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High-pressure Adaptation of Extremophiles and Biotechnological

Applications

Abstract (about 150 words)

During the last decades, high pressure has been an important physical parameter not

only to study biomolecules, but also for its biotechnological applications. High pressure

affects organism’s ability to survive by altering most of cell’s macromolecules. These

effects  can  be  used,  for  example,  to  inactivate  microorganisms,  enhance  enzymatic

reactions  or  to  modulate  cell  activities.   Moreover,  some organisms  are  capable  to

growth  under  high  pressures  thanks  to  their  adaptation  at  all  cellular  levels.  Such

adaptation confers a wide range of potentially  interesting macromolecules  still  to be

discovered. In this chapter, we firstly present the different effects of pressure on cells

and the diverse strategies used to cope against this harsh environment. Secondly, we

explored the pressure biotechnological applications on pressure-sensitive and adapted-

pressure organisms. 

Keywords: high pressure, deep biosphere, stress, piezophile, adaptation

Introduction

High pressure (HP) characterizes many habitats on Earth, such as deep sea, sub sea floor

and continental subsurface. Ocean covers approximately 70% of world’s surface and its

average pressure is 38 MPa (1 MPa = 10 bar). This hydrostatic pressure originates from

the weight of the water column and corresponds to 10 MPa/km[1]. Part of the oceans

are defined as “deep sea”, which encompasses the entire biosphere below 1000 m from
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the  water  surface  and  consequently  with  pressure  higher  than  10 MPa.  The  highest

hydrostatic pressure detected in the ocean is approximately 110 MPa at 11,000 m depth

at  the Challenger  Deep of Mariana  Trench in  the  Pacific  Ocean.  Though, pressures

above 110 MPa have been found at the sub sea floor. In this case, pressure is caused by

hydrostatic  pressure  but  also  by  the  weight  of  material  (lithostatic  pressure)  and  it

increases  roughly by 15 MPa/km in sediments  and  by about  28 MPa/km in oceanic

rocks. Sub sea floor contains a substantial part of the Earth biomass and can potentially

influence global biochemistry [2–4]. 

All  high-pressure  habitats  are  occupied  by  microorganisms  and  other  complex

organisms  and they highly contribute to the Earth’s biomass [5,6]. Pressure impact on

organisms’ growth allow to divide them in different categories. Organisms that cannot

tolerate  ambient  pressure  are  designed  as  strict  or  obligate  piezophiles,  inversely,

facultative piezophiles or just piezophiles are organism that tolerates ambient pressure,

but their optimal growth pressures are higher than 10 MPa (figure 1). On the other side,

organism that withstand optimal pressures lower than 10 MPa are called piezotolerants

and,  finally,  organisms  which  their  growth  is  inhibited  by  pressure  are  designed as

piezosensitive [7]. 
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Figure	1.	Schema/c	growth	curves	of	microorganisms	according	to	pressure	(MPa)	[7].

The  interest  in  piezophiles  has  begun  more  than  a  century  ago[8,9],  but  the

technological difficulties and the need of specialized equipment have done that high-

pressure studies are not, currently, developed in most laboratories. However, the interest

and the applications of the pressure biotechnological applications have been growing

during last decades. 

Bacteria and Archaea domains contain facultative and obligate piezophiles. Examples of

obligate piezophiles are the bacteria Shewanella benthica and Colwellia marinimaniae,

with  their  optimal  pressure  at  70  MPa and  120  MPa  respectively  [10,11],  and  the

archaeon Pyrococcus yayanossi, withstanding an optimal pressure of 50 MPa [12]. The

technical constraints to isolate obligate piezophiles may provoke their underestimation.

Obviously, piezophiles excel in sustaining pressure conditions beyond the usual limits

for humans; however, the reasons for that adaptation are still debated. 

1. Effects of Pressure on Macromolecules and Cells

Pressure alters  the biomolecules  by changing their  volume.  Thermodynamically,  the

variation in Gibbs free energy (G) is defined by the equation 1 
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d( ∆G) =−∆ SdT +∆VdP, (1)

where ΔS is the difference in entropy, ΔV the change in volume and T and P represent

temperature and pressure, respectively. At constant temperature, dT = 0 and thus 

( ∂G
∂P

)
T
=∆V . (2)

This equation, according to the Le Châtelier principle  [13], states that an increase in

pressure will cause a shift to the state that occupies the smallest volume, meaning, for

example, to the unfolded state for most globular proteins, where ΔG < 0. As a result,

pressure modifies the volume of the system but not its internal energy (as temperature

does).  Water  with  its  low  compressibility  is  a  crucial  partner  for  pressure  action.

Notably  hydration  water  (water  bound  at  the  surface  of   macromolecules)  is  very

sensitive to pressure and it can reorganize its network under pressure implying an effect

on  the  macromolecule[14].  Moreover,  macromolecules  present  an  extraordinary

stability against pressure under low hydration conditions [15,16].

Relatively low pressures affect the interatomic molecular bindings (such as Van der

Waals,  hydrogen  bonding  and hydrophobic  interactions)  altering  conformations  and

structures of biomolecules and therefore, their physical properties (solubility, melting

point,  density),  equilibrium states  and  processes’  rate  [17].  Electrostatic  and

hydrophobic interactions  are  specifically  affected  by pressure.  In  contrast,  pressures

above 2 GPa are needed to impact non-covalent interactions [18,19]. 

1.1.   Nucleic acids

Although the unfolding volume of DNA duplexes is small, pressures up to 1 GPa have,

in general, a stabilizing effect on canonical DNA (e.g. with common pair bases). This

stabilizing  effect  may  be  explained  by  the  decrease  of  hydrogen  bonds’  distance.
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Consequently,  pressure increases  the  duplex-single-strand  transition  temperature[20].

Only in specific cases of synthetic polymers ( e.g adenine – thiamine copolymer) and

salt concentrations, pressure can lead to double-stranded melting  [21]. Regardless, the

mechanism is not the same as the heat-induced DNA melting, as under pressure, water

molecules penetrate DNA base pairs destabilizing their interactions [22,23]. 

There is a lack of information about the effect of pressure on RNA but, generally, it has

been observed that RNA is more pressure sensitive than DNA. For example, pressure

induces  a  structure  reorganization  of  tRNA  [24,25] and  it  destabilizes  small  RNA

oligomers [26]. 

Non-canonical pair structures (different from the usual Watson-Crick pair bases), such

as  G-quadruplexes  or  stem-loops,  are  less  stable  under  pressure  than  canonical

structures by a factor of 10 [22,27].

Although  canonical  DNA  duplexes  are  stabilized  by  pressure,  DNA—protein

interactions  may  be  perturbed  due  to  changes  in  the  electrostatic  and  hydrophobic

interactions.  Accordingly,  pressure  affects  negatively  all  molecular  reactions  where

DNA is involved, such as replication, transcription and recombination [28,29]. 

1.2. Proteins

Most  of  the  knowledge  about  pressure  effects  on  proteins  is  based  on  studies  on

globular  proteins[30–32].  Some of  these  studies  reveal  that  structural  transitions  of

globular protein due to pressure are based on a hydration mechanism that accompanies

protein conformational changes. At higher pressure the hydration degree is increased by

the penetration of water into the protein cavities causing the increase of the surface area

in contact with the solvents thus contributing to the volume change[33]. Pressure mainly

alters tertiary and quaternary structures of proteins but secondary structures (α-helices,
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β-sheets, and turns) are much less sensitive to water penetration and to destabilization

by pressure. For this reason, the state unfolded by pressure may be a hydrated globular

structure with large amounts of folded structure[17,34]. It is important to note again the

role of water on pressure denaturation, since this volume change can only be observed

for proteins in solution. Dry proteins are highly stable against pressure[18,35,36]. 

The  unfolding  of  many  monomeric  proteins  begins  above  200  MPa  [4],  however

enzymatic activities are usually modified at lower pressures.  In fact, the application of

pressures  <  200  MPa  confers  higher  thermostability  to  most  proteins  [35,37].

Consequently,  superposing  pressure  and  temperature  usually  accelerates  most  of

enzymatic reactions, such as hydrolases and transferases reactions [36]. Moreover, few

reactions can be enhanced by pressure even at low temperatures [36]. For example, the

efficiency  of  coconut  husk  hydrolysis  by  cellulases  from  Penicillium  variable is

increased at 300 MPa [38].    

Pressure generally  changes  the equilibrium between oligomers  and their  subunits  or

between two different proteins and this even at relative low pressures (about 50 MPa)

[39]. At this pressure, for example, ribosomes’ subunits are dissociated [29] and larger

protein  assemblies  as  cytoskeletal  proteins  are  disturbed  resulting  in  reversible

morphological changes [40]. However, other oligomers are more resistant to pressures

as the tetrameric urate oxidase, which dissociates at about 150-175 MPa [41].

Actually,  a  protein  in  its  native  state  possesses  distinct,  nearly  isoenergetic

conformational substates, which may have similar or dissimilar functions or the same

function with different rates (statistical substates). As pressure can decrease the folding

rate  and  increase  the  unfolding  one,  it  can  shift  the  population  of  different  protein

substates on the basis of their volumetric differences [42–44]. This capability allows the

characterization of various intermediate  substates by pressure, which may act in the
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folding process [45]. Moreover, pressure can change the reaction rates, providing new

information about the dynamics and reactions of proteins [34]. This was confirmed, for

example,  by a dynamic  study of myoglobin,  where it  has been shown that  pressure

reduces protein motions and facilitates access to different substates [44].

Few studies have been done on pressure effects of non-globular proteins, as fibrous,

disordered and membrane proteins. Examples are the studies on the collagen structure

[46],  the  intrinsically  disordered  protein  alpha  synuclein  [47] and  on  the  Lmr

transmembrane protein [48] or the ion channel MscS [49]. An important point is that the

behaviour of transmembrane proteins against environmental stresses is affected by the

protein structure but also by its lipids surrounding [50]. 

Membrane proteins and membrane lipids form an ensemble; they influence each other

as a result of biochemical or environmental changes which can compromise membrane

process as energy production or ion flux. For example, the transporter efficiency of the

tryptophan  permease Tat2  from  yeast  cells  is  affected  due  to  a  membrane  fluidity

modification at HP[51]. Therefore, membrane integrative studies are necessary to better

describe the membrane protein behaviour. Its influence of the lipid matrix on the protein

response to pressure have been studied for few proteins [52–54].

1.3. Phospholipids

Lipids, and specially their hydrocarbon chains, possess a highly compressible potential,

which  makes  them very  sensitive  to  pressure  [55].  When  pressure  is  applied  on  a

phospholipid bilayer, the acyl chains from phospholipids get straighten resulting in a

thicker  and  higher  ordered  bilayer.  Due  to  this  higher  acyl  chains’  order,  pressure

promotes  the  lipid  phase  transition  from  liquid-crystallin  (phase  essential  for  the

biological  function  of  the  membrane)  to  a  more  rigid  phase  called  the  gel  phase.

8

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

15
16



Additionally,  pressure  can  also  promote  the  apparition  of  new  phases,  such  as

interdigitated  phases  or  non-lamellar  phases  (i.e.,  cubic  or  hexagonal)[55–59].

Nevertheless, not all lipids have the same sensitivity to pressure, for example, lipids

with longer hydrophobic chains are more responsive to pressure. This may result in a

phase separation in domains on model membranes from a mixture of lipids[60]. 

Pressure may have also an impact on more complex macromolecules, as lipoproteins.

Recent studies on human plasma lipoproteins under HHP revealed a reduced flexibility

and  higher  compressibility  of  its  triglyceride  rich  form,  the  form  associated  to

pathological health conditions [61,62].

1.4. Cells

Surprisingly, pressure is the unique physical parameter capable of inducing heat-shock

and cold-shock proteins’ as a cell response to a same stress.  Escherichia coli (E. coli)

exposed to 53 MPa induces 55 proteins, 11 heat-shock and 4 cold-shock proteins among

them.  E. coli may try to counteract the damage produced by pressure at different cell

levels, such as stability of macromolecules and membrane functionality[63].

As  mentioned,  pressures  up  to  100  MPa  affects  most  of  the  cellular  functions  as

enzymatic reactions, gene expression, cell motility and morphology, and cell membrane

(figure 2). Since pressure is transmitted through a fluid, it will be transmitted uniformly

(Pascal’s  law) over  the  whole cell  and therefore,  it  makes  difficult  to identify,  if  it

exists, the main cause of the cell death. Moreover, pressure-induced cell inactivation

relies  on the type of microorganism and its  physiological  conditions,  such as water

content and salt presence. 

Overall,  eukayotes  are  more  pressure-sensitive  than  prokaryotes  and  piezosensitive

bacilli and spiral-shaped bacteria are inactivated at lower pressures than cocci [39,64].
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For instance, pressures above 150 MPa usually reduces the viability of mammalian cells

and  may  induce  cell  death  by  apoptosis  from 200  MPa  or  through  a  necrotic-like

pathway at 300 MPa  [65]. On the other hand, bacteria cocci may resist much higher

pressure variations, for example, Staphylococcus aureus cell inactivation begins at 350

MPa [64].
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Figure	2.	General	effects	of	pressure	on	cellular	macromolecules	(black)	and	cells	(red).	Adapted	from	[66]

In addition, most gram-negative bacteria seem to be less resistant to pressure than gram-

positive [67]. Gram-negative bacteria possess a much more complex membrane which

makes it a target for pressure damage [68]. Finally, microorganisms on the exponential
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growth  phase  present  lower  pressure-tolerance  than  on  their  stationary  growth

phase[69,70],  for  example,  exponential-cells  may  present  filamentous  shape  under

pressure  which  can  disrupt  membrane  functions  [29,71].  Moreover,  stationary-cells

have the capability to synthesize stress-response proteins to adapt and, therefore, better

resist to different harsh conditions[72]. 

Spores present formidable high resistivity  to harsh environments,  likely due to their

structure  with  numerous  protective  layers  and  their  low  water  content  [73].

Interestingly, relative moderate pressures (50 to 300 MPa) cause the germination of a

dormant  spore.  Though,  higher  pressures  are  often  less  effective  to  induce

germination[74]. Pressure alone is not very effective to inactivate bacterial spores and a

treatment with temperature is necessary[75]. 

2. Pressure Adaptation in Piezophiles

The  biodiversity  of  piezophiles  is  huge  [5,76–78].  Organisms  adapted  to  pressure

include unicellular  bacteria,  archaea, eukaryotes as invertebrates and fishes and even

deep diving marine mammals [79–81]. For example, in several hydrothermal vents have

been  found  large  invertebrates  like  mussels,  crabs  and  shrimps  and  some  marine

mammals can dive exposed to almost 20 MPa without any negative symptom [82,83].

There are differences in the microorganisms adapted to HP, as some are also adapted to

low temperatures (psychrophiles) and others to high temperatures (hyperthermophiles),

which increases the piezophilic diversity. Hyperthermophilic and piezophilic organisms

are found near vent sites, where temperatures can go from 350 °C to 2°C in only few cm

distances. Altogether, this represents a source of microorganisms with great potential
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for technological and pharmaceutical applications, such as new enzymes, antibiotics or

cancer cell line active derivatives. 

Figure	3.	Op/mal	growth	temperature	and	pressure	for	some	piezophilic	bacteria	(blue)	and	archaea	(red).

Most piezophiles  identified  in  the deep sea are bacteria,  they are psychrophiles  and

piezophiles, but in the niche of hydrothermal vents, most microorganisms are archaea,

they are thermophiles and piezophiles  [84] (figure 3). This indicates that piezophiles

may follow a different adaptation to temperature and makes it difficult to separate the

adaptation to pressure from other stress adaptation since microorganisms may adopted a

common strategy to cope with various environmental stresses [85]. High pressure has a

close  relation  with  other  stresses  as  temperature,  pH and  salt.  Moreover,  there  are

relatively few studies on adaptation mechanisms to pressure and not all adaptations are

equally  used  by  the  different  piezophiles  studied.  Additionally,  not  all  necessary

pressure  adaptation  mechanisms  are  deleted  at  ambient  pressure,  and  therefore  the

homologue enzymes may use the same mechanism [66]. Finally, piezophilic biospheres
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are closely related to nutrient limitation and most piezophiles must also be oligotrophes

[4]. 

Extremophiles have developed great capabilities to adapt to harsh and even fluctuating

conditions (e.g. temperature, pressure, composition of the host rocks…) thanks to their

own  unique  macromolecules,  such  as  polysaccharides,  lipids  or  enzymes  and  even

specialized organs[86]. These macromolecules adapted to HP present a high potential to

develop new biotechnological applications. 

2.1. Genomes

Marine biosphere contains mobile genetic elements, such as plasmids, bacteriophages,

transposons, integrons, integrative conjugative elements and genomic islands  [87]. All

of  them  are  essential  to  understand  the  high  marine  microbial  diversification  and

thereby their adaptation [88,89]. Consequently, horizontal gene transfer of these mobile

genetic elements may play an essential role in the microbial adaptation to pressure and

other extreme conditions [90]. 

Recently, it has been described that the gene Ypr153w is possibly responsible for the

tryptophan permease’s Tat2 stability in Saccharomyces cerevisiae under pressure. It is a

gene  which  has  also  been  identified  in  other  related  species  as  Debaryomyces and

Candida strains which have been isolated from sediment samples of deep sea floors

[91]. Another possible HP adaptation could be the 16s rRNA longer stems found in

strains from Photobacterium, Colwellia and Shewanella [92].

The high  genetic  tractability  and hyper-responsiveness  to  pressure of  the  piezophile

Photobacterium profundum strain SS9 has made it a reference for studies on piezophile

adaptation. It has been discovered a pressure-sensitive mutant of SS9 that lacks the recD

gene, responsible for a DNA-binding protein.  Besides, the transfer of the recD gene
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from SS9 to E.coli enabled the latter one to divide normally under HP. This indicates

that RecD may have an important role for piezoadaptation together with a role of DNA

metabolism and cell division[93,94]. 

To date, it has not been possible to detect any piezospecific gene. Consequently, it is not

possible  to  determine  if  an  organism  is  piezophile  by  molecular  approaches,  it  is

necessary to do cultivation approaches and to determine the growth rates at different

pressures. However, it has been found that the pressure regulated operons ORFs 1–3 are

distributed among different piezophilic Shewanella species[95]. 

2.2. Proteins

Relatively few enzymes from piezophiles have been studied under pressure. Although

there are no apparent differences between the crystal  structure of an enzyme from a

piezophile and its piezosensitive homologue, there is a variation in the stability between

both enzymes caused by a difference in flexibility and hydration of the proteins[96].

Most molecular motion studies about pressure adaptation have been done  in vitro, or

investigating,  for  example,  molecular  dynamics[97].  Nevertheless,  nowadays  in  vivo

studies have gained importance thanks to, for example,  neutron scattering and NMR

experiments  that  can  examine  timescales  from  few  nanoseconds  to  hundreds  of

milliseconds[98–100]. 

It  has  been  shown that  some proteins  are  involved  in  HP adaptation  as  well  as  in

adaptation  to  other  stresses  (Hsp60,  Hsp70,  OmpH,  RecA,  F1F0 ATPases,  Cct  and

Tat2)[101].  A  system  highly  studied  under  pressure  is  the  Omp/Tox  system.  The

proteins  ToxS and ToxR from  P.  profundum SS9 are  responsible  for  regulating  the

genes that encode the membrane proteins OmpH, OmpL and OmpI. Pressure reduces

the abundance and the activity of ToxR, which therefore upregulates the protein OmpH
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among others, the system acts as a piezometer. Regardless, the systems ToxS and ToxR

do not confer HP adaptation and their role under pressure is not clear [8,102].

The  protein  adaptation  to  extreme  conditions  is  a  balance  between  the  imperative

stability (higher number of bounds) to be functional and the flexibility (lower number of

bounds) to be capable to adapt to different conditions  [103]. One of the most studied

enzymes  is   dihydrofolate  reductase  (DHFR).  Studies  comparing  DHFR  from  the

piezosensitive  E. coli and from the facultative psychro-piezophile  bacteria  Moritella

profunda reveals  that  applying  pressure  decreases  EcDHFR  activity  and  increases

MpDHFR activity up to 50 MPa before diminishing its activity at higher HP. MpDHFR

seems to have higher sensitivity to pressure due to its higher flexibility  [104]. A more

flexible protein may explain the higher absolute activity of piezophile proteins [105]. 

However, most of studies are done in protein-isolated solutions, which differs from their

native  state.  An  innovative  quasi-elastic  neutron  scattering  study  examined  the

dynamics  from  whole  cells  of  the  piezophile  Thermococcus  barophilus and  the

piezosensitive  Thermococcus kodakarensis microorganism under atmospheric pressure

and 40 MPa.  This study revealed that the HP adaptation on whole cells is based on an

overall  higher  proteins’  flexibility  and,  in  addition,  on  the  modification  of  their

hydration layers [99].

Proteins from piezophiles may have a larger  total  volume of small  internal  cavities,

which makes the protein more compressible and less sensitive to distortion caused by

pressure [105]. Moreover, the presence of small cavities allows water penetration at HP

and consequently increases the hydration but, as seen in MpDHFR, cavities are not big

enough to cause the protein denaturation but allow the protein to be more flexible. The

presence  of  more  small  cavities  could  decrease  the  amount  of  water  molecules

contained in each cavity (a volume of 15A3 is necessary for a single water molecule and
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an increase  of  approximately  45A3 is  required  for  each extra  molecule  [106]).  It  is

important to consider that cavities are not mere “packing defects” but that they play a

role in conformational changes and in controlling binding and catalysis of the proteins

[106,107]. 

Generally, monomeric proteins are more resistant to pressure than oligomeric proteins.

However,  it  has  been  shown  that  multimeric  proteins  may  be  adapted  to  resist  to

pressure. For example, studies on the hyperthermophile and piezophile TET3 peptidase

from  Pyrococcus  horikoshii indicate  that  the  protein multimerizes  into  a  dodecamer

structure  instead  of  conserving  its  classical  barrel-shape  multimer  conformation.

Dodecamer  multimerization  protects  the  hydrogen  bonding  between  the  different

subunits  and increases  its  stability  against  temperature and pressure up to 300 MPa

[108]. 

A general  extrinsic cell  response to pressure-stress is the presence of piezolytes and

other low weight organic compounds called osmolytes (e.g., sugars and amino acids) to

protect the cell macromolecules, such as proteins, from  pressure modification [109] and

therefore adapt its dynamics. Some piezophiles accumulate these low-weight molecules

in response to an increase on pressure and others to a decrease, indicating in the latter

case that the growth at lower pressure than optimal is perceived as a stress for these

piezophiles. For example, trimethylamine oxide (TMAO) is a pressure co-solute that

helps proteins to remain active under HP in certain fishes and crustaceans [80,110]. On

the  other  hand,  the  hyperthermophilic  and  piezophilic  Thermococcus  barophilus

accumulates mannosyl-glycerate when it is grown in non-optimal conditions (ambient

pressure)  [111]. This indicates that this archaeon perceives the lack of pressure as a

stressful condition. 
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Few studies  have been done on pressure adaptation  of  higher  complex  pluricellular

organisms.  For  example,  it  is  thought  that  the  regulation  of  N-methyl-D-aspartate

receptor (NMDR), a cell membrane protein found in nerve cells, is  responsible for the

absence  of  the  high-pressure  nervous  syndrome (HPNS)  on  deep  dive  mammalians

[83,112]. The regulation of this protein may be done by modulating its interaction with

lipids, for example by the presence of cholesterol,  and thanks to protein’s particular

tertiary structure in piezo-tolerant organisms. 

2.3. Membrane lipids

Cells have the capability to modify their cell membrane lipid composition metabolically

to  maintain  it  in  a  functional  liquid  crystalline  phase  with  specific  functional

physicochemical properties, such as fluidity, permeability and membrane curvature in

spite  of  environmental  stresses.  This  process  is  known as  homeoviscous  adaptation

[113].

Eukarya  and  bacteria  possess  lipids  different  from  those  in  archaea  but  their

homeoviscous adaptations have similarities. Eukaryal and bacterial lipids are composed

by  straight  hydrocarbon  chains  linked  by  ester  bonds  on  1,2  –sn-  glycerol  and  a

phosphodiester-linked polar  group or sugar.  On the other  hand, archaeal  lipids  have

isoprenoid hydrocarbon chains bounded by ether bonds on 2,3-sn-glycerol. Partly, the

adaptation of archaea to extreme conditions may thus rise from their particular lipid

structure [114].  

The common routes of lipid adaptation of bacterial  and archaeal membranes are the

change of the acyl chain length, the addition or removal of mono-unsaturated lipids and

the change in the polar headgroups  [115,116]. Longer acyl chains are translated into

more rigid membranes, in contrary adding just one unsaturation to lipid chains makes
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the membrane more permeable and larger  headgroups increase the disruption of the

membrane packing by increasing the membrane fluidity. Furthermore, archaea possess

tetraether  lipids,  which  may  form  a  monolayer  instead  of  the  common  bilayer.  In

addition, some archaeal species comprise lipids with cyclopentane rings and isoprenoid

chains that are crosslinked. The change in the different ratios from di- and tetra-ether

lipids and the presence of cyclopentanes and crosslinked chains modifies as well the

properties of the cell membrane. Finally, psychrophilic bacteria present polyunsaturated

fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid

(DHA), which,  just  as  lipids with one unsaturation,  increase the permeability  of the

membrane under low temperatures[117]. The function of PUFAs is not clear, one of the

hypotheses is that requires less carbon and energy to obtain the same effect than the

mono-unsaturated lipids [8,117,118]. Another hypothesis is that they may play a role in

cell division under HP, as demonstrated for bacteria Shewanella violacea[119]. 

Only two studies have been done to examine the lipid composition under pressure: one

on  Methanocaldococcus  jannaschii and  another  on  T.  barophilus[120,121].  Both

present an increase in the diether : tetraether lipid ratio to counteract the increase in

rigidity provoked by pressure on the cell membrane. 
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3. Pressure Biotechnological Applications

HP application is mostly used in food processing since it does not affect non-covalent

interactions  (at  least  up to 2 GPa) and it  can inactivate  bacteria  and viruses without

changing markedly nutrients and flavours of food. Furthermore, pressure can change the

reaction rates, which may favour the extraction of the required product[19]. 

Besides,  pressure  may  be  used  for  diverse  biotechnological  and  biopharmaceutical

applications,  for example to  explore new therapies  [122,123] and conserve vaccines

[123], improve cryopreservation [125] or for orthopaedics’ surgery [126].  

3.1. Food Industry

HP (400 — 600 MPa) inactivates  microorganisms,  like yeast,  molds and viruses.  It

affects  the  cell  at  different  levels,  such  as  nutrient  transport  and  cell  reproduction,

reaching to the cell death [75,127]. Moreover, HP hardly affects low-molecular weight

compounds  (ex:  vitamins,  amino  acids,  flavour  molecules)  so,  organoleptic  and

nutritional  properties are only slightly  modified  [128]. On the other hand, HP alone

cannot inactivate bacterial spores and thus a combination with other variations of pH,

chemicals  or  thermal  processes  maybe  needed.  Nevertheless,  pressure  reduces

considerably  the  working  temperature,  as  70 °C  instead  of  180 °C  is  enough  to

inactivate spores if it is combined with 600 MPa [75]. Such decrease in temperature can

help to preserve quality and minimise off-flavour generations. Therefore, HP techniques

are useful as a complement on thermal process but also to inactivate microorganisms on

products  where  temperature  cannot  be  applied.  As  an  illustration,  high  pressure

pasteurization of cold-pressed juices eliminate pathogens of juices without impairment

of its fresh-like qualities and increasing the shelf life of the product [129,130].
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HP extends shelf  life of a high variety  of food products. For example,  fresh shrimp

treated at 435 MPa has a shelf life of 15 days, three times longer than the shelf life of

the untreated shrimp[131]. Fresh cheese treated at 300–400 MPa has a shelf life at 4 °C

of 14–21 days, which is greatly higher than the 7 days for the untreated cheese[132]. 

Food is a complex matrix and inactivation efficiency depends on different factors as

treatment conditions, microorganisms to inactivate and its food matrix characteristics.

For  example,  meat  treated  at  300 MPa  has  a  cooked  like  appearance  but  if  it  is

processed at 100–200 MPa and 60 °C, it is more tender than the untreated meat[133].

Consequently, inactivation conditions must be defined for every food product. HP is not

efficient for low water content food (such as flour) or food with high content of air

bubbles and if the food needs to be wrapped before treatment only plastic packaging is

acceptable, as packaging material needs a compressibility of at least 15% [127]. 

Finally,  HP may  also  be  applied  as  a  pre-treatment.  On the  one  hand,  it  has  been

demonstrated that the application of sublethal HP on cells gives them cross-resistance to

other stresses.  For example,  the most studied probiotic,  Lactobacillus  rhamnosus, is

more resistant to heat after an application of 100 MPa for 10 min[134]. This opens the

possibility to inactivate the pathogens on probiotic products, conferring a health benefit.

On the other hand, pre-treatment can be useful to facilitate the extraction of internal

nutritional  components.  HP  makes  the  cells  more  permeable,  increasing  the  mass

transfer rate and as a result incresing the release of extracts. It has been shown that the

time extraction of caffeine from green tea leaves is reduced from 20h to 1 min if a

pressure of 500 MPa is applied; extraction of anthocyanin red grape skin is increased by

23% by applying 600 MPa of pressure and the extraction yield of gingenosides from

Panax quinquefolium root increases linearly between 100 MPa and 500 MPa [135]. 
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3.2. Allergenicity and digestibility

Several proteins can provoke allergic reactions caused by an immune disorder on the

IgE binding. Because HP tend to denature proteins and as a result, it has been shown to

induce a modification of their allergenicity[136], both on protein solutions and on food

systems. For example, pressures of 300–700 MPa reduce the allergenicity of a ginkgo

seed protein and of soybean allergens[137]. Another interesting example is the use of

HP together with proteases to obtain hypoallergenic rice[138,139]. However, the effect

of  HP on allergenicity  is  not  universal.  There is  no allergenicity  change caused  by

pressure on almonds, or on the protein Mald1 from apples[140,141]. Mald1 native state

possess a high internal cavity occupied by water [142] and therefore, pressure may not

be able to conform significant  hydration changes since the protein is already highly

hydrated. 

HP may have not only an effect on the allergenicity of the food products but can help to

increase  its  digestibility  by  exposing  inaccessible  sites  of  proteins  and,  thereby,

enhancing  the  efficiency  of  protein  hydrolysis.  For  example,  the  time  required  for

proteolysis of β-lactoglobulin, the major allergen in cow’s milk, is reduced from 48h to

20 min at 200 MPa [143]. 

3.3. Antiviral vaccines

Several viruses are inactivated or dissociated by pressure. Under pressure, the atomic

contacts between subunits are replaced by interactions with the solvent and therefore

once pressure is released, viruses cannot come back to their native form. For example,

pressure inactivates picornaviruses by causing the lack of VP4 from the intern capsid

[144]. Both viruses with polyhedral and helicoidal symmetry are sensitive to pressure.
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Even so,  not all  viruses are equally  reactive to pressure,  for example,  the foot-and-

mouth-disease picanovirus is highly sensitive and poliovirus is much higher resistant

against HP[144]. 

Interestingly,  virus  re-associate  under  their  fusogenic  state  under  pressure,  a  less

infectious and highly immunogenic form[144–146]. This is why high pressure has been

suggested  for  antiviral  vaccine  development.  It  has  been  demonstrated  that

immunization against HP-inactivated virus is equally effective as against intact virus

and have higher immunity response than isolated viral subunits [42,147]. 

3.4. Bio-purification

An antigen may be purified from its medium by affinity chromatography due to a steric

recognition with an antibody linked to a matrix. The recognition causes an increase in

molecular volume and, as pressure causes a volume decrease, it could be useful to apply

pressures  to  dissociate  the  product  of  interest  without  using  drastic  elution  process

which  reduce  the  lifetime  of  matrices  [148].  This  has  been  demonstrated  for  the

recovery of β-galactosidase: four 15 min cycles of 150 MPa at 4°C recovers 32% of E.

coli β-galactosidase compared with the 46% recovered by adding a solution of pH=11

[149]. Although the product yield is lower when using HP, the method is simpler and

have a lower impact on matrices than the current elution process. 

HP  ability  to  disrupt  immune  complexes  has  been  proved  on  anti-prostate  specific

antibody from its antigen  [149,150], its dissociation was increased by 22-37% when

pressures  from  140  to  550  MPa  were  applied.  Pressure  may  also  optimize  the

dissociation of amphiphilic biomolecules from a fixed adsorbent: 80% of Triton-X can

be recovered form a bed absorption if a pressure of 250 MPa is applied on the system

[151].  
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Finally,  as  pressure  can  dissociate  aggregates,  it  may  be  used  for  the  recovery  of

proteins  from  inclusion  bodies,  i.e.  aggregates  of  incomplete  folded  proteins.

Traditionally,  to  separate  proteins  from  inclusion  bodies  is  necessary  to  use  high

concentrations of agents that destroy the spatial structure of proteins with a necessary

subsequent difficult refolding. However, a pressure of 240 MPa is effective to dissociate

the inclusion bodies of endostatins and a subsequent application of 40 MPa induces the

refolding of 78% of the protein [152].

3.5. Modulation of Cell Activity 

Already relative low applied pressures can enhance the cell activity to our profit, as for

example observed at 10 MPa for ethanol production by Saccharomyces cerevisiae [153]

which occurs 3 times faster than at atmospheric pressure. Another example is on the

fermentation by  Clostridium thermocellum  [154], this  Clostridium converts cellobiose

to biofuels and other chemicals but also synthesizes other non-desired products (acetate,

H2,  CO2).  When  the  fermentation  happens  under  pressure  of  7  or  17 MPa,  the

microorganism modifies the metabolic pathways and shifts the production to desired

metabolites, reaching an increase of 60-fold. 

However, as HP is considered a stress for most cells, it will translate into the expense of

additional  energy  for  cell  maintenance  and growth,  reducing  the  product  yield.  For

example,  HP  reduces  the  fermentation  rate  of  lactic  acid  fermentation  due  to  the

inhibitory effect on the growth of Streptococcus thermophilus, Lactobacillus bulgaricus

and Bifidobacterium lactis [155]. To avoid the loss of efficiency rates under HP, efforts

are made to enhance the resistance to HP of mesophilic microorganisms, leading to HP

resistant organisms with higher performance under HP [156].
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4. Biotechnological Applications of Piezophiles

There are more than 3000 enzymes identified to date and most of them are used for

biotechnological applications. Nevertheless, these enzymes are not enough to respond to

the new technological challenges that appear each day [157]. One of the problems is the

stability of the enzymes under industrial conditions, so it is necessary to find enzymes

which are highly resistant to harsh conditions and here deep-sea enzymes may play a

major role. Pressure-stable enzymes are capable of sustaining biocatalysis under HP,

modifying therefore specific enzymatic reactions, and have even higher thermostability.

For  example,  Biolabs® has  already  commercialized  a  DNA  polymerase  from  a

hyperthermophile and piezophile Pyrococcus, which presents a half-life of 23 hours at

95 °C.  Moreover,  piezophilic  enzymes  may  possess  different  properties  than  their

surface homologues, which may open new possibilities for industry[158]. The market

for industrial enzymes is growing every year and the exploitation of extremozymes is a

huge and mostly unexplored resource[159]. 

As we have seen, lipids from extremophiles are unique. Archaea in particular contain

lipids which confer to the cell a highly stable and impermeable membrane. The unique

stability may be used in biotechnological or pharmaceutical applications, for example to

protect  therapeutic  peptides  from  the  harsh  environment  of  the  gastrointestinal

tract[160,161].  Additionally,  many  piezophilic  bacteria  contain  omega 3-PUFAs

associated with their cell membrane, which are precursors to hormones and hormone-

like  molecules  in  many  animals. Consequently,  it  could  be  used  for

hypertriglyceridemia diseases and clinical studies for this purpose have already been

approved[158]. 

The high marine biodiversity has woken up the interest to search new compounds with

biopharmaceutical  potential[162].  It  has  been  discovered  marine  derived  molecules
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with,  for  example,  antitumor  potential,  for  the  treatment  of  pain  or  antimicrobial

activities  [158,161,162].  For  example,  studies  have  identified  some  bioactive

compounds from marine echinoderms (such as the piezotolerant  Cucumaria frondosa)

with antiproliferative, antimetastatic and immunomodulatory activities[163].  

All pressure-specific impacts allow to modify macromolecules and cells in unique ways.

Food industry was pioneer  in  using  pressure to  inactivate  microorganisms  and as  a

pretreatment, but pressure capability does not stop here. Promising applications, such as

antiviral vaccines, the use of pressure for bio-purification or to vary cell activities has

led to a greater interest on this physical parameter. In addition, piezophile organisms

opens a range of possibilities to use pressure-adapted molecules, and to increase, for

example, the reaction rates, or to find new active macromolecules. 
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EXTRA

Biopharmaceutical

Bacterial ghosts as delivery systems

Bacterial ghosts are usually obtained by the expression of a lyses gene that leads to the

formation of a transmembrane tunnel with its consequent cell material leakage. These

products  retains  their  immunogenic  properties  as  their  cell  surface  is  not  affected.

Bacterial ghosts obtained by the expression of lysis gene does not retain their cellular

structure and are permeabilized and therefore lose their immunogenic properties. HP is

capable  to  prepare bacterial  ghosts  without  the  disadvantages  of  lysis  gene,  which

make them a good option to use as delivery systems for subunit or DNA vaccines. For

example, HP bacterial ghosts have been obtained applying a pressure of 100 MPa for

15 min to E.coli. 

Cryopreservation

Oocyte cryopreservation by vitrification is one technique used to maintain women’s

fertility but blastocyst formation rate after this process is still low. This low formation

rate is caused by the production of ROS components. As remarked above, sublethal HP

stress  makes  the cells  more resistant  to  thermal treatments  and oocytes  are not  an

exception.  For  example,  pig  oocytes,  mouse  and  bovine  blastocysts  show a  higher

resilience  against  cryopreservation  after  being  subjected  to  sublethal  hp  treatment.

Moreover, It has been demonstrated that HP (20-40 MPa for 90-120 min) treated bull

and  boar  spermatozoa  before  cryopreservation  preserve  the  viability,  motility  and

fertility after thawing. 

Vaccines preservation

HP can be also considered as a stabilizing method for vaccine preservations. It has

been  demonstrated  that  high  pressure  stabilizes  attenuated  poliovirus  against

temperatures of 37°C, giving a higher thermal resistance to this virus. Actual trivalent

oral polio vaccine (OPV),  as most live vaccines,  is heat labile,  particularly OPV is

between  the  most  heat  labile  vaccines  and  it  needs  to  be  stored  frozen  and  used
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immediately  after  thawing.   HP treatment  may  solve  the  problems  of  refrigeration

guarantying a higher stabilised and effective poliovirus vaccine. 

Oncology

Dendritic cell based vaccines

Shinitzky and colleagues have been explored the use of HP killed tumor cells as a whole

cell vaccine, they have demonstrated that a pressure of 100-200 MPa increases the cell

immunogenicity. However, since their phase I study in 2000, there are no more clinical

studies using this approach. 

Recently,  dendritic  cell  (DC, antigen  presenting  cells  from the mammalian immune

system)  based  vaccines  have  been  studied  to  obtain  a  vaccine  for  tumours.  This

approach uses pressures of 200 – 300 MPa to kill cancer cell lines, pressure will reveal

immunogenic sites on the killed cancer cell  surface. Then, these molecules interacts

with the specific receptors presents on the surface of DC and activates the phagocytosis

of killed cells by DC. Finally,  mature DC will activate tumour cell  specific immune

responses and therefore it could modify the clinical response of the patient with cancer.

Moreover,  HP  killed  cells  have  easy  cryopreservation  without  affecting  their

immunogenicity. 

This technique is still under development; nevertheless, it is under clinical testings for

several cancers indications, such as lung, prostate and ovarian cancers. 

Orthopaedics surgery

The actual  treatments  for  exvivo  devitalization  of  infected  or  tumour affected  bone

segments are based on irradiation, autoclaving, thermal treatment or use of chemicals.

Even if the devitalization is total using these techniques, they reduce the biomechanical

and biological  integrity  of  the  bone.  The  procedure  is  based  on  the  resection,  the

extracorporeal disinfection and finally the devitalization before its reimplantation.

High  pressure  can  also  be  used  to  exvivo  devitalization  of  bone  segments  without

altering the main proteins present in bone tissue (fibronectine, vitronectine and type I
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collagen). HP inactivates several bacteria, fungi and virus, however it is necessary to

take intoaccount that bacteria in bones are less sensitive to HP than in solution.  

For example, HP treatment of 300 MPa for 10 min of a cancerous bone segment is

sufficient to inactivate all bone cells,  including the bone tumour cells.  This possible

treatment mainly concerns bone segments and tendons. It has been demonstrated that

HP treated Achilles tendons and trabecular bones does not loss their properties after a

pressure treatment at 600 MPa. Finally, the revitalization of high pressure treated bone

segments  has been demonstrated indicating  that  a  successful  implementation  of HP

treated bone segments may be possible.

Moreover, HP may be useful to disinfect biomaterials as prosthesis or bone plates and

surgical equipment as screws. It has been demonstrated that a pressure of 300 MPa

and 40°C for 30 min disinfect screws contaminated with Staphylococcus aureus.

Cartilage stimulus

With  the  development  of  tissue engineering,  engineered  meniscus  have  been  a new

option to combat knee cartilage diseases. However, engineered meniscus constructs,

without  the  correct  stimulation,  possess  a  lower  organization  and  mechanical

properties than the native meniscus. 

Cartilage  is  an  avascular  and  aneural  tissue  that  detects  HP,  with  an  adequate

stimulation, as a mechanical sign to increase its regeneration. In a normal activity,

knee cartilage and synovial joint are hydrostatically pressurized reaching pressures up

to 10 MPa. For example, it has been demonstrated that static pressure of 5 MPa for

1.5h increases the glycosaminoglycan incorporation in explants cultures. Interestingly,

the  effect  of  pressure  on  cartilage  differs  if  the  study  is  done  on  a  chondrocytes

monolayer or on a three dimensional matrix, which indicates that the interaction cell –

extracellular matrix may play a role in HP regulation. 
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