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Abstract In this paper, we consider the problem of disturbance decoupling for a class
of non-minimum phase nonlinear systems. Based on the notion of partially-minimum
phaseness, we shall characterize all actions of disturbances which can be decoupled
via a static state feedback while preserving stability of the internal residual dynam-
ics. The proposed methodology is then extended to the sampled-data framework via
multi-rate design to cope with the rising of the so-called sampling-zero dynamics
intrinsically induced by classical single-rate sampling.

Keywords Nonlinear control · Disturbance-decoupling · Sampled-data systems.

1 Introduction

As well known, a variety of control problems is concerned with partial cancelation
of the dynamics which is achieved by inducing unobservability [1,2,3,4,5,6,7,8]. In
the linear case, this is achieved by designing a feedback that assigns the eigenvalues
coincident with the zeros of the system so making the corresponding dynamics unob-
servable. Such an approach is at the basis of feedback linearization which is achieved
by maximazing unobservability, that is by cancelling the so-called zero-dynamics
whose stability is thus necessary for guaranteeing feasibility of the control system
[9].
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In [10], the problem of partial cancelation of the zero-dynamics has been intro-
duced and exploited to deal with feedback linearization of nonlinear non-minimum
phase systems (i.e., whose zero-dynamics are unstable). The design approach gener-
alizes to the nonlinear context the idea of assigning part of the eigenvalues over part
of the zeros of the transfer function of a linear system (partial zero-pole cancelation).
As the intuition suggests, when dealing with nonlinear systems, stability of the feed-
back system can be achieved when only a stable component of the zero-dynamics is
cancelled. Such a stable component can be identified by considering the output as-
sociated with the minimum-phase factorization of the transfer function of the linear
tangent model at the origin. More in details, a two-step design is proposed: consid-
ering the linear tangent model (LTM) of the original system, a dummy output is first
constructed via a suitable factorization of the numerator of its transfer function so that
the corresponding linearized system is minimum-phase; then, classical input-output
linearization of the locally minimum-phase nonlinear system is performed with re-
spect to the aforementioned dummy output. Finally, it is proved that, when applying
the resulting feedback to the original system, input-output linearization still holds
with respect to the actual output while guaranteeing stability of the internal dynam-
ics.

In this work, we extend the proposed methodology to the problem of output- dis-
turbance decoupling with internal stability. The problem of decoupling, attenuating
or rejecting the effect of perturbation acting over a nonlinear plant is of paramount
importance from both practical and methodological points of view [11,12,13,14,15,
16,17,18]. As well known, given a general plant disturbance decoupling is related
to generating unobservability so to make the output evolutions independent upon the
perturbations acting over the dynamics ([19,20,21,22,23]). Starting from the linear
time-invariant (LTI) case, the idea we develop makes use of the output factoriza-
tion introduced in [10] so allowing to: i) solve the disturbance decoupling problem
for a given action of disturbances while preserving internal stability; ii) characterize
all the actions of disturbances for which disturbance decoupling is solvable while
preserving internal stability. As expected, the family of disturbances which can be
decoupled in this case is smaller than in the standard one (when cancelling out all
the zero-dynamics). At the best of the authors knowledge, necessary and sufficient
conditions for characterizing all the actions of disturbances which can be made de-
coupled from the output while preserving stability are not available. An exception to
this is provided by [24], where the problem is solved for classes of nonlinear systems
admitting a strict-feedback structure.

The proposed methodology is then applied to the sampled-data context that is
when measures of the output (say the state) are available only at some time in-
stants and the control is piecewise constant over the sampling period [25,26]. In
this context, the problem under study is even more crucial because of the further
unstable zero-dynamics intrinsically arising due to sampling [27]. As a consequence,
the minimum-phase property of a given nonlinear continuous-time system is not pre-
served by its sampled-data equivalent [28,29,30,31]. To overcome those issues, sev-
eral solutions were proposed based on different sampling procedures [32,33,34,35,
36,32,35]. Among these, the first one was based on multi-rate sampling in which the
control signal is sampled-faster (say r times) than the measured variables. Accord-
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ingly, this sampling procedure introduces further degrees of freedom and prevents
from the appearance of the unstable sampling zero dynamics while preserving the
continuous-time relative degree [28,37].

In the sampled-data framework, we shall show how multi-rate sampling can be
suitable exploited to solve the problem of characterizing all disturbances whose effect
can be decoupled by feedback at any sampling instants. In this context, we shall see
how sampling induces a more conservative design which requires the disturbance
to be measurable and piecewise constant over the sampling period. Related works
in the sampled-data and linear contexts have been carried out in [38,39] under the
minimum-phaseness assumptions.

The paper is organized as follows. the classical disturbance-decoupling problem
is recalled in Section 2 while the problem is settled in Section 3. The underlying
idea of the proposed approach is discussed in Section 4. The solution to the problem
for LTI systems is provided in 5 and the main result is stated in Section 6. The case
of sampled-data systems is discussed and detailed in Section 7 while a simulated
example over the TORA system is in Section 8. Section 9 concludes the paper with
some highlights on future perspectives and current work.

Notations and definitions: All the functions and vector fields defining the dy-
namics are assumed smooth and complete over the respective definition spaces. MU
(resp. MI

U ) denotes the space of measurable and locally bounded functions u : R→U
(u : I→U , I ⊂R) with U ⊆R. Uδ ⊆MU denotes the set of piecewise constant func-
tions over time intervals of fixed length δ ∈]0,T ∗[; i.e. Uδ = {u ∈ MU s.t. u(t) =
uk,∀t ∈ [kδ ,(k+ 1)δ [;k ≥ 0}. Given a vector field f , L f denotes the Lie derivative
operator, L f = ∑

n
i=1 fi(·)∇xi with ∇xi := ∂

∂xi
while ∇ = (∇x1 , . . . ,∇xn). Given two

vector fields f and g, ad f g = [ f ,g] and iteratively adi
f g = [ f ,adi−1

f g]. The Lie ex-

ponent operator is denoted as eL f and defined as eL f := Id+∑i≥1
Li

f
i! . A function

R(x,δ ) = O(δ p) is said to be of order δ p (p ≥ 1) if whenever it is defined it can be
written as R(x,δ ) = δ p−1R̃(x,δ ) and there exist function θ ∈K∞ and δ ∗ > 0 such
that ∀δ ≤ δ ∗, |R̃(x,δ )| ≤ θ(δ ). We shall denote a ball centered at x0 ∈ Rn and of
radius ε > 0 as Bε(x0).

2 Classical DDP for linear and nonlinear systems

In the sequel, we investigate the problem of characterizing the perturbations which
can be decoupled under feedback for a given plant of the form

ẋ = f (x)+g(x)u+ p(x)w (1a)
y =Cx (1b)

with x ∈ Rn,u ∈ R,y ∈ R and w ∈ R being an external disturbance. We shall refer to
such a problem as disturbance decouplability problem (DDP) as a standard revisita-
tion of classical disturbance decoupling.
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Consider at first the case of a LTI system of the form

ẋ =Ax+Bu+Pw (2a)
y =Cx (2b)

where P defines a family of disturbance actions acting over. The following result
concerning DDP for LTI systems is revisited here from [19].

Proposition 1 ([19]) Let the system (2) be controllable and possess relative degree
r ≤ n. The disturbance decoupling is solvable for all actions of disturbances such
that P verifies the following inclusion

ImP⊆V ∗ (3)

with V ∗ being the maximal (A,B)-invariant distribution contained in kerC and given
by

V ∗ = ker


C

CA
...

CAr−1

 . (4)

The feedback ensuring output-disturbance decoupling is given by

u =
v−CArx
CAr−1B

. (5)

Whenever P satisfies (3), the feedback solving DDP gets the form (5) which, by
construction, makes the closed-loop dynamics maximally unobservable. To see this,
introduce the coordinate transformation

(
ζ

η

)
=


C

CA
...

CAr−1

T2

x

with T2 such that T2B = 0, putting the closed-loop system in the so-called normal
form as

ζ̇ =Âζ + B̂v (6a)

η̇ =Qη +Rζ + P̂w (6b)

y =Ĉζ (6c)

with (Â, B̂) being in Brunowski form and Ĉ = (1 0). Accordingly, (6b) corresponds
to the component of the system which is made unobservable under feedback coin-
ciding with the zero-dynamics as w ≡ 0. It turns out that, because σ(Q) coincides
with the zeros of (2), stability in closed loop is guaranteed if, and only if, (2) is
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minimum-phase (i.e., σ(Q)⊂ C−). If this is not the case, the control law (5) is gen-
erating instability of the feedback system. Still, even if necessary and sufficient for
the solvability of DDP (regardless of stability), condition (3) is also conservative as
it is based on the idea of generating maximal unobservability by cancelling all zeros
of (2) and making V ∗ feedback invariant.

In the nonlinear context, similar arguments hold true. From now on, when deal-
ing with nonlinear systems, all properties are meant to hold locally unless explicitly
specified. Assuming that (1) has relative degree r≤ n at the origin (or, for the sake of
brevity, relative degree r) that is

LgLi
f h(x) = 0 for all i ∈ [0,r−2] and x ∈ Bε(0)

LgLr−1
f h(0) 6= 0.

with h(x) = Cx, existence of a solution to the DDP is recalled from [9, Proposi-
tion 4.6.1].

Proposition 2 [[9]] Suppose the system (1) has relative degree r ≤ n. DDP is solv-
able for all p : Rn→ Rn verifying

LpLi
f h(x) = 0 for all i ∈ [0,r−1] and x ∈ Bε(0).

In this case, then the DDP feedback is given by

u =
v−Lr

f h(x)

LgLr−1
f h(x)

. (7)

Remark 1 Along the lines of the linear case, the result above can be interpreted in
a differential-geometry fashion by stating that DDP is solvable for all the actions of
disturbances verifying the following relation

Imp(x)⊆ ∆
∗(x)

with

∆
∗(x) = ker


dh(x)

dL f h(x)
. . .

dLr−1
f h(x)

 (8)

being the maximal involutive distribution which is invariant under (1) and contained
in kerdh(x).

Whenever DDP is solvable, one deduces the normal form associated to (1) by intro-
ducing

(
ζ

η

)
=


dh(x)

dL f h(x)
. . .

dLr−1
f h(x)
φ2(x)


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with φ2(x) such that ∇φ2(x)g(x) = 0. In the new coordinates and under the feedback
(7), (1) rewrites as

ζ̇ =Âζ + B̂v (9a)
η̇ =q(ζ ,η)+ p̂(ζ ,η)w (9b)

y =Ĉζ (9c)

with C =(1 0) and (9b) being the dynamics that is made unobservable under feedback
coinciding, when ζ ≡ 0, with the zero-dynamics. Thus, it turns out that a necessary
condition for DDP with stability to be solved by (7) is that the zero-dynamics are
asymptotically stable. If this is not the case, independently of the disturbance, the
aforementioned feedback generates unstability by inverting the unstable component
of the dynamics so preventing to fullfil design specifications such as output regula-
tions or tracking with boundedness (or input-to-state stability) of the residual internal
dynamics.

To summarize, although necessary and sufficient conditions are available for solv-
ing DDP, they do not keep into account stability in both the linear and nonlinear set-
tings as generally based on generating maximal unobservability via the cancelation of
the zero-dynamics. In what follows, we shall present new conditions allowing to state
solvability of the disturbance decoupling problem for linear and nonlinear dynamics
while guaranteeing stability.

3 Problem settlement

We consider nonlinear input-affine dynamics with linear output map of the form (1)
under the following standing assumptions:

1. when w = 0, the dynamics (1a) is feedback linearizable [9, Theorem 4.2.3];
2. the system (1) has relative degree r ≤ n and is partially minimum phase in the

sense of the following definition.

Definition 1 Consider a non minimum phase nonlinear system (1) with LTM model
at the origin (2) whose zeros are the roots of a not Hurwitz polynomial N(s); we say
that (1) is partially minimum phase if there exists a factorization of N(s)=N1(s)N2(s)
so that N2(s) is Hurwitz.

The Linear Tangent Model (LTM) at the origin associated to (1) is of the form (2)
and is controllable because (1a) is assumed feedback linearizable. Without loss of
generality, we assume (2) exhibits the controllable canonical form that is

A = ∇ f (0) =
(

0 Ir−1
−a

)
, B = g(0) =

(
0
1

)
C =

(
b0 . . . bm 0

)
, P = p(0) (10)

with a= (a0 . . . an−1) being a row vector containing the coefficients of the associated
characteristic polynomial and possessing relative degree coinciding, at least locally,
with r.



On partially minimum phase systems and disturbance decoupling with stability 7

Remark 2 If (A,B,C) is not in the canonical controllable form (10), one preliminarily
applies to (1) the linear transformation

ξ = T x, T =
(
γ> (γA)> . . .(γAn−1)>

)>
with γ =

(
0 1
)(

B AB . . .An−1B
)−1 so transforming the system into the required

form.

In this setting, one looks for all disturbances which can be input-output decoupled
under feedback while preserving stability of (1); namely, given the triplet ( f ,g,h),
we shall characterize the class of disturbances that can be output decoupled under
feedback while guaranteeing stability of the internal dynamics. In other words, we
shall seek for the maximal subspace of (1) which can be made unobservable under
feedback and over which all suitably characterized disturbances can be constrained to
act. From now on, we shall refer to such a problem as the Disturbance Decouplability
Problem with Stability (DDP-S).

First, the underlying idea of the approach we propose is recalled from [10] in the
LTI case. Then, the result is stated for linear time-invariant and nonlinear systems.

4 Partial zero-dynamics cancelation

Let us start discussing how partial cancelation of the zero dynamics can be used to
assign the dynamics under feedback. To this end, let (2) be the LTM at the origin of
(1) when p(·)≡ 0. Since (A,B) is controllable, the transfer function of the system is
provided by

W (s) =C(sI−A)−1B =
N(s)
D(s)

with N(s) = b0 + b1s+ · · ·+ bmsm and D(s) = a0 + a1s+ · · ·+ an−1sn−1 + sn and
relative degree r̂ = n−m.

Given any factorization of the numerator N(s) = N1(s)N2(s) and fixed D(s), the
dummy output yi = Cix with Ci = (bi

0 . . .b
i
mi

0) corresponds to the transfer function
having

Ni(s) := bi
0 +bi

1s+ · · ·+bi
mi

smi

(i = 1,2) as numerator and relative degree ri = n−mi (i = 1,2). Accordingly, the
outputs y, y1 and y2 are related by the differential forms

y(t) = N1(d)y2(t), y(t) = N2(d)y1(t)

so getting for j 6= i and d = d
dt

y(t) = b j
0yi +b j

1
d
dt

yi + · · ·+b j
m j

dm j

dtm j
yi.
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Remark 3 The feedback

ui =
v−CiArix
CiAri−1B

, i = 1,2

transforms (2) into a system with closed-loop transfer function given by

W Fi(s) =C(sI−A−BFi)
−1B

=
N j(s)

sr
i

=
b0 +b j

1s+ ..+b j
m j s

m j

sri
, j 6= i.

The feedback u = Fix+ v places ri eigenvalues of the system coincident with the
zeros of Ni(s) and the remaining ones to 0 so that stabilization in closed loop can be
achieved via a further feedback v if and only if Ni(s) is Hurwitz. The previous argu-
ment is the core idea of assigning the dynamics of the system via feedback through
cancelation of the stable zeros only. Accordingly, if N(s) is not Hurwitz (i.e. N j(s)
has positive real part zeros) the closed-loop system will still have non stable zeros that
will play an important role in filtering actions but that will not affect closed-loop sta-
bility. Concluding, given any controllable linear system one can pursue stabilization
in closed loop via partial zeros cancelation: starting from a suitable factorization of
the polynomial defining the zeros, this is achieved via the definition a dummy output
with respect to which the system is minimum phase.

5 DDP-S for LTI systems

Consider the LTI system (2) with relative degree r < n and being partially minimum-
phase. Based on the arguments developed in the previous section, the result below
provides a characterization of the actions of disturbances which can be decoupled
from the output under feedback and with stability. In doing so, we shall show that
the problem admits a solution if the disturbance can be constrained onto the largest
sub-dynamics of (2) which can be rendered unobservable under feedback while pre-
serving stability; in other words, the problem is solvable if and only if the action of
disturbances to be decoupled is contained into the unobservable subspace generated
by cancelling only the stable zeros of (2).

Theorem 1 Consider the system (2) being controllable and possessing relative de-
gree r < n and being partially minimum-phase. Denote by N(s)= b0+b1s+. . .bn−rsn−r

the not Hurwitz polynomial identifying the zeros of (2). Consider the maximal factor-
ization of N(s) = N1(s)N2(s) with

Ni(s) = bi
0 +bi

1s+ . . .bi
n−ri

sn−ri , i = 1,2 (11)

such that N2(s) is a Hurwitz polynomial of degree n−r2 and introduce C2 =(b2
0 . . .b

2
m2

0).
Then, then DDP-S admits a solution for the system (2) for all P verifying

ImP⊆Vs (12)
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with Vs ⊆V ∗ as in (4) and, for r2 = n−m2,

Vs = ker


C2

C2A
...

C2Ar2−1

 .

Proof The proof is straightforward by showing that Vs ⊆V ∗ ⊆ kerC. To this end, one
exploits the differential relation y = N1(d)y2 by deducing

y =Cx = N1(d)C2x = b1
0C2x+b1

1C2Ax+ · · ·+b1
r2−rC2Ar2−rx

ẏ =CAx = Ṅ1(d)C2x = b1
0C2Ax+b1

1C2A2x+ · · ·+b1
r2−rC2Ar2−r+1x

. . .

y(r−1) =CAr−1x = b1
0C2Ar−1x+b1

1C2Arx+ · · ·+b1
r2−rC2Ar2−1x

for r2 > r by construction. As a consequence, one gets
C

CA
...

CAr−1


︸ ︷︷ ︸

:=T ∗

=


b1

0 b1
1 . . . b1

r2−r 0 . . . 0
0 b1

0 . . . b1
r2−r−1 b1

r2−r . . . 0
. . .

0 0 . . . ∗ ∗ . . . b1
r2−r


︸ ︷︷ ︸

:=M


C2

C2A
...

C2Ar2−1


︸ ︷︷ ︸

:=Ts

(13)

so getting1 Vs ≡ kerTs ⊆ kerT ∗ ≡V ∗. As a consequence, one gets that Vs ⊆ kerC so
getting that all the disturbances that can be made independent on the output are such
that ImP⊆Vs.

Remark 4 From the result above, it is clear that the problem is not solvable if {s ∈
C s.t. N(s) = 0}⊂C+ that is whenever the system (2) is not partially minimum phase
and only the trivial factorization holds with N2(s) = 1. This pathology also embeds
the case of r = n−1 corresponding to the presence of only one zero in (2) that is on
the right-hand side of the complex plane.

Remark 5 The previous result shows that whenever (2) is partially minimum phase
and DDP-S is solvable, the dimension of the range of disturbances which can be de-
coupled under feedback while guaranteeing stability is decreasing with respect to the
standard DDP problem recalled in Section 2 as dim(Vs)< dim(V ∗). This is due to the
fact that one is constraining the disturbance to act only on the stable lower dimen-
sional component of the zero dynamics associated to (2) and evolving according to
the zeros defined by the Hurwitz sub-polynomial of N(s).

Remark 6 The previous result might be reformulated by stating that DDP-S for (2) is
solvable if, and only if the classical DDP is solvable for the minimum-phase system

ẋ =Ax+Bu+Pw (14a)
y2 =C2x (14b)

1 Given three matrices M,N,S of suitable dimensions such that MN = S, then kerN ⊆ kerS [40].
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deduced from (2) and having input-output transfer function W2(s) =
N2(s)
D(s) .

Corollary 1 If DDP-S is solvable for (2), then the disturbance-output decoupling
feedback is given by

us =
v−C2Ar2x
C2Ar2−1B

. (15)

Proof First, introduce the coordinate transformation

(
ζ

η

)
=


C2

C2A
...

C2Ar2−1

T2

x, ζ = col(ζ1, . . . ,ζr2)

with T2 such that T2B = 0. By exploiting the differential relation

y = N1(d)y2

with, in the new coordinates, y2 =(1 0)ζ and that dζi = ζ̇i = ζi+1 for all i= 1, . . . ,r2−
r, the system (2) under the feedback (15) gets the form

ζ̇ =Âζ + B̂v (16a)

η̇ =Q2η +R2ζ + P̂2w (16b)

y =Ĉζ (16c)

with Ĉ =
(
b1

0 . . . b1
r2−r 0

)
clearly underlying that the disturbance-decoupling prob-

lem is solved. As far as stability is concerned, it results that, by construction, σ(Q2)≡
{s ∈ C s.t. N2(s) = 0} ⊂ C− so implying that the unobservable dynamics (16b) are
asymptotically stable.

Remark 7 The transfer function of the closed-loop system (16) is provided by

Wcl(s) =
N1(s)

sr2

so emphasizing on the fact that the feedback (15) is cancelling only the stable zeros
of while leaving the remaining ones unchanged to perform a filtering action that is
not compromising the required input-output behavior.

6 DDP-S for nonlinear systems

Consider now the nonlinear system (1) under the standing assumptions detailed in
Section 3. We shall now investigate on the problem of characterizing the action of
disturbances which can be locally decoupled from the output evolutions while ensur-
ing stability in closed loop despite the dynamics (1) is non minimum phase. To this
end, we first recall the auxiliary lemma below from [10].
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Lemma 1 Consider the nonlinear system (1) and suppose that its LTM at the origin
is controllable in the form (10) and non minimum phase with relative degree r. Denote
by N(s) = b0 +b1s+ . . .bn−rsn−r the not Hurwitz polynomial identifying the zeros of
the LTM of (1) at the origin. Consider the maximal factorization of N(s)=N1(s)N2(s)

Ni(s) = bi
0 +bi

1s+ . . .bi
n−ri

sn−ri , i = 1,2 (17)

such that N2(s) is a Hurwitz polynomial of degree n− r2. Then, the system

ẋ = f (x)+g(x)u+ p(x)w

y2 =C2x.
(18)

C2 =
(
b2

0 b2
1 . . . b2

n−r2
0
)

has relative degree r2 > r and is locally minimum-phase.

Proof By computing the linear approximation at the origin of (18), one gets that the
matrices (A,B,C2) are in the form (10) so that the entries of C2 are the coefficients of
N2(s) that is the numerator of the corresponding transfer function. By construction,
N2(s) is a Hurwitz polynomial of degree n− r2. It follows that, in a neighborhood of
the origin, the relative degree of (18) is r2. Furthermore, since the linear approxima-
tion of the zero-dynamics of (18) coincides with the zero-dynamics of its LTM model
at the origin, one gets that (18) is minimum-phase.

Remark 8 It is a matter of computations to verify that the zero-dynamics of (18)
locally coincides with the stable component of the zero dynamics of (1).

In what follows, we show that DDP-S is solvable for the non minimum phase
system (1) for all disturbances allowing classical DDP to be solved over the auxiliary
minimum phase system (18) in the sense of Proposition 2. In other words, solvability
of DDP-S for (1) is equivalent to solvability of DDP for (18).

Theorem 2 Consider the nonlinear system (1) and suppose that its LTM at the origin
is controllable in the form (10) and non minimum phase with relative degree r. Denote
by N(s) = b0 +b1s+ . . .bn−rsn−r the not Hurwitz polynomial identifying the zeros of
the LTM of (1) at the origin. Consider the maximal factorization of N(s)=N1(s)N2(s)

Ni(s) = bi
0 +bi

1s+ . . .bi
n−ri

sn−ri , i = 1,2 (19)

such that N2(s) is a Hurwitz polynomial of degree n− r2 so deducing the dummy
output y2 = h2(x) =C2x verifying y = N1(d)y2. Then, DDP-S is solvable for all dis-
turbances for which DDP is solvable for the minimum-phase system (18); namely,
DDP-S is solvable for all p : Rn→ Rn such that

LpLi
f h2(x) = 0 for all i ∈ [0,r] and x ∈ Bε(0). (20)

In this case, then the DDP-S feedback is given by

u =
v−Lr2

f h2(x)

LgLr2−1
f h2(x)

. (21)
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Proof First, let us assume that DDP is solvable for the system (18). Thus, consider
the closed-loop system (18) under (26) and introduce the coordinate transformation

(
ζ

η

)
=


h2(x)
. . .

Lr2−1
f h2(x)
φ2(x)

 (22)

with φ2(x) such that ∇φ2(x)g(x) = 0 under which it exhibits the normal form

ζ̇ = Âζ + B̂v

η̇ = q2(ζ ,η)+ p2(ζ ,η)w

y2 =
(
1 0
)

ζ .

The zero-dynamics of (18) is given by

η̇ = q2(0,η) (24)

which is locally asymptotically stable by Lemma 1,. Consider now the original sys-
tem (1) under the feedback (26). Setting now the transformation (22) to (1) so getting,
because y = N1(d)y2

ζ̇ = Âζ + B̂v (25a)
η̇ = q2(ζ ,η)+ p2(ζ ,η)w (25b)

y =
(
b1

0 b1
1 . . . b1

r2−r 0
)

ζ . (25c)

It turns out that the effect of the disturbance is constrained onto the dynamics (25b)
which is made unobservable under feedback coinciding, as ζ = 0 and w = 0, with the
zero-dynamics of (18) which is locally stable by assumption so concluding the proof.

Remark 9 The previous result shows that even if a nonlinear system is non-minimum
phase, a suitable partition of the output can be performed on its LTM at the origin
so that output- disturbance decoupling with stability can be pursued while preserving
stability of the internal dynamics. This is achieved by inverting (making unobserv-
able) a lower dimensional component of the zero-dynamics of (1) which is known to
possess an asymptotically stable equilibrium at the origin.

Remark 10 As in the standard case, Theorem 2 can be interpreted in a differential-
geometry fashion by stating that DDP-S is solvable for all the actions of disturbances
verifying the following relation

Imp(x)⊆ ∆s(x)

with

∆s(x) = ker


dh2(x)

dL f h2(x)
. . .

dLr2−1
f h2(x)


being such that ∆s(x) ⊆ ∆ ∗(x) ⊆ kerdh(x) for ∆ ∗(x) as in (8) and the feedback (26)
being the so-called friend of ∆s.
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Once stability of the unobservable dynamics is guaranteed by the decoupling
feedback (26), the residual component of the control action can be designed so to
guarantee further control specifications with boundedness (or local input-to-state sta-
bility) of the residual dynamics (25b). In addition, fixing in (26) the residual control
as

v =−c0h2(x)−·· ·− cr2−1Lr2−1
f h2(x)+ v̄

with ci for i = 1, . . . ,r2− 1 being the coefficients of a Hurwitz polynomial, one can
conclude [9, Appendix B.2] that for each ε > 0 there exist δε > 0 and K > 0 such that

‖x(0)‖ ≤ δε and |w(t)| ≤ K, |w(t)| ≤ K =⇒ ‖x(t)‖ ≤ ε for all t ≥ 0.

and, thus, boundedness of (1) in closed loop.

Remark 11 Whenever the disturbance w is measurable, the condition (20) in Theo-
rem 2 can be weakened to requiring

LpLi
f h2(x) = 0 for all i ∈ [0,r2−2] and x ∈ Bε(0)

LpLr2−1
f h2(0) 6= 0.

In this case, then the DDP-S feedback is given by

u =
v−Lr2

f h2(x)−LpLr2−1
f h2(x)

LgLr2−1
f h2(x)

(26)

aimed at rejecting the effect of the disturbance over the input-output dynamics.

7 DDP-S under sampling

In this section, we are settling the problem of defining the action of disturbances that
can be output decoupled under sampling and at any sampling instant t = kδ with δ0
denoting the sampling period. To this end, we introduce the following requirements
over the system (1):

1. the feedback is piecewise constant over the sampling period of length δ > 0 that
is u(t) ∈Uδ ;

2. measures are available only at the sampling instants that is y(t) = h(x(kδ )) for
t ∈ [kδ ,(k+1)δ [;

3. the disturbance belongs to the class of piecewise constant signals over the sam-
pling period that is w(t) = wk for t ∈ [kδ ,(k+1)δ [.
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7.1 Sampled-data systems: from single to multi-rate sampling

In this framework, the dynamics of (1) at the sampling instants is described by the
single-rate sampled-data equivalent model

xk+1 =Fδ (xk,uk,wk)

yk =h(xk)
(27)

with xk := x(kδ ), yk := y(kδ ), uk := u(kδ ), h(x) =Cx and

Fδ (xk,uk,wk) = eδ (L f +ukLg+wkLp)x
∣∣
xk
.

Remark 12 We underline that requiring the disturbance to be a piecewise constant
signal might be quite unrealistic. Though, this choice is made for the sake of the
sampled-data design. As a matter of fact, if w is continuously varying signal, (27)
would be affected by all the time-derivatives of the perturbation (i.e., ẇ, ẅ, . . . ) com-
puted at t = kδ so generally preventing from exactly solving DDP-S. In this scenario,
the sampled-data design can be pursued in an approximate way by considering only
samples of the disturbance and neglecting the derivative terms so applying the feed-
back strategy to be presented.

Assuming for the time-being w = 0, it is a matter of computations to verify that

yk+1 = h(xk)+
r

∑
i=1

δ i

i!
Li

f h(x)
∣∣
xk
+

δ r

r!
ukLgLr−1

f h(x)
∣∣
xk
+O(δ r+1)

so that
∂yk+1

∂uk
=

δ r

r!
LgLr−1

f h(x)
∣∣
xk
+O(δ r+1) 6= 0.

Thus, the relative degree of the sampled-data equivalent model of (1) is always falling
to rd = 1, independently from the continuous-time one. As a consequence, whenever
r > 1, the sampling process induces a further zero-dynamics of dimension r−1 (i.e.,
the so-called sampling zero dynamics,[27,28]) that is in general unstable for r > 1. As
a consequence, disturbance-decoupling under single-rate feedback computed over the
sampled-data equivalent model (27) cannot be achieved while guaranteeing internal
stability even when the original continuous-time system (1) is minimum phase. In
addition, denoting by rw ≥ 0 the first integer such that

LpLrw−1
f h(0) 6= 0

one also gets that, for x ∈ Bε(0)

∂yk+1

∂wk
=

δ rw

rw!
LpLrw−1

f h(x)
∣∣
xk
+O(δ rw+1) 6= 0.

This imposes, in general, that measures of the disturbance at all t = kδ are needed
to guarantee output-disturbance decoupling under sampling so making the problem
more conservative.



On partially minimum phase systems and disturbance decoupling with stability 15

As far as the first pathology is concerned, it was shown in [29] that multi-rate
sampling allows to preserve the relative degree and hence avoid the rising of the
unstable sampling zero-dynamics. Accordingly, one sets u(t) = ui

k for t ∈ [(k+ i−
1)δ̄ ,(k+ i)δ̄ [ for i = 1, . . . ,r and y(t) = yk for t ∈ [kδ ,(k+1)δ [ so that the multi-rate
equivalent model of order r2 of (1) gets the form

xk+1 =F δ̄
m (xk,u1

k , . . . ,u
r2
k ,wk) (28)

where δ̄ = δ

r2
and

F δ̄
m (xk,u1

k , . . . ,u
r2
k ,wk) = eδ̄ (L f +u1

kLg+wkLp) . . .eδ̄ (L f +u
r2
k Lg+wkLp)x

∣∣
xk

= F δ̄ (·,ur2
k ,wk)◦ · · · ◦F δ̄ (xk,u1

k ,wk).

7.2 The DDP-S sampled-data feedback

In the sequel, we shall investigate on the way multi-rate feedback can be suitably
employed with the arguments in Theorem 2 to characterize all disturbances whose
effect can be output decoupled under multi-rate feedback and at any sampling in-
stants t = kδ while preserving stability of the internal dynamics. We shall prove that
DDP-S under sampling can be solved via multi-rate under the same hypotheses as
in continuous time plus the possibility of measuring the disturbance at any sampling
instant.

Accordingly, the multi-rate feedback solving the problem uk = γ(δ̄ ,xk,vk,wk)

with u = col(u1, . . . ,ur2) and v = col(v1, . . . ,vr2 ) is designed so to ensure decoupling
with respect to the dummy output y2 = C2x and, in turn, with respect to the original
one y = Cx. This is achieved by considering the sampled-data dynamics (28) with
augmented dummy output Y2k = H2(xk) composed of y2 = C2x and its first r2− 1
derivatives; namely, we consider

xk+1 =F δ̄
m (xk,uk,wk)

Y2k =H2(xk)
(29)

with δ̄ = δ

r2
and output vector

H2(x) =
(

h2(x) L f h2(x) . . . Lr2−1
f h2(x)

)>
possessing by construction a vector relative degree rδ = (1, . . . ,1). Accordingly, the
following results can be stated by referring to [37,41] where these concepts are intro-
duced and similar manipulations detailed with analog motivations.

Theorem 3 Consider the dynamics (1) under the hypotheses of Theorem 2 with y2 =
C2x being the dummy output with respect to which (1a) is minimum-phase. Assume
the disturbance w(t) = wk for t ∈ [kδ ,(k+1)δ [ is measured at all sampling instants
t = kδ and let (28) be the multi-rate sampled-data equivalent model of (1a) of order
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r2. Then, DDP-S is solvable under sampling for all piecewise constant disturbances
such that p : Rn→ Rn verifies

LpLi
f h2(x) = 0 for all i < r2−1 and x ∈ Bε(0).

If that is the case, the feedback ensuring DDP-S is the unique solution u = uδ̄ =
col(γ1(δ̄ ,xk,vk,wk), . . . ,γ

r2(δ̄ ,xk,vk,wk)) to the Input-Output Matching (I-OM) equal-
ity

H2(F δ̄
m (xk,uk,wk)) = er2δ̄ (L f +γ(·,v)Lg+wkLp)H2(x)

∣∣
xk

(30)

for all xk = x(kδ ), v(t) = v(kδ ) := vk, vk = (vk, . . . ,vk) as t ∈ [kδ ,(k+ 1)δ [, k ≥ 0
and with

γ(x,v,w) =
v−Lr2

f h2(x)−wLpLr2−1
f h2(x)

LgLr2−1
f h2(x)

. (31)

Such a solution exists and is uniquely defined as a series expansion in powers of δ̄

around the continuous-time feedback γ(x,v,w); i.e., for i = 1, . . . ,r2

γ
i(δ̄ ,x,v,w) = γ(x,v,w)+ ∑

j≥1

δ̄

( j+1)!
γ

i
j(x,v,w). (32)

Proof First, we rewrite (30) as a formal series equality in the unknown uδ̄ ; i.e.,(
δ̄ r2Sδ̄

1 (x,u
δ̄ ,w) . . . δ̄Sδ̄

1 (x,u
δ̄ ,w)

)>
(33)

with, for i = 1, . . . ,r2,

δ̄
iSδ

i (x,u
δ̄ ,w) =eδ̄ (L f +u1Lg+wLp) . . .eδ̄ (L f +u1Lg+wLp)Li−1

f h2(x)

− er2δ̄ (L f +γ(·,v,w)Lg+wLp)Li−1
f h2(x).

Thus one looks for u = γ(δ̄ ,x,v,w) satisfying

Sδ̄ (x,uδ̄ ,w) =
(

Sδ̄
1 (x,u

δ̄ ,w) . . . Sδ̄
1 (x,u

δ̄ ,w)
)>

= 0 (34)

where each term rewrites as Sδ
i (x,u

δ̄ ,w) = ∑ j≥0 δ jSi j(x,uδ̄ ,w) with

Si0(x,uδ̄ ,w) =
(

∆ juδ̄ − rr2−i+1
2 γ(x,v,w)

)
LgLr2−1

f h2(x) (35)

and ∆ j
j! = ( jr2− j+1−( j−1)r2− j+1

j!
( j−1)r2− j+1−( j−2)r2− j+1

j! . . . 1
j! ). It results that

uδ̄ = γ(δ ,x,v,w) = (γ(x,v,w), . . . ,γ(x,v,w))>



On partially minimum phase systems and disturbance decoupling with stability 17

solves (34) as δ̄ → 0. More precisely, as δ̄ → 0, one gets the equation

Sδ̄→0(x,uδ̄ ,w) =
(

∆uδ̄ −Dγ(x,v,w)
)

LgLr2−1
f h2(x)

with ∆ = (∆>1 , . . .∆>r2
)> and D = diag(rr2

2 , . . . ,r2). Furthermore, the Jacobian of Sδ̄

with respect to uδ̄ is

∇uδ̄ Sδ̄ (x,uδ̄ ,w)
∣∣
δ̄→0 = ∆ LgLr2−1

f h2(x)

is full rank by definition of the continuous-time relative degree r2 and because ∆ is
invertible (see [29] for details) so concluding, from the Implicit Function Theorem,
the existence of δ ∈]0,T ∗[ so that (30) admits a unique solution of the form (32)
around the continuous-time solution (31). Disturbance decoupling and stability of the
zero-dynamics are ensured by multi-rate sampling as proven in [29] combined with
the arguments of Theorem 2. As a matter of fact, under the coordinate transformation
(22), the system (28) with output y =Cx rewrites as

ζk+1 = Âr2δ̄
ζk + B̂δ̄ vk (36a)

ηk+1 =Qδ̄
2 (ζk,ηk,wk,vk) (36b)

yk =(C1 0)ζk (36c)

with

Âr2δ̄ = er2δ̄ Â, B̂δ̄ =
r2−1

∑
i=0

δ̄ i

i!
ÂiB̂

with (Â, B̂) being in the Brunowski form. Accordingly, the sampled-data unobservable
dynamics (36b) verifies

∇ζ Qδ̄ (0,0,0,0) = er2δ̄Q2

which is Schur stable as Q2 = ∇ζ q2(0,0) provided in (24) is Hurwitz by Lemma 1.

The feedback solution of the equality (30) ensures matching, at any sampling
instants t = kδ , of the output evolutions of (18) which are decoupled from the distur-
bance. Moreover, by matching, one gets that the sampled-data feedback is making the
stable component of the n− r dimensional zero-dynamics of (28) with output y =Cx
which locally coincides with the one of the continuos-time original system (1).

7.3 Some computational aspects

The feedback control is in the form of a series expansion in powers of δ̄ . Thus,
iterative procedures can be carried out by substituting (32) into (30) and equating
the terms with the same powers of δ̄ (see [41] where the explicit expression for the
first terms are given). Unfortunately, only approximate solutions u = γ [p](δ̄ ,x,v,w)
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can be implemented in practice through truncations of the series (32) at finite order p
in δ̄ ; namely, setting

γ
[p](δ̄ ,x,v,w) = (γ1[p](δ̄ ,x,v,w), . . . ,γr2[p](δ̄ ,x,v,w))

one gets for i = 1, . . . ,r2

γ
i[p](δ̄ ,x,v,w) = γ(x,v,w)+

p

∑
j=1

δ̄ j

( j+1)!
γ

i
j(x,v,w). (37)

When p = 0, one recovers the sample-and-hold (or emulated) solution

γ
i[0](δ̄ ,xk,vk,wk) = γ(x(kδ ),v(kδ ),w(kδ )), i.= 1, . . . ,r2.

The preservation of performances under approximate solutions has been discussed
in [42] by showing that, although global asymptotic stability is lost, input-to-state
stability (ISS) and practical global asymptotic stability can be deduced in closed loop
even throughout the inter sampling period.

8 The TORA example

Let us consider the dynamics of the so-called Translational Oscillator with Rotating
Actuator (or, for the sake of brevity, TORA2 [43]) described by

ẋ1 = x2

ẋ2 =−x1 + ε sinx3

ẋ3 = x4

ẋ4 =
ε cosx3(x1− εx2

4 sinx3)+u
1− ε2 cos2 x3

y =
(

2(ε2−1)
ε

2(ε2−1)
ε

1− ε2 1− ε2
)

x

(38)

with: ε ∈]0,1[; z1 = x1− ε sinx3 and z2 = x2− εx4 cosx3 being the displacement and
velocity of the platform; x3 and x4 being the angle and angular velocity of the rotor
carrying the mass; u being the control torque applied to the rotor. It is a matter of
computations to verify that (38) has relative degree r = 1 and is not-minimum-phase
as the LTM at the origin possesses transfer function

W (s) =
(s2−1)(s+1)

s2((1− ε2)s2 +1)
.

Suppose now that a disturbance w ∈ R is affecting (38) through the vector

D =
( 2

ε
(ε2−1) 0 0 (ε2−1)

)>
2 The output and the disturbance we consider are unrealistic as they are exploited to illustrate the

methodology we propose.
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so getting the perturbed dynamics

ẋ1 = x2 +
ε2−1

2
d

ẋ2 =−x1 + ε sinx3

ẋ3 = x4

ẋ4 =
ε cosx3(x1− εx2

4 sinx3)+u
1− ε2 cos2 x3

+(ε2−1)d

y =
(

2(ε2−1)
ε

2(ε2−1)
ε

1− ε2 1− ε2
)

x.

(39)

It is a matter of computation, that classical DDP as in Section 2 is solvable for (39)
without preserving internal stability as a consequence of the instability of the zero-
dynamics. According to the arguments of Section 6, DDP with stability is still solv-
able when considering the auxiliary output

y2 =
(
−1 1 0 0

)
T x =

(
0 − 2

ε
(ε2−1) 1− ε2 0

)
x (40)

with T being computed as in Remark 2 and provided by

T = (ε2−1)


− 1

ε
0 0 0

0 − 1
ε

0 0
1
ε

0 −1 0
0 1

ε
0 −1

 .

It is a matter of computations to verify that with respect to the new output (40) the
system has relative degree r2 = 2 and is minimum-phase with transfer function of the
corresponding LTM at the origin provided by

W2(s) =
(s+1)2

s2((1− ε2)s2 +1)
.

Moreover, DDP with stability is solvable as the relative degree condition (20) is met
so that the feedback (26) with

LgL f h2(x) =
ε2−1

ε2 cos2(x3)−1

L2
f h2(x) =

2x2(ε
2−1)
ε

−2x4 cos(x3)(ε
2−1)+

+
ε cos(x3)(ε2−1)(x1− ε sin(x3)(x2

4 +1))
ε2 cos(x3)2−1

fulfills the requirements. Moreover, setting v=−k1h2(x)−k2L f h2(x) one gets y(t)→
0 as t→ ∞ whenever k1,k2 > 0.

To solve the problem under sampling, the multi-rate feedback γ [1](δ ,x,w,v) in
(37) can be easily deduced for p = 1 with

γ
1
1 (x,w,v) =

1
3

γ̇(x,w,v), γ
2
1 (x,w,v) =

5
3

γ̇(x,w,v)
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Fig. 1 δ = 0.1 s

Fig. 2 δ = 0.5 s
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Fig. 3 δ = 0.9 s

Figures 1 to 3 depict simulations of the aforementioned situations under continu-
ous -time feedback (26) and the sampled-data feedback (37) with one correcting term
(i.e., p = 1) and for different values of the sampling period and different simulating
scenario:

1. the full continuous-time case as proposed in Section 6 where the disturbance is
also continuously varying over time (in red);

2. the ideal sampled-data framework proposed in Section 7 where w(t) = wd(t) with
wd(t) = wk for t ∈ [kδ ,(k+1)δ [ (in blue);

3. the realistic sampled-data case in the disturbance is continuously varying over
time (and is not piecewise constant) albeit the feedback is computed based on
samples of the disturbance at all sampling instants t = kδ (in cyan);

4. the emulation-based control scheme where the continuous-time feedback is im-
plemented through mere sample-and-hold device with no further sampled-data
re-design (in magenta).

The disturbance is implemented as a general white noise randomly generated through
Simulink-Matlab.

It results from Figures 1 to 3 that in case of the continuous time scenario that the
proposed feedback computed via partial dynamic inversion succeeds in isolating the
effect of the disturbance from the output for the original system as the output goes
to zero with an acceptable behavior of the zero-dynamics which is still converging to
the origin despite the perturbation.
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As far as the sampled-data system is concerned, simulations underline that al-
though an approximate feedback is implemented a notable improvement of the per-
formances is achieved with respect to the mere emulation. Moreover, even when the
disturbance is continuously varying, the approximate sampled-data feedback yields
promising performances that appear even better than the ideal scenario (i.e., when the
disturbance affecting the system is piecewise constant). This fact is not surprising as
in the latter case, the relative degree of the sampled-data output with respect to the
disturbance falls to 1 so compromising the closed-loop behavior. This result motivates
and deserves a further formal and general study of this fact which has been empiri-
cally illustrated. Finally we note that, as δ increases, the proposed multi-rate strategy
yields more than acceptable performances even when emulation fails to stabilize the
input-output evolutions (Figure 3).

9 Conclusions and perspectives

In this paper, new conditions for characterizing all the disturbances that can be locally
decoupled from the output evolutions of nonlinear systems have been deduced by also
requiring preservation of the internal stability. The approach is based on a local fac-
torization of the polynomial defining the zeros of the corresponding linear tangent
model at the origin and, thus, on partial dynamics cancelation. Future works are to-
ward the extension of these arguments to the multi-input/multi-output case and to a
global characterization of the results possibly combined with input-output stability
and related results. Finally, the effect of an approximate sampled-data feedback over
a continuously perturbed dynamics (as in the third scenario of the reported simula-
tions) deserves further investigation. The study of zeros of the sampled-data systems
in a pure hybrid context [44] is of paramount interest as well.
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