuss the concep-
tual implications and limitations of these results and refer
the reader to a companion article (S. Lion and M. van
Baalen, unpublished manuscript) for more technical is-
sues. Finally, we advocate the use of correlation equations
(Matsuda et al. 1992; Rand 1999) as a useful analytical
tool to get qualitative insight into the evolution of spatially
structured populations.
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Figure 1: Left, schematic description of the life cycle in the model for an average individual. Note that reproduction depends on the availability of
empty sites around an adult. Right, corresponding rules for the updating of the probabilistic cellular automaton.

Evolution of a Stage-Structured Viscous Population

The Model

We consider a population of juveniles (J) and adults (A)
living on an (infinite) network of sites. Each site can be
empty (o) or occupied by one individual. Juveniles become
adults at a constant maturation rate m. Adults reproduce
clonally at rate bA to an empty neighboring site. Repro-
duction is therefore density dependent. Juveniles and
adults have background mortality rates dJ and dA, respec-
tively (fig. 1). Mobility of juveniles and adults is also in-
cluded in our framework, but we shall not address the
effect of dispersal until later in the article.

We assume that adults can either increase or decrease
the mortality rate of neighboring juveniles, depending on
the value of a continuous trait c that can be negative (in-
fanticide or cannibalism) or positive (care). We also make
the assumption that adults cannot discriminate their kin
and discuss later how kin discrimination could affect our
conclusions.

The average death rate of a juvenile individual will then
be

d p d � bcq , (1)J J A/J

where b is the conversion efficiency of adult behavior into
juvenile survival and denotes the local density of adultsq A/J

around a juvenile, that is, the probability of finding an
adult in the neighborhood of an average juvenile. Also,
for the sake of simplicity, we assume a linear relationship
between the trait and the phenotypic effect, but the whole
analysis can be readily extended to general functional
forms b(c).

We further assume a trade-off between the trait c and
adult reproduction bA. Because adults will pay the cost or
gain a benefit from their behavior only if there is a juvenile
in their neighborhood, the birth rate of an adult will de-

pend on the local density of juveniles. In appendix A, we
show that the average birth rate takes the form

n � 1
b p b � g(c) q , (2)A 0 J /Aon

where n is the number of nearest neighbors, denotesqJ /Ao

the local density of juveniles around an adult that has at
least one empty site in its neighborhood, and g(c) and c
have the same sign, so that adult reproduction is de-
creased by care and increased by cannibalism. The factor

reflects the fact that a successfully reproducing(n � 1)/n
adult has at least one empty site among its neighbors and
therefore cannot receive more than interactions(n � 1)/n
with surrounding juveniles.

Table 1 lists the symbols used in the model, and ap-
pendix A gives a method to derive the expressions of dJ

and bA. Note that bA and , which sets an upper limitd 1 0J

to the allowed value of c.

Spatial versus Nonspatial Evolutionary Dynamics

The nonspatial counterpart of this model assumes that
adults can interact with any juvenile in the population,
instead of interacting only with juveniles in their neigh-
borhood, and can deposit an offspring in a randomly cho-
sen empty site. Thus, local densities in equations (1) and
(2) are replaced with the global densities pA and pJ ,
respectively.

In order to show how such different assumptions on
the scale of the interactions can affect the selective pres-
sures on adult behavior, we performed stochastic simu-
lations of both the spatial and the nonspatial version of
the model. We use a probabilistic cellular automaton (Dur-
rett and Levin 1994a, 1994b) with asynchronous updating
on a triangular lattice with periodic boundary conditions
(each site has six neighbors) and assume that if it starts
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Table 1: Table of parameters and variables

Type and symbol Description

Space:
n Number of nearest neighbors

Demography:
bA Birth rate of adult A
b0 Background reproduction rate of adults
dJ Background mortality rate of juveniles
dA Background mortality rate of adults
m Maturation rate
c Resident altruistic or cannibalistic trait

′c Mutant altruistic or cannibalistic trait
b Conversion efficiency of adult behavior into juvenile survival
dJ Mortality rate of juveniles
g(c) Trade-off function between trait and reproduction

Variables:
px Global density of type x
qi/j Local density of type i as seen by type j ( )0 ≤ q ≤ 1i/j

qi/jk Local density of type i as seen by j individuals that have a k neighbor ( )0 ≤ q ≤ 1i/jk

from a population with zero investment, the trait c can
evolve through rare mutation events with a small mutation
step Dc (e.g., reproduction is unfaithful with a small prob-
ability, and when that occurs, an adult with trait c gives
birth to a mutant juvenile with trait or withc � Dc c � Dc
equal probability). Nonspatial simulations were realized
using an individual-based stochastic model with global
reproduction to a random empty site and global inter-
actions of adults with a random juvenile. Alternatively, we
can also simulate the nonspatial model by scrambling the
whole lattice at each time step so as to obtain a well-mixed
population (Wilson 1998). We have also used a square or
a random lattice or a normal distribution of mutations.
These different assumptions do not affect the qualitative
results.

We present in figure 2 the evolutionary trajectories of
the mean adult investment for different realizations of the
spatial and nonspatial stochastic processes under the as-
sumption of a linear trade-off between adult investment
and reproduction (e.g., ). Despite the variabilityg(c) p gc
due to stochasticity, the trend is clear: cannibalistic be-
havior is favored in the well-mixed population, while spa-
tial structure promotes the evolution of care. Thus, global
interactions and global migration promote cannibalism,
and as interactions and migration become more localized,
there is a reversal in the selective pressures, leading to the
evolution of care.

Spatial Invasion Fitness and the Unit of Selection

To derive some explicit conditions for the spread of a rare
mutation, we find analytical models of spatial ecological
dynamics to be useful because they can be embedded in

more general frameworks such as population genetics
(Rousset 2004) or adaptive dynamics (Metz et al. 1992;
Geritz et al. 1998) in order to link ecology and evolution.
Here, we use the correlation equations approach (Matsuda
et al. 1992; Rand 1999); that is, we track the dynamics of
spatial moments. Several previous studies (van Baalen and
Rand 1998; Boots and Sasaki 1999; Le Galliard et al. 2003,
2005; Lion et al. 2006) have shown that correlation equa-
tions can be used to derive an explicit analytical expression
for the invasion fitness of a rare mutant in a spatially
structured resident population. The distinct feature of our
approach is that we show that we can get some insight
into the selective pressures on the trait without knowing
the full dynamics of the system.

We focus on the dynamics of the expected densities of
juveniles (pJ) and adults (pA) in the resident population,
which are given by the following equations (app. A):

dp /dt p b q p � (d � m)pJ A o/A A J J , (3){dp /dt p mp � d pA J A A

where is the local density of empty sites around an adultqo/A

and dJ and bA are given by equations (1) and (2), respectively.
The resident population reaches an equilibrium on the eco-
logical timescale, and throughout the article, we denote the
resident equilibrium densities with an asterisk (e.g., , ,∗ ∗p pJ A

). Three points are worth mentioning. First, these equa-∗qo/A

tions give the exact dynamics of the changes in expected
densities of juveniles and adults, and no approximation of
higher-order spatial moments is needed. Second, the full
system of equations, giving the dynamics of the higher-order
spatial moments, is not necessary to derive these equations,
as shown in appendix A. Third, the effect of local or long-
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Figure 2: Evolution of adult behavior in spatial (triangular lattice, solid) and nonspatial (dotted) models. Six stochastic realizations are shown in
each case, starting from . Parameter values: , , , , . Mutation rate: 0.004. Mutation step: .c p 0 b p 4 d p 1.5 d p 1 m p 2 g(c) p 0.4c Dc p 0.010 J A

The time unit is the average duration of the reproductive (adult) stage. Lattice size: .100 # 100

distance dispersal of juveniles (after birth) and adults is also
included in those equations, but because dispersal events
do not change the number of individuals, dispersal param-
eters do not appear in equation (3). How dispersal enters
the problem is discussed later.

If we introduce a rare mutant , the dynamics for′ ′(J , A )
the densities and are obtained from equation (3) byp p′ ′J A

replacing J and A with and . If the mutant is rare, we′ ′J A
can assume that the resident does not “feel” the presence
of the mutant. However, because in a spatial model mu-
tants will be clustered, mutant individuals will feel the
presence of both resident and mutant individuals. This
leads to the following average death and birth rates for
the mutant:

′d p d � bcq � bc q , (4)′ ′ ′ ′J J A/J A /J

n � 1′b p b � g(c ) (q � q ). (5)′ ′ ′ ′A 0 J /A o J /A on

Note that although these rates depend on both the resident
and the mutant traits, either directly or indirectly through
the local densities, we refrain from stating this explicitly
for notational simplicity.

When a mutant appears in a spatially structured pop-
ulation, it tends to form a cluster of mutant individuals

(fig. 3) whose local structure is determined by the de-
mographic parameters of both resident and mutant in-
dividuals. Whether this invading cluster expands or decays
thus determines the fate of the mutant. Consequently, the
per capita growth rate of a mutant depends on the local
structure of the cluster. As shown by van Baalen and Rand
(1998) and Ferrière and Le Galliard (2001), the invading
cluster defines the relevant scale on which to define in-
vasion fitness in spatially structured populations. A pos-
itive invasion fitness entails that the mutant will grow
exponentially with a characteristic cluster structure (much
like a stable age distribution in nonspatially structured
populations). As van Baalen and Rand (1998) have pointed
out, spatial invasion fitness and cluster structure must be
computed at the same time so that the invading cluster
represents a physical structure associated with fitness and
can be interpreted as the relevant “unit of selection.”

The novel aspect of this model is the fact that the mutant
population is structured in age classes. Thus, to describe
the fate of an invading mutant, we need to follow the
densities of both juvenile and adult mutants. It turns out
that the per capita growth rates of both classes are equal
to the invasion fitness in the initial phase of invasion (app.
B; for a more detailed treatment, see S. Lion and M. van
Baalen, unpublished manuscript).
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Figure 3: Typical snapshot of a cluster of mutants (filled) invading a
resident population (open) on a triangular lattice. Small hexagons p

. Large .juveniles hexagons p adults

The unit of selection is characterized by a precise local
structure. Interestingly, it also has a precise stage structure
that is directly determined by the spatial structure of the
cluster. Indeed, we show in appendix B that the proportion
of mutant juveniles in the cluster of mutants is given by

p q′ ′ ′J J /Aw p p . (6)′J p � p q � q′ ′ ′ ′ ′ ′J A A /J J /A

The important point is that when a mutant appears in the
population, it will create and thus experience a different
local structure but also, as a consequence, a different stage
structure (e.g., the relative proportion of mutant juveniles
may be greater or smaller than observed in the resident
population).

Selective Pressures on Adult Behavior

We can use the definition of invasion fitness we just pre-
sented to derive the selection gradient for c, which gives
information about the direction and potential endpoints
of evolution. To avoid unnecessary technical details, we
choose to present and analyze the main result without
producing its derivation (which is given in app. E).

Selection Gradient

The expression we obtain for the selection gradient con-
tains three components,

�l �b q d �′ ′A o/A A¯∝ bq � � bc (q � q ), (7)′ ′ ′ ′ ′J /A A/J A /J′ ′ ′�c �c m �c

with everything being evaluated at (meaning that′c p c
we look at the selective pressures for a mutant close to
the resident). A bar indicates that the local density is eval-
uated for a neutral rare mutant, that is, a mutant identical
to the resident; the other local densities are associated with
the unit of selection.

It is important to note that equation (7) is derived using
solely an assumption of small mutations. In particular, we
do not use any approximation of the spatial structure (e.g.,
moment closure approximations; Sato et al. 1994; van Baa-
len 2000). Equation (7) is therefore valid for any network
structure, provided that the assumption of weak selection
holds.

We can use equation (7) to recover the nonspatial se-
lection gradient. In the mean-field model, the local density

becomes , which is 0 for a rare mutant. Likewise,q̄ p′ ′ ′J /A J

the local densities and converge to the globalq q′ ′ ′A/J A /J

densities so that , which does∗q � q p p � p ≈ p′ ′ ′ ′A/J A /J A A A

not depend on the trait of the mutant. Thus, the first and
third terms of equation (7) vanish in the mean-field limit.
Finally, the local density is simply ,∗ ∗ ∗q p p 1 � p � p′o/A o J A

and the selection gradient for c in the nonspatial model
reduces to

�l �b ′A∗ ∗∝ (1 � p � p ) . (8)J A′ ′�c �c

From equation (8), we see that if we assume a negative
trade-off between adult investment and reproduction, the
selection gradient will be negative in the nonspatial model,
leading to the evolution of cannibalism, as shown in figure
2.

Selective Pressures

Equation (7) allows us to identify three components (“se-
lective pressures”) to the selection gradient, summarized
in figure 4. The first selective pressure ( ) is a measure¯bq ′ ′J /A

of the efficacy of care, which depends on the clustering of
mutant adults and mutant juveniles. Because is alwaysq̄ ′ ′J /A

positive, the clustering of the mutants constitutes a positive
pressure on the evolution of care. As spatial structure is
destroyed (e.g., through an increase in migration rates),
this pressure will become weaker because mutant adults
and mutant juveniles will tend to be less aggregated. Ul-
timately, in the mean-field model, the selective pressure
will vanish ( ), so that care will be counter-q̄ ≈ p p 0′ ′ ′J /A J

selected. Thus, the term provides an explanation for¯bq ′ ′J /A

the emergence of care in spatial models as opposed to
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Figure 4: Summary of the selective pressures on parental care.

nonspatial models. This also highlights how spatial struc-
ture can give rise to novel selective pressures. It must be
kept in mind, however, that spatial structure is a two-
edged sword and can also create selective pressures against
care, as we shall see in the description of the second se-
lective pressure. It is worth noting that assuming that the
trait c affects nonlinearly the survival of juveniles (i.e.,

) would lead only to replacing with¯b p b(c) bq ′ ′J /A

.′ ¯(�b/�c )q ′ ′J /A

The second selective pressure represents the marginal
gain (or loss) in the reproductive output of adults resulting
from a mutation in adult behavior. This pressure can be
split into two components that represent the direct and
indirect effect of adult behavior on adult reproduction,

�b q �b �q′ ′ ′ ′A o/A A o/A∗p q � b . (9)o/A A′ ′ ′�c �c �c

The direct effect of adult behavior ( ) is also∗ ′q (�b /�c )′o/A A

present in the nonspatial model (eq. [8]) and represents
the cost of care due to the trade-off with reproduction. If
caring for juveniles decreases the reproduction effort ,b ′A

the selective pressure will be negative. This component
will be more important for low habitat saturation around
adults ( high). Here, we recover the classical expecta-∗qo/A

tion that a trade-off relationship sets an upper limit to the
evolution of the trait. However, the costs due to the trade-
off do not take the same form in the spatial and mean-
field models. In the nonspatial model, we have (see app.
A)

′ ′ ′ ∗b p b � g(c )(p � p ) ≈ b � g(c )p ,′A 0 J J 0 J

which leads to the following expression of the trade-off:

�b �g′A ∗p �p ,J′ ′�c �c

whereas in the spatial model,

�b n � 1 �g n � 1 �′A ∗p � q � g(c) (q � q ).′ ′ ′J/Ao J/A o J /A o′ ′ ′�c n �c n �c

An additional term ′�g(c)[(n � 1)/n](�/�c )(q � q )′ ′ ′J/A o J /A o

appears that measures the marginal gain (or loss) in the
local density of juveniles around a reproducing adult. In
some cases, we may safely neglect this component. But the
complete analysis helps us realize that this may not always
be the case (although this component rightly vanishes
when , e.g., at ).g(c) p 0 c p 0

The indirect effect of adult behavior is and′b (�q /�c )′A o/A

represents the marginal gain (or loss) of empty sites avail-
able for reproduction resulting from a mutation in adult

behavior. It will be more important when the reproduction
effort of adults bA is high.

The third selective pressure ( ′bc(d /m)(�/�c )(q �′A A/J

) represents the marginal gain (or loss) due to theq )′ ′A /J

change in age structure of the invading cluster. It depends
on the local density of adults around a mutant juvenile,
the resident trait (bc), and the juvenile/adult ratio at eco-
logical equilibrium ( ). Because this pressure∗ ∗d /m p p /pA J A

is proportional to the trait of the resident, it vanishes when
the adults and the juveniles do not interact in the resident
population ( ). Extensive numerical simulations (S.c p 0
Lion and M. van Baalen, unpublished manuscript) confirm
that this pressure is negligible.

When all selective pressures compensate, the selection
gradient is 0, which indicates an evolutionary singularity.
Adaptive dynamics methodology can then be used to in-
vestigate the evolutionary stability of this singularity. The
precise form of the trade-off will then become very im-
portant in determining the number of evolutionary sin-
gularities and their stability (Kamo et al. 2006).

Interage Relatedness

An important ingredient of the selection gradient is the
local density of adults as seen by juveniles, . Our modelq̄ ′ ′J /A

is a special case of a general class of models involving
pairwise interactions between a donor and a recipient. In
such models, invasion fitness depends on the relatedness
of the recipient to the donor (Grafen 1982), and Day and
Taylor (1998) have shown that the correct definition of
relatedness for rare mutants is the probability that the
recipient is a mutant, conditional to the fact that the donor
is a mutant. This allows another interpretation of the local
density . Because gives the expected probability¯ ¯q q′ ′ ′ ′J /A J /A

of finding a mutant juvenile in the neighborhood of a
mutant adult, it is a measure of interage relatedness and
is consistent with the expression of relatedness derived by
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Day and Taylor (1998; see app. C for a more formal
derivation).

An analytical expression for can be obtained in theq̄ ′ ′J /A

general case (S. Lion and M. van Baalen, unpublished
manuscript), but it is rather messy and technical. To obtain
a more interpretable expression of interage relatedness, we
will make one exception to our rule of not using any
moment closure approximation and work out the ex-
pression of using standard pair approximation (Mat-q̄ ′ ′J /A

suda et al. 1992; see S. Lion and M. van Baalen, unpub-
lished manuscript, for an explicit derivation). Moreover,
we will only discuss the expression of for c close toq̄ ′ ′J /A

0 and no migration (totally viscous population). Keep in
mind, however, that standard pair approximation will yield
a lower bound to the real value of relatedness because it
tends to underestimate the clustering of mutants. The ex-
pression for interage relatedness is

∗1 b q0 o/Aq̄ p , (10)′ ′J /A n d � d � mA J

where n is the number of neighbors of a site and is a
measure of population viscosity. If n is high, then each
site is connected to many neighbors. In the limit ,n r �
each site is connected to every other site, and we recover
the mean-field limit. Therefore, as expected, is 0 inq̄ ′ ′J /A

the mean-field limit. With migration of juveniles or adults,
an additional positive term appears on the denominator
that is proportional to the rate of migration. Thus, in-
creasing migration will disrupt the pattern of relatedness.
This gives another way to recover the mean-field limit.

The numerator represents the reproductive output∗b q0 o/A

of a resident population at equilibrium. Using the fact that
at equilibrium (see eq. [3]), we can∗q p (d � m)d /(b m)o/A J A A

further simplify this expression into

1 1/m
q̄ p , (11)′ ′J /A n [1/(d � m)] � (1/d )J A

which is population viscosity ( ) times the average frac-1/n
tion of an adult’s lifetime spent in the juvenile stage.
Clearly, the selective pressure for care will be higher for
high population viscosity (n small) and long duration of
the juvenile stage. As the maturation rate increases, it will
pay less to take care of juveniles.

When Should Adults Switch from Cannibalism
to Parental Care?

In which direction will evolution take a population with
no juvenile-adult interactions ( )? If the spatial se-c p 0
lection gradient is positive at , selection will favorc p 0
positive values of c, leading to the evolution of care. If it

is negative, care will be counterselected, and cannibalism
results.

At the special point , the selection gradient′c p c p 0
is simply

�l �b q′ ′A o/A¯∝ bq � . (12)′ ′J /A′ ′�c �c

Therefore, care will be selected over cannibalism if

�
¯bq 1 � (b q )F . (13)′ ′ ′ ′J /A A o/A′ ′c p0�c

The right-hand side of equation (13) is positive because
care has a negative effect on adult reproductive output.
Therefore, care evolves when the local density of related
juveniles around an adult in the invading cluster is su-
perior to the marginal loss in the expected reproductive
output of an adult. Spatial clustering thus favors the evo-
lution of blind altruism from adults to juveniles, which
results in populations where adults tend to care more for
related juveniles. Such indiscriminate parental care will not
be favored when the fecundity cost of care outweighs the
benefits. In this case, the population will evolve toward
negative levels of investment, that is, infanticide or can-
nibalism. Because the local density of unrelated juveniles
tends to increase when the local density of related juveniles
decreases, another interpretation of the condition for the
evolution of cannibalism is that it pays more to an adult
to kill or eat neighboring juveniles when the probability
that they are not related increases.

Both sides of equation (13) depend on the model pa-
rameters. The benefits of care ( ) decrease when pop-¯bq ′ ′J /A

ulation viscosity increases and eventually vanish in a well-
mixed population. Because competition for space is
weaker in less viscous populations, the costs of care
( ) also decrease when population viscosity′��(b q )/�c′ ′A o/A

decreases, but they eventually saturate, as shown by equa-
tion (8). Consequently, the benefits of care decrease faster
than the costs when viscosity decreases, and there is a
critical viscosity above which equation (13) does not hold
any more and cannibalism is favored (fig. 5).

Inspection of the right-hand side of equation (13) shows
that the marginal gain of cannibalism can be due either
to a direct positive effect (an increase of mutant repro-
duction effort through reallocation to reproduction ofb ′A

the energy extracted from consuming juveniles) or to an
indirect positive effect (an increase of correspondingq ′o/A

to a reduction of competition for open space), a distinction
emphasized by Claessen et al. (2004) in a recent review of
the studies of cannibalistic populations.
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Figure 5: Mean adult investment after 30,000 generations in stochastic simulations on random networks of various connectivity. The average and
standard deviation of 10 runs are shown. Note that the points do not represent evolutionarily stable investments. Mutation rate: 0.003. Other
parameters as in figure 2.

Spatial Versions of Hamilton’s Rule

Equation (13) amounts to a rediscovery of Hamilton’s rule
. Here, the benefits of parental care B are simplyBr 1 C

given by the conversion efficiency b, but the relatedness
and the costs (right-hand side of eq. [13]) dependr p q ′ ′J /A

on local processes and spatial structure. Thus, relatedness
and Hamilton’s principle are recovered as emergent prop-
erties of the spatial system under consideration rather than
postulated from first principles.

Our analysis is not restricted to the case where altruistic
acts are directed to only one class. If we assume that adults
interact in a similar fashion with other adults, with effi-
ciency bA (as opposed to for juveniles), equationb p bJ

(12) becomes (see app. E)

∗�l b q �b q′ ′A o/A A o/A¯ ¯∝ b q � b q � . (14)′ ′ ′ ′J J /A A A /A′ ′�c d �cA

A new term appears ( ) that represents the∗ ¯(b q /d )b q ′ ′A o/A A A A /A

selective pressure on altruism due to helping other adults.
We recognize a measure of relatedness ( ), weighed byq̄ ′ ′A /A

the efficiency bA and by a quantity that we can readily
interpret as the product of adult fecundity ( ) times∗b qA o/A

adult survival ( ). In appendix D, we show that the1/dA

reproductive value of adults in the resident population is
equal to when the reproductive value of juveniles∗b q /dA o/A A

is scaled to 1. Consequently, we can interpret equation
(14) by noting that the benefits of an altruistic act directed
to different age classes are weighted by the reproductive
value of each class. This result is consistent with the con-
clusions of the kin selection models analyzed by Taylor
(1990) and Taylor and Frank (1996), but here, it emerges
as a natural property of the ecological model we consider.
It is satisfying that different approaches lead to similar
conclusions, and we advocate the notion that kin selection
theory can be extended to include more complex ecological
dynamics.

With a method similar to that used to derive equation
(11), we can obtain an analytical expression for . Forq̄ ′ ′A /A

low investment of adults and no migration,

1 1/dAq̄ p , (15)′ ′A /A n [1/(d � m)] � (1/d )J A

which turns out to be quite similar to equation (11), but
now population viscosity is weighted by the fraction of an
adult’s lifetime spent in the reproductive stage.

Link with Previous Unstructured Models

In the limit of high maturation rates ( ), the modelm r �
collapses to the unstructured model with no juvenile class
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studied by van Baalen and Rand (1998) and Le Galliard
et al. (2003). From equations (11) and (15), we see that,
as should be expected, interage relatedness vanishes,q̄ ′ ′J /A

and increases toward (an altruist has, on average,q̄ 1/n′ ′A /A

one altruist neighbor in the invading cluster), as found in
the model of van Baalen and Rand (1998).

Also, the reproductive value of adults ( ) tends∗b q /dA o/A A

toward 1 for high maturation rates. If we use equation
(14), the condition for the evolution of care becomes

�b q′ ′A o/A¯b q 1 � , (16)′ ′A A /A ′�c

which is a spatial version of Hamilton’s rule for unstruc-
tured populations (van Baalen and Rand 1998).

In our model, the benefits of altruism increase survival,
and the costs decrease fecundity. In contrast, if we assume
that the benefits and costs of altruism affect only fecundity
(as in van Baalen and Rand 1998; Le Galliard et al. 2003),
we will obtain a different expression where the marginal
gain of altruism depends on the availability of empty sites
(see app. F). This is because an individual can use a benefit
only if she can effectively reproduce; that is, she must have
an empty site in her neighborhood. Interestingly, if habitat
saturation is low, there will be a high density of empty
sites around an individual, so that selective pressure for
open space becomes negligible, as shown by Le′�q /�c′o/A

Galliard et al. (2005). Conversely, if the availability of
empty sites decreases, the term of kin competition

will become preponderant, which parallels the′�q /�c′o/A

results of Taylor (1992a) and Wilson et al. (1992) that in
an unelastic environment, the effects of kin selection and
kin competition eventually cancel out each other (note,
however, that those earlier models assumed nonoverlap-
ping generations and no demographic stochasticity, which
puts yet another barrier on the evolution of altruism; see,
e.g., Taylor and Irwin 2000; Lehmann et al. 2006). Our
analysis shows that in ecological models of kin selection,
much attention must be given to how the costs and benefits
of altruism affect an individual’s life-history traits. The
impact of kin competition will not be the same whenever
altruism increases an individual’s survival or her
reproduction.

Discussion

This article provides three main results that we hope will
help deepen our understanding of the evolutionary con-
sequences of spatial ecological dynamics. First, we show
that correlation equations can be used to derive analytical
results on the evolution of care and cannibalism in a gen-
eral model of juvenile-adult interactions. Second, we show
that the selective pressures on parental care can be cast

into the form of a variant of Hamilton’s rule that is re-
covered as an emergent property of the ecological dynam-
ics of the model. Third, we present a way to define invasion
fitness in stage-structured, viscous populations. By doing
so, we also shed some light on the level at which selection
takes place in such populations. We first discuss in turn
these three points, and then we address the more meth-
odological aspect of our treatment and discuss a different
approach to moment equations. We conclude by discuss-
ing some of the main limitations and perspectives of this
study.

Selective Pressures on Parental Care and Cannibalism

We show that the evolution of adult investment in our
model is determined by the balance between interage re-
latedness and the costs-to-benefits ratio. In other words,
helping juvenile neighbors is favored when the benefits
weighed by the average relatedness outweigh the repro-
ductive cost of helping, which is the basic argument of
Hamilton’s rule. This cost incorporates both direct and
indirect effects of helping: the energetic cost of helping
can decrease the reproductive effort of the adult, but there
is also an additional ecological cost due to the fact that
decreasing juvenile mortality will increase competition for
resources (here, by depleting the number of empty sites
around an adult). This conclusion generalizes the result
of van Baalen and Rand (1998) on the evolution of altru-
ism to the case where altruistic interactions take place
between individuals belonging to different classes. We also
argue that our analysis supports the view that kin and
group selection are two sides of the same coin in viscous
populations (Grafen 1984; Queller 1994).

In this model, when relatedness is below the threshold
for the evolution of parental care, cannibalism is favored
if eating juvenile neighbors effectively increases the repro-
ductive output of adults, either because of direct effects
(allocation to reproduction of energy gained though can-
nibalism) or because of indirect effects (killing juveniles
reduces the competition for space). Such trade-off between
parental care and cannibalism is consistent with some em-
pirical studies (Neff 2003; Manica 2004). It is also an ex-
ample of “William’s principle” (Sargent and Gross 1993),
according to which cuckolded parents should switch to
alternative investments. In our model, adults that run a
high risk of helping nonrelated juveniles do best by can-
nibalizing juveniles. On the other hand, in the nonspatial
version of our model, cannibalism is always favored be-
cause it increases adult fecundity through direct energetic
effect. This actually represents an extreme case of the mod-
els of Stenseth (1985) and Skurdal et al. (1985), which
predict that even if the gain of cannibalism is small, can-
nibalism by adults on juveniles can evolve if the young
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stages have low reproductive potential compared to the
older stages, particularly in density-regulated populations,
and if the reproductive output is concentrated in the last
part of reproductive age. More generally, our analysis con-
firms the general verbal predictions of Polis (1988) that
cannibalism and intraguild predation can readily evolve
regardless of population structure in space because they
provide the actor with a direct energetic benefit and an
indirect benefit of decreased competition. On the other
hand, evolution of altruistic (or spiteful) nonpredatory
interference can evolve only via kin or group selection.

Our analysis shows that parental care can evolve even
in the absence of kin discrimination. By helping juveniles
in their neighborhood, adults are likely to help related
juveniles. A combination of limited dispersal and “blind”
altruism from adults to juvenile neighbors can thus be a
stepping stone toward the evolution of parental care before
active mechanisms of kin discrimination emerge. In the
absence of such mechanisms, “helping all my young neigh-
bors” is the more parsimonious rule that provides adults
with inclusive fitness benefits (Hamilton 1964; Brown
1987; Mateo 2004). This is commonly observed in bird
species with communal breeding, in which kin recognition
is often absent and both the behavioral rule used by par-
ents and relatedness are probabilistic, not certain (Brown
1987).

On a more theoretical note, our model reemphasizes
the point made by Maynard Smith (1976, p. 282) that “it
is not a necessary feature of kin selection that an animal
should distinguish different degrees of relationship among
its neighbors and behave with greater altruism to the more
closely related.” However, mechanisms of kin recognition
can evolve, and evolutionary pressures on kin discrimi-
nation are likely to depend on the reliability of indiscrim-
inate rules of parental behavior. As viscosity decreases
(through increased dispersal of juveniles and/or adults),
we expect mechanisms of kin discrimination to be favored.
More generally, levels of parental care are expected to be
negatively correlated with dispersal (but see Le Galliard et
al. 2005 for a contrasting view).

Hamilton’s Rule in Spatially Structured Populations

It is important to note that the emergence of a spatial
version of Hamilton’s rule is a robust feature of the evo-
lution of cooperation in spatial models. Our analysis ex-
tends previous works by van Baalen and Rand (1998) and
Le Galliard et al. (2003) to class-structured populations.
We want to stress that apart from the assumption of weak
selection, no approximation is needed to derive Hamil-
ton’s rule. Although the picture can be blurred by the fact
that costs and benefits depend on demographic parameters
and spatial structure, the evolution of cooperation in spa-

tial models is favored by the initial clustering of mutants.
Thus, ultimately, the invasion condition can be reduced
to the form

Bq 1 C,M/M

where measures the clustering of mutants and is, asqM/M

we have discussed, a measure of relatedness; B and C are
possibly complex functions depending on both physio-
logical and ecological parameters and variables. When al-
truistic acts can affect different classes of recipients, the
benefits accrued by each class of recipients must be
weighted by the class reproductive value, as shown by
Taylor (1990) and Taylor and Frank (1996) in nonspatial
models of kin selection. Generally speaking, spatial ver-
sions of Hamilton’s rule are an expected aspect of the
evolution of cooperation in viscous populations because
when reproduction is local and migration is low, parents
and offspring tend to be aggregated, causing relatedness
and spatial clustering to be two closely linked notions.

We believe this point to be important, especially because
it has recently been argued that Hamilton’s rule cannot
be used to describe the evolution of viscous populations
because of the inherent nonlinear dynamics of spatial
games (Wenseleers 2006). As we will see, this opposite
conclusion stems from a definition of invasion fitness that
neglects spatial structure.

That being said, spatial versions of Hamilton’s condition
have the same limitations as those derived in other kin
selection models. In particular, they can give information
about the direction of selection and the location of the
evolutionary singularities, but they teach us little as such
on the final outcome of evolution (Doebeli and Hauert
2006). Whether the attracting singularity is an evolution-
arily stable strategy or a branching point, for instance, is
predicted by the second derivative of invasion fitness,
whereas Hamilton’s rules are derived from an analysis of
the selection gradient. Likewise, we can expect Hamilton’s
rules to describe the expected evolutionary trajectories but
not a single realization of the underlying stochastic process.

Invasion Fitness in Stage-Structured Viscous Populations

A novel result of this article is the expression for invasion
fitness in stage-structured viscous populations. This ex-
pression is exact in that it gives the expected rate of increase
of a rare mutant. Thus, importantly, our conclusions do
not depend on any approximation, apart from the as-
sumption of small mutations. In particular, this means
that the emergence of a spatial version of Hamilton’s rule
is not based on particular closure methods being used, as
it has been sometimes claimed (e.g., Wenseleers 2006).

As argued by van Baalen and Rand (1998), the spread
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of a rare mutation in such a population is best understood
as the growth of a cluster of mutant individuals. Ecological
dynamics shape the local structure of this cluster, which
ultimately determines whether the mutant can invade. If
the mutant population is structured in discrete classes, the
cluster will be characterized by a precise stage structure,
and each stage will have the same per capita growth rate
in the initial phase of invasion (i.e., when the mutant is
still globally rare). We argue that the structure of this clus-
ter allows us to identify the level (or scale) of selection,
and thus we can consider the expanding cluster as the unit
of selection. Invasion fitness cannot be defined without
characterizing the structure of the unit of selection.

Failure to define the invasion condition at the scale of
the cluster will often result in incorrect conclusions. For
instance, Wenseleers (2006) analyzed a spatial game of
cooperation by computing the fitness of a single mutant
and explicitly assuming that there is no relatedness in the
spatial population. Because of the wide disagreement be-
tween his analysis and his simulations, he concluded that
Hamilton’s rule cannot be used in spatial games. However,
the assumptions made on fitness and relatedness are valid
only in the nonspatial version of the game. That spatial
games can lead to patterns of relatedness was recognized
by Doebeli and Hauert (2005) and further developed by
Ohtsuki et al. (2006) and Taylor et al. (2007), although
their results are derived in the case of constant population
size. However, some confusion still surrounds this prob-
lem. In a recent review, Nowak (2006) suggests that co-
operation on networks evolves via “network reciprocity,”
a mechanism that he claims is distinct from kin selection.
We do not agree, as our analysis results in standard kin
selection expressions.

The definition of spatial invasion fitness we use relies
on the relaxation principle, which is a general feature of
spatial models (Matsuda et al. 1992; Dieckmann and Law
2000). Local densities tend to be fast variables, so that they
equilibrate quickly when the global density of the mutant
is still very low. Rousset (2006) gives a welcome formal
proof of the relaxation principle in spatially structured
populations with constant size. However, demographic
stochasticity is still not incorporated any further. Future
work should identify the domain where relaxation prin-
ciples can be used to simplify the analysis of spatially struc-
tured populations.

A more profound question pertains to the measurement
of invasion fitness in the field. We predict that parental
care should evolve only if interage relatedness is above a
threshold, which makes sense in the light of the general
theory of kin selection, but computing the value of the
threshold from stochastic simulations is not a straightfor-
ward task. In the field, in addition, we will typically have
access to only a sample of the whole population, which

creates further statistical pitfalls, especially if the popula-
tion is structured spatially. While the method we present
in this article provides predictions and interpretations that
fit well with current theory, application to empirical data
will require statistical developments that allow us to link
observations at the population level to predictions based
on an invasion criterion.

On the Use of Moment Equations

This study was partly motivated by the realization that
technicality and apparent lack of generality are pervasive
to the literature on spatial ecology. Articles using moment
equations, especially, typically rely on high-dimensional
models and heavy notations, which at best frightens the
less theoretically minded readers and at worst may lead to
misrepresentation of the main results of the article. The
popularization of moment equations under the label “pair
approximation” has played an important role in under-
stating the potentiality of the method of moments in both
an ecological and an evolutionary context. Another im-
portant factor is that early articles using so-called pair
approximations focused on ecological dynamics and aimed
at matching as closely as possible the dynamics of sto-
chastic simulations using various moment closure ap-
proximations. However, especially for weak selection, the
spatial scale necessary to describe the ecological dynamics
of a system (e.g., pairs) need not coincide with the spatial
scale at which selective pressures take place (e.g., triplets
or larger-scale correlations). In such cases, using moment
approximations can either lead to ever-going refinements
without much biological insight or introduce some arti-
facts in the evolutionary dynamics of the model.

In this article, we choose to avoid the use of moment
closure approximations and focus on the exact (i.e., un-
closed) equations that can be derived for the global and
local densities. We show that by using only an assumption
of small mutations, we can derive insightful analytical re-
sults on the selective pressures on the trait. Thus, we can
use correlation equations as an independent modeling
technique, much as the classical mean-field approach,
without swamping the ecological and evolutionary mean-
ingful questions in technical considerations. This does not
imply sweeping the interesting details (and the devil) un-
der the carpet. In order to get quantitative results, we need
to pick a moment closure that accurately predicts the eco-
evolutionary dynamics in the stochastic simulations. In a
companion article (S. Lion and M. van Baalen, unpub-
lished manuscript), we discuss the difficulties of such an
undertaking. These details are of interest to people work-
ing in the field of spatial ecology, but they are not always
necessary for other ecologists. We hope that the picture
will change as more theoretical ecologists become familiar
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with the moment equations technique, but in the mean-
while, we believe that some important aspects of the evo-
lution of spatially structured populations have been made
obscure by the question of the quantitative match between
stochastic simulations and their deterministic approxima-
tions.

Perspectives

We used parental care in the broad sense of care from
adults to juveniles. Much of the literature about parental
care reserves this denomination to care from parents to
their offspring (Clutton-Brock 1991), which implies that
the parents must be able to discriminate their kin and
particularly their own offspring. An interesting extension
of this work would involve modeling the joint evolution
of care (or cannibalism) and recognition tags, extending
recent work on the joint evolution of altruism and kinship
signals (Jansen and van Baalen 2006). Moreover, our
model excludes the possibility that cannibalism can be
directed preferentially toward kin, but examples of such
behaviors are frequent (Pfennig 1997), which calls for
more refined ecological scenarios. Finally, the interesting
question of parent-offspring conflict is excluded from our
analysis partly because of the assumption of clonal
reproduction.

The main limit of this work is certainly that it models
adult behavior as a continuum of cannibalism and parental
care. In nature, we can expect complex behavioral rules
whereby an individual can choose to raise or kill its off-
spring depending on its state, the state of its offspring, or
the environment. In other words, adults will often present
plastic rather than fixed behaviors throughout their life-
times. Some level of phenotypic plasticity could be intro-

duced in the model in order to get more realism. Also,
natural populations usually contain cannibalistic and non-
cannibalistic morphs. Much theoretical and empirical
work has already been done on the dynamics of polymorph
populations (Claessen et al. 2004), but evolutionary in-
vestigations remain scant. Building evolutionary models
that combine spatial structure and cannibalistic poly-
phenism could be a daunting task yet could give rise to
fruitful predictions.

Finally, in this article, we restricted our attention to the
direction of selection and left aside the investigation of the
potential evolutionary endpoints. A natural extension to
this work, addressed by S. Lion and M. van Baalen (un-
published manuscript), is assessing the stability of the evo-
lutionary singularities. Numerical investigation of the
equations is then required, and the problem becomes the
importantance of choosing the “correct” moment closure
approximation to describe the dynamics on both the eco-
logical and evolutionary timescales. The goal of such an
approach is to derive improved pair approximations that
accurately describe the attractor of the resident population
and the local structure of the invading cluster of mutants.
This remains an open problem and a question of para-
mount importance for future research.
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APPENDIX A

Expected Dynamics of Global Densities

In order to derive the deterministic equations for the global densities of juveniles and adults, one does not need to
write down the full dynamics of the system. This becomes clear if one starts the analysis from the master equation.

Let us first consider an individual located at site x. If she is a juvenile, her death rate is , which gives thed (x)J

following expected change in the global density of juveniles due to mortality:

� d (x)/x p J P(x p J),G HJ

where is the probability of finding a juvenile on the network. We denote the across-networkP(x p J) p p A f SJ

expectation of a function f and the conditional expectation of f given that site x is in state i. Thus,A f/x p i S
is dJ, the average death rate of a juvenile. In a resident population, , where ni(x)Ad (x)/x p J S d (x) p d � b(c)n (x)/nJ J J A

is the number of i neighbors of x. Thus,

n (x)A
d (x)/x p J p d � b(c) x p J .G H ZG HJ J n
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The term between angles is the average proportion of adults surrounding a juvenile, that is, , which yields equationq A/J

(1).
More care must be taken when deriving the birth term. Only adults that have an empty site in their neighborhood

have a nonzero probability of giving birth to an offspring. Thus, the expected change in pJ due to reproductionb (x)A

is

b (x)/x p A, x ∼ o P(x p A, x ∼ o),G HA

where indicates that x has an empty site in its neighborhood. The probability is ,x ∼ o P(x p A, x ∼ o) p p q pAo o/A A

the probability of finding a pair of sites A-o on the network. The average reproduction rate is calculated by taking
the expectation on all sites x that are occupied by an adult and connected to an empty site, that is, on all pairs A-o.
In the resident population, we have

n (x) n (x)J Jb (x) p b � g(c) p b � g(c) ,G H G H G HA 0 0Ao n nAo Ao

where indicates that the expectation is taken on all sites x occupied by an adult and connected to an empty site.A.SAo

Because we must take into account the fact that at least one neighbor is empty, this gives the following average birth
rate:

n � 1
b p b � g(c) q .A 0 J/Aon

Note that this quantity depends on triplet frequencies, as , where pJAo is the density of J-A-o triplets.q p p /pJ/Ao JAo Ao

Finally, because maturation events do not depend (in this model) on a juvenile’s environment, the equations for
the expected dynamics of the global densities are

dpJ p b q p � (d � m)p ,A o/A A J Jdt

dpA p mp � d p .J A Adt

To obtain the nonspatial model, we let go and we replace and with pJ, with pA, and withn r � q q q qJ/i J/ik A/i o/A

. In particular, this gives the following average birth rate:p p 1 � p � po J A

b p b � g(c)p .A 0 J

APPENDIX B

Spatial Invasion Fitness in Stage-Structured Populations

Local density is the ratio of the global density of pairs of sites in states i and j and of the global density of sitesqi/j

in state j: . This yieldsq p p /pi/j ij j

dq 1 dp q dpi/j ij i/j jp � .
dt p dt p dtj j

In the initial phase of invasion, the cluster of mutants quickly reaches a pseudoequilibrium local structure (Matsuda
et al. 1992; van Baalen and Rand 1998). This means that the time derivatives of the local densities as seen by the
mutant are 0. The pseudoequilibrium values of the local densities characterize the local structure of the unit of selection.
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If we denote by lj the per capita growth rate of j, we find, after rearrangement of the previous equation, that in the
initial phase of invasion,

1 dpij p l .jp dtij

Therefore, we can obtain an equation for (resp. ) by replacing i with and j with (resp. i with and j with′ ′ ′l l A J J′ ′J A

). But because (pairs can be counted in both directions), we can write equivalently′A p p p′ ′ ′ ′J A A J

1 dp ′ ′J A p l p l′ ′J Ap dt′ ′J A

from which we deduce

1 dp 1 dp′ ′J A
l p p ,

p dt p dt′ ′J A

where l is the invasion fitness. This result can be easily generalized to n stage populations. Moreover, because
, we havep p p′ ′ ′ ′J A A J

p q′ ′ ′J J /Ap ,
p q′ ′ ′A A /J

from which we deduce equation (6),

p q′ ′ ′J J /Aw p p ,′J p � p q � q′ ′ ′ ′ ′ ′J A J /A A /J

and a similar expression for the relative proportion of mutant adults.

APPENDIX C

Relatedness

Following the treatment of Day and Taylor (1998), we derive the expression of relatedness for a rare mutant M in a
spatial population with local donor/recipient interactions and haploid genetics. Our starting point is the definition
(Michod and Hamilton 1980)

Cov (D, R)
r p ,

Var (D)

where D and R are the genotypes of the donor and the recipient, respectively. We have

Cov (D, R) p E(DR) � E(D)E(R),

where E(DR) is the expected number of donor-recipient interactions between mutants. Thus, E(DR) is pMM, the expected
density of M-M pairs across the network, because altruistic interactions are assumed to be local. Likewise, E(D) and
E(R) are given by the expected density of mutant individuals, so , which givesE(D) p E(R) p p Cov (DR) pM

.2p � p p (q � p )pMM M M/M M M

The variance term is

2 2 2Var (D) p E(D ) � E(D) p E(D) � E(D) p (1 � p )p ,M M
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which gives the following expression for relatedness:

q � pM/M Mr p .
1 � pM

In the limit where the mutant is rare ( ), we obtain , which is consistent with Day and Taylor’s (1998)p p 0 r p qM M/M

conclusion that relatedness for a rare mutant is the conditional probability that the recipient is a mutant, given that
the donor is a mutant.

A possible extension of our model would allow interactions between individuals to take place either globally (with
probability v) or locally (with probability ; see, e.g., Boots and Sasaki 1999). Then ,21 � v E(DR) p (1 � v)p � vpMM M

and for a rare mutant, . As the proportion of global interactions increases ( ), relatedness decreasesr p (1 � v)q v r 1M/M

and eventually vanishes.

APPENDIX D

Class Structure and Reproductive Values

We can write the dynamics of the global densities of juveniles and adults in the resident population as

d �(d � m) b qp pJ A o/AJ Jp ,( ) ( )( )m �dp pdt AA A

where . We know that right and left eigenvectors of the matrix will be proportional to the class frequencyd p d � b cqi i i i/A

vector u and the vector of reproductive values v, respectively (Taylor 1990). Because we assume that the resident
population is at equilibrium, we are interested in the eigenvectors associated with eigenvalue 0, so that simple algebra
readily yields

1u p ,( )m/dA

∗b qA o/Av p 1 .( )dA

Thus, if the reproductive value of juveniles is set to 1, the reproductive value of adults is equal to in the∗b q /dA o/A A

resident population at equilibrium.
Returning to equation (14) (where the selection gradient is evaluated at ), we see that the benefits accruedc p 0

by juvenile and adult recipients are weighted by their respective reproductive values. A full evaluation of the selection
gradient for nonzero values of the resident trait leads to the same result (see app. E).

APPENDIX E

Deriving the Selection Gradient in the Spatial Model

We derive the expression of the selection gradient in the general case where adults can help (or kill) both juveniles
and adults. Our starting point is the invasion dynamics of a mutant with trait :′c

dp /dt p b q p � (d � m)p′ ′ ′ ′ ′ ′J A o/A A J J , (E1){dp /dt p mp � d p′ ′ ′ ′A J A A

where for or .′ ′ ′d p d � b cq � b c q i p J A′i i i A/i i A /i

We will use the fact that in the initial phase of invasion, we can equate those equations to and , respectivelylp lp′ ′J A
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(see app. A), where l is the invasion fitness. Thus, we obtain the following equation for l after combining the two
equations:

′m
l p b q � (d � m).′ ′ ′A o/A J

d � l′A

Now, because the resident fitness is 0, we have

m∗0 p b q � (d � m),A o/A J
dA

where and or A.∗d p d � b cq i p Ji i i A/i

Subtracting the last two equations, we obtain

m m∗l p b q � b q � (d � d ). (E2)′ ′ ′A o/A A o/A J J
d � l d′A A

Now we make the assumption that the mutant is close to the resident ( ), so that is close to 0.′c p c � �c l p �l

We first look at the term :d � d′J J

′ ∗ ∗ ′d � d p (d � b cq � b c q ) � (d � b cq ) p b (cq � cq � c q ).′ ′ ′ ′ ′ ′ ′J J J J A/J J A /J J J A/J J A/J A/J A /J

Invasion statistics and can be Taylor expanded as follows:q q′ ′ ′A/J A /J

¯q p q � �q ,′ ′ ′A/J A/J A/J

¯q p q � �q ,′ ′ ′ ′ ′ ′A /J A /J A /J

where the bar symbol denotes the local densities of a mutant that is identical to the resident. Such a mutant will see
the same local density of adults as the resident, so that

∗¯ ¯q � q p q . (E3)′ ′ ′A/J A /J A/J

Then, we have

∗ ¯ ¯d � d p b [cq � c(q � �q ) � (c � �c)(q � �q )].′ ′ ′ ′ ′ ′ ′J J J A/J A/J A/J A /J A /J

If we use equation (E3) and neglect second-order terms, some terms cancel out, and we are left with

d � d p �b [�cq � c(�q � �q )]. (E4)′ ′ ′ ′ ′ ′J J J A /J A/J A /J

Now we want to Taylor expand the remainder of equation (E2). First, we note that

′d p d � b cq � b c q′ ′ ′ ′A A A A/A A A /A

p d � b c(q � �q ) � b (c � �c)(q � �q )′ ′ ′ ′ ′ ′A A A/A A/A A A /A A /A

p d � b c(q � q ) � b �cq � b c(�q � �q )′ ′ ′ ′ ′ ′ ′ ′A A A/A A /A A A /A A A/A A /A

∗p d � b cq � b �cq � b c(�q � �q )′ ′ ′ ′ ′A A A/A A A /A A A/A A /A

p d � b �cq � b c(�q � �q ).′ ′ ′ ′ ′A A A /A A A/A A /A

Thus, we have
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m m m �l � b �cq � b c(�q � �q )′ ′ ′ ′ ′A A /A A A/A A /Ap p 1 � ,[ ]d � l d � b �cq � b c(�q � �q ) � �l d d′ ′ ′ ′ ′ ′A A A A /A A A/A A /A A A

and we can use this result to find

m m �l � b �cq � b c(�q � �q )′ ′ ′ ′ ′A A /A A A/A A /A∗b q p (b � �b )(q � �q ) 1 �′ ′ ′ ′A o/A A A o/A o/A [ ]d � l d d′A A A

∗m m m b qA o/A∗ ∗ ¯p b q � (q �b � b �q ) � [�l � b �cq � b c(�q � �q )].′ ′ ′ ′ ′ ′ ′A o/A o/A A A o/A A A /A A A/A A /A
d d d dA A A A

We can plug this result and equation (E4) into equation (E2), and we find, after some rearrangements and taking the
limit ,dc r 0

∗m �l �q �q m b q �q �q m �b q′ ′ ′ ′ ′ ′ ′ ′A/J A /J A o/A A/A A /A A o/A∗ ¯ ¯1 � b q p b q � b c � � b q � b c � � .′ ′ ′ ′A o/A J A /J J A A /A A2 ′ ′ ′ ′ ′ ′( ) ( ) [ ( )]d �c �c �c d d �c �c d �cA A A A

At the special point , we have , and the expression for the selection gradient collapses toc p 0 d p dA A

∗ ∗d b q �l b q �b q′ ′A A o/A A o/A A o/A¯ ¯� p b q � b q � (E5)′ ′ ′ ′J J /A A A /A′ ′( )m d �c d �cA A

if we use the fact that for a mutant identical to the resident, . This gives equation (15).¯ ¯q /q p m/d′ ′ ′ ′A /J J /A A

APPENDIX F

Rederiving Hamilton’s Rule in Le Galliard et al.’s (2003) Model

If maturation rates are very high, our model collapses to the model of Le Galliard et al. (2003) with only adult
individuals. Then, the per capita growth rate of a rare mutant is

l p b q � d .′ ′ ′A o/A A

Le Galliard et al. (2003) assumed that the benefits and costs of altruism affect only an individual’s fecundity, so that

′ ′¯ ¯b p b � b cfq � b c fq � g(c ),′ ′ ′ ′A 0 A A/A o A A /A o

d p d ,′A A

where . Note that the cost of altruism is assumed not to depend on an individual’s environment, inf̄ p (n � 1)/n
contrast to our model.

This leads to the following expression for the selection gradient for c:

�l �b �q′ ′A o/A∗p q � b .o/A A′ ′ ′�c �c �c

For , this givesc p 0

�l �g �q ′o/A∗ ¯ ¯p q b fq � � b ,′ ′o/A A A /A o 0′ ′ ′( )�c �c �c
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so that the condition of invasion of an altruist mutant is

�g �q ′o/A∗ ∗¯ ¯q b fq 1 q � b ,′ ′o/A A A /A o o/A 0′ ′�c �c

which is not quite Hamilton’s rule yet because relatedness does not appear in the equation. We need to take oneq̄ ′ ′A /A

further step.
First, recall that local densities are given by , where is the density of triplets i-j-k and is the densityq p /p p pi/jk ijk jk ijk jk

of pairs j-k. Second, it is equivalent to count i-j-k triplets and k-j-i triplets, so that . Thus, we havep p pijk kji

p p q p p q′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′A A o oA A o/A A A A A A A /Aq p p p p q p q .′ ′ ′ ′ ′ ′A /A o o/A A o/A Ap p p p q′ ′ ′ ′ ′A o A o A o A o o/A

For a neutral mutant, we thus have, because ,∗q̄ p q′o/A o/A

∗ ¯ ¯ ¯q q p q q ,′ ′ ′ ′ ′ ′o/A A /A o o/A A A /A

so that the condition for the spread of altruism becomes

�g �q ′o/A∗¯ ¯ ¯(b fq )q 1 q � b .′ ′ ′ ′A o/A A A /A o/A 0′ ′�c �c

(This must be contrasted with the condition obtained when the benefits of altruism affect survival and not fecundity
[our model], in which case the condition for the spread of altruism is

�g �q ′o/A∗¯b q 1 q � b .′ ′A A /A o/A 0′ ′�c �c

Thus, the condition for the evolution of altruism will not be the same depending on how costs and benefits affect
fecundity or survival.)

Under the standard pair approximation, , altruism evolves in Le Galliard et al.’s (2003) model if∗¯ ¯q ≈ q p q′ ′ ′o/A A o/A o/A

�g �q ′o/A∗ ∗¯ ¯(b fq )q 1 q � b .′ ′A o/A A /A o/A 0′ ′�c �c

Le Galliard et al. (2003) have shown numerically that the pressure for open space is negligible in their′b �q /�c′0 o/A

model, so that they obtain the following Hamilton’s rule:

�g¯ ¯b fq 1 .′ ′A A /A ′�c
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