
HAL Id: hal-02122328
https://hal.science/hal-02122328

Submitted on 14 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical approaches in evolutionary ecology:
environmental feedback as a unifying perspective

Sébastien Lion

To cite this version:
Sébastien Lion. Theoretical approaches in evolutionary ecology: environmental feedback as a unifying
perspective. The American Naturalist, 2018, 191 (1), pp.21-44. �10.1086/694865�. �hal-02122328�

https://hal.science/hal-02122328
https://hal.archives-ouvertes.fr


Synthes i s

Theoretical Approaches in Evolutionary Ecology:

Environmental Feedback as a Unifying Perspective

Sébastien Lion*

Centre d’Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique–Université
de Montpellier–Université Paul-Valéry Montpellier–École Pratique des Hautes Études, 1919 route de Mende, 34293 Montpellier,
cedex 5, France

Submitted March 2, 2017; Accepted August 11, 2017; Electronically published November 3, 2017

Online enhancements: videos.

abstract: Evolutionary biology and ecology have a strong theoret-
ical underpinning, and this has fostered a variety of modeling ap-
proaches. A major challenge of this theoretical work has been to un-
ravel the tangled feedback loop between ecology and evolution. This
has prompted the development of two main classes of models. While
quantitative genetics models jointly consider the ecological and evo-
lutionary dynamics of a focal population, a separation of timescales
between ecology and evolution is assumed by evolutionary game the-
ory, adaptive dynamics, and inclusive fitness theory. As a result, the-
oretical evolutionary ecology tends to be divided among different
schools of thought, with different toolboxes and motivations. My
aim in this synthesis is to highlight the connections between these
different approaches and clarify the current state of theory in evo-
lutionary ecology. Central to this approach is to make explicit the
dependence on environmental dynamics of the population and evo-
lutionary dynamics, thereby materializing the eco-evolutionary feed-
back loop. This perspective sheds light on the interplay between
environmental feedback and the timescales of ecological and evolu-
tionary processes. I conclude by discussing some potential exten-
sions and challenges to our current theoretical understanding of
eco-evolutionary dynamics.

Keywords: Price equation, adaptive dynamics, weak selection, selection
gradient, separation of timescales, eco-evolutionary feedback loop.

Hence, as more individuals are produced than can
possibly survive, there must in every case be a strug-
gle for existence, either one individual with another
of the same species, or with the individuals of dis-
tinct species, or with the physical conditions of life.
Darwin (1859, 63)

Introduction

Evolution is rooted in ecology (Hutchinson 1965; McPeek
2017). Natural selection and genetic drift, the two forces
that sort genetic variation, are fundamentally ecological
processes that result from the population dynamics of ge-
netically diverse populations. Among the two forces that
create variation (mutation and gene flow), gene flow is
the resultant, at the population level, of the different dis-
persal strategies of individuals. Importantly, evolution in
turn causes changes in the ecological conditions, leading
to a permanent feedback loop between ecological and evo-
lutionary dynamics. Understanding this feedback is a ma-
jor focus of interest in evolutionary biology, particularly in
the field known as evolutionary ecology.
Ecology and evolutionary biology both having strong the-

oretical foundations, a rich theoretical literature has been
devoted to this objective. Over the years, a variety of mod-
eling approaches have been proposed, all sharing the com-
mon goal of formulating metrics of evolutionary change
that incorporate the feedback of the environment. My aim
in this synthesis is to clarify the connections and purposes
of these different approaches, using the notion of environ-
mental feedback as a unifying concept.
The notion of environmental feedback is central to the

field of adaptive dynamics (AD), where fitness is explicitly
defined as a function of environmental variables (Metz
et al. 1992; Mylius and Diekmann 1995). In this perspec-
tive, the environment collects all the relevant information
necessary to calculate the vital rates of individuals, such
as the density of different types of conspecifics, the density
of resources or predators, or other abiotic factors. As illus-
trated by the epigraph from The Origin of Species, this no-
tion already played a key role in Darwin’s largely ecological
theory. I will show in this synthesis that this perspective can
also be usefully adapted to other theoretical frameworks,
such as the Price equation and quantitative genetics (QG).
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A central assumption of AD is that evolution unfolds on
a much slower timescale than ecological processes. This as-
sumption, which is also at the core of evolutionary game
theory and inclusive fitness theory, is justified by limiting
arguments on the mutation process (Metz et al. 1992; Geritz
et al. 1998; Rousset 2004; Lehmann and Rousset 2014; Van
Cleve 2015). This has fostered the development of a rich
set of techniques to deal with evolution in potentially com-
plex population dynamics, which has now de facto become
the standard for studies of long-term evolution. In the follow-
ing, I will regroup these models under the AD umbrella.

In general, however, teasing apart ecology and evolu-
tion is a challenging task, as reflected by recent evidence
of rapid genetic and phenotypic changes in natural popu-
lations (Thompson 1998; Hairston et al. 2005; Duffy et al.
2009). To study rapid or short-term evolution, a variety of
approaches have been proposed, which I will discuss under
the QG umbrella in this synthesis. These models do not
necessarily assume that ecological and evolutionary time-
scales can be decoupled (Roughgarden 1971; Slatkin 1980;
Taper and Case 1992; Abrams and Matsuda 1997; Abrams
2001; Day 2005). Although most QG models have consid-
ered either simple population dynamics or specific assump-
tions on the distribution of traits, recent models of parasite
evolution have successfully extended this approach to ac-
count for the interplay between epidemiological and evolu-
tionary dynamics (Day and Proulx 2004; Day and Gandon
2006; Gandon andDay 2007). The fundamental equation un-
derlying QG models is the Robertson-Price equation (Rob-
ertson 1966; Price 1970; Queller 2017), which is encountered
in the literature under a variety of disguises depending on
additional assumptions on the distribution of traits.

Unfortunately, these different approaches have been de-
veloped by largely independent groups of researchers, and
the dialogue between theoreticians belonging to different
schools is often hampered by the focalization on a partic-
ular technique. This is particularly surprising as QG and
AD models use similar assumptions (such as weak selec-
tion) and share key concepts (such as the selection gradi-
ent). Among practitioners of AD, the usefulness of the
Price equation for eco-evolutionary questions is debated,
while many quantitative geneticists will question the use-
fulness of AD as a model of evolution. My contention is
that this apparent dissonance can be resolved by putting
environmental feedbacks at the center of our theoretical
models. In particular, a key objective of this synthesis will
be to highlight that the timescales of ecological and evolu-
tionary processes affect the feedback of the environment.

Because of constraints on space, I have made some delib-
erate choices. For instance, I will consider only continuous-
time models (although extension to discrete-time models
is straightforward). In addition, although evolution is an
inherently stochastic process, I will focus on deterministic

ecological models described by systems of ordinary differ-
ential equations (ODEs) and ignore the traditional popu-
lation genetics approach of analyzing stochastic processes.
However, the two approaches are not disconnected, as the
systems of ODEs can be thought of as describing the ex-
pected dynamics of a reasonably large population. As a
matter of fact, most of the results described in this article
can be obtained as suitable large-population limits of an
individual-based stochastic process (Champagnat et al.
2001, 2006; Rousset 2004; Méléard 2011; Lehmann and
Rousset 2014; Lehmann et al. 2016). Moreover, ODEs rep-
resent a versatile tool to model complex ecological sce-
narios and are an essential component of classical ecolog-
ical theory.
The article is organized as follows. I start with a general

model of population and environmental dynamics. I then
discuss how this model can be used to derive a dynamical
equation for the change in allele frequencies and the change
in a mean trait of interest. This framework allows me to re-
visit classical results, such as the Price equation and Fisher’s
fundamental theorem of natural selection, with an explicit
coupling with environmental dynamics. The next section
shows that, under some limiting assumptions on the mu-
tation regime, one can recover the now classical AD ap-
proach. The standard toolbox for analyzing long-term evolu-
tion is reviewed briefly, paying particular attention to the
connections with the Price equation approach. Finally, I dis-
cuss some conceptual implications for our understanding
of evolutionary processes and environmental feedbacks and
some challenges for future studies.

Ecological Dynamics

Populations and Environments

My starting point will be a population of individuals. In
general, the population will be structured in types and
states. Types can represent the genotypes or phenotypes
of interest. Individuals of a given type may still differ by
their demographic or ecological state, but for now I will
consider that there is no other source of heterogeneity in
the population.
Individuals live in an environment, which is defined

from a purely individually centered perspective (Metz et al.
1992; Mylius and Diekmann 1995). The environment col-
lects all the relevant information necessary to compute the
reproduction and survival of individuals. This includes any
effects external to the focal population, such as the density
of a resource, and any direct effects of conspecifics, through
the densities of the different types of individuals.
Consider, for instance, a population of N types. The dy-

namics of each type will depend on an environmental vec-
tor, E, that collects the population densities of the types, n,
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and a vector of external variables, e, such as the density of
a resource, the densities of other species (e.g., competitors,
predators, parasites), or any relevant biotic or abiotic fac-
tor. The environmental vector E can then be written as

E p
n
e

� �
: ð1Þ

Turning to the epigraph I have chosen for this synthesis, it
is clear that this is merely a mathematical reformulation of
a key notion of Darwinian evolution: n corresponds to the
struggle with individuals “of the same species,” while e re-
groups the “individuals of distinct species” and the “phys-
ical conditions of life.” For our purpose, “species” should
simply be replaced with “focal population.”

Because population densities and external variables change
over time, the environmental vector is a function of time.
Throughout this synthesis, the vector E will materialize
the feedback between ecology and evolution.

Population Dynamics

I write the per capita growth rate of type i as a function
ri(E), therefore making explicit the dependence of repro-
duction and survival on the environment. By definition,
the density of type i changes as follows:

dni

dt
p ri(E)ni: ð2Þ

Note that equation (2) is a simple consequence of the def-
inition of a per capita growth rate and does not rely on as-
sumptions about how type i individuals are created (e.g.,
clonally or through the mating of other types).

Similarly, the dynamics of the external variables can be
written as an ordinary differential equation:

de
dt

p D(E): ð3Þ

Let n p
PN

ip1ni be the total density of the focal population.
Then, the frequency of type i in the population is given by

f i p
ni

n
: ð4Þ

The dynamics of the total density n can then be written as

dn
dt

p �r(E)n, ð5Þ

where �r(E) p
PN

ip1ri(E)f i is the average growth rate.
Equations (2) and (3) give a complete description of the

population’s dynamics. If we are interested in purely eco-
logical questions, it is often sufficient to track the dynam-
ics of the total density n (eq. [5]) along with the dynamics
of external variables (eq. [3]). Typical ecological models
tend to possess one or several ecological attractors, such

as fixed points (e.g., equilibria, which are the most com-
mon case, at least in the literature), limit cycles, or even
chaotic attractors.

Examples

To fix the ideas, I now give two illustrating examples that
will be used in the remainder of the article.

Example 1: Lotka-Volterra Competition Model. Consider a
population of N types exploiting a resource continuum. Let
ni be the density of type i. Following previous works (see,
e.g., Kisdi 1999), we write the dynamics of type i as

dni

dt
p r(zi)2

XN
jp1

a(zi 2 zj)nj

" #
ni,

where zi is the trait value of type i; a(zi 2 zj) is the compe-
tition kernel between types i and j, which is assumed to be
a function of the trait difference; and r(zi) is the intrinsic
growth rate of type i. In this model, the environment is to-
tally specified by the vector n, and we do not need to track
the dynamics of any external variable.

Example 2: Host-Parasite Interactions. Consider now a sim-
ple SIR epidemiological model (Kermack and McKendrick
1927; Hethcote 2000) where the host population is infected
by N parasite strains. The focal population is the popula-
tion of infected hosts, and we denote by ni the density of
hosts infected by strain i. The dynamics of infected hosts
will depend on the densities of susceptible (S) and recov-
ered (R) hosts, so that e may be thought of as the vector
(S R)⊤.1 We thus have the following dynamics for e:

dS
dt

p b2 dS2 �bSn1 rR,

dR
dt

p gn2 rR,

where n is the total density of infected hosts, b and d rep-
resent background reproduction and mortality, r is the rate
at which recovered hosts lose immunity, and �b and �g are
the mean transmission and recovery rates. Furthermore,
the total density of infected hosts changes as

dn
dt

p [�bS2 (d 1 �a 1 �g)]n,

where �a is the mean virulence. The dynamics of type i is

1. Throughout the text, the symbol ⊤ denotes the transpose operation.
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given by

dni

dt
p [biS2 (d 1 ai 1 gi)]ni:

In this model, we thus have ri(E) p ri(S) p biS2 (d 1
ai 1 gi) and �r(E) p �bS2 (d 1 �a1 �g).

In the following, I will often refer to example 2, which is
a classical epidemiological model. The reason for focusing
on host-parasite interactions as a running example is that
it works well as a minimal but not too simple ecological
model, taking into account realistic features such as inter-
specific interactions, demographic changes in population
densities, resource dynamics (the density of susceptible
hosts from the parasite’s point of view), and potentially
complex dynamics such as the extinction of either species.

Evolutionary Dynamics

Evolutionary change is given by the change in the frequen-
cies of types, which can be tracked either directly or, by
proxy, through the change in the average value of a trait
in the population. In this section, I show how dynamical
equations for the change in frequency or mean trait can
be derived in a general ecological setting. This approach
has close links with traditional population or quantitative
genetics frameworks and relies on a version of the Price
equation while keeping the dependence of fitness on the
environment as general as possible. It can be seen as a gen-
eralization of the framework introduced by Day and
Proulx (2004) and Day and Gandon (2006, 2007) to deal
with evolution in epidemiological models.

Change in Frequency

A first approach to tracking evolutionary change is to fo-
cus on changes in frequency. Because f i p ni=n, the change
in frequency of type i is

df i
dt

p
1
n
dni

dt
2

ni

n2

dn
dt

p f i(ri(E)2 �r(E)):

ð6Þ

Equation (6) tells us that if the growth rate of type i is
larger than the mean growth rate of the population, type i
will increase in frequency. Equation (6) is a version of the
replicator equation (Taylor and Jonker 1978; Schuster and
Sigmund 1983), with explicit environmental dependence. It
is also a continuous-time version of a classical result of pop-
ulation genetics linking the change in allele frequency to
the allelic marginal fitnesses (Fisher 1930; Rice 2004; Queller
2017).

Because all densities ni can be written as fin, the coupled
ecological and evolutionary dynamics take the form of the
self-contained system

de
dt

p D(E)

dn
dt

p �r(E)n

df i
dt

p f i(ri(E)2 �r(E)),  for all types  i,

8>>>>>>><
>>>>>>>:

ð7Þ

where the environment E can be written in function of the
total density, the vector of frequencies f, and the external
variables as E p (n f e)⊤. This decomposition of the
environmental feedback shows that it includes the classical
models of density- and frequency-dependent selection but
also the dependence on external environmental variables
due to the interaction with other species or abiotic factors.
The dynamical system (7) illustrates the tangled feed-

back loop between ecology and evolution: the change in
the genetic or the phenotypic composition of the popula-
tion is affected by the environmental variables, but in turn
these evolutionary changes lead to modifications of the
environment. Unravelling this feedback loop has been a
key challenge of recent theoretical developments. Note
that at an abstract level, the dependence on the environ-
ment of the coupled system (7) is sufficient to capture pro-
cesses such as niche construction or ecological inheritance
(Odling-Smee et al. 2003).
Classical models of population genetics tend to focus on

equation (6) instead of the full coupled eco-evolutionary
system. The derivation of equation (6) from population
dynamical first principles shows that this cannot be ex-
pected to hold true unless some specific form of environ-
mental feedback is assumed. A common assumption is that
there is no frequency-dependent density dependence (Heino
et al. 1998; Rice 2004; Day 2005). For instance, if the envi-
ronmental feedback is such that ri(E) p mi 2 c(n), where
mi is a constant Malthusian parameter and c(n) quantifies
density dependence, the change in frequency is simply pro-
portional to a constant selection coefficient s p mi 2 �m,
and ecological dynamics may be safely ignored. However,
with only a slight change in the environmental feedback,
such as assuming that the total density affects the growth
rates multiplicatively, ri(E) p mic(n), the change in fre-
quency becomes proportional to sc(n) and is therefore
dependent on the dynamics of the total density. Density-
dependent migration rates are another biological mecha-
nism that may cause the standard ecological assumptions
of population genetics models to break down (Holt and
Gomulkiewicz 1997).
A simpler expression of the replicator equation can be

found if we consider that the population contains only
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two types, a wild type (w) and a mutant type (m). Then,
the change in frequency of the mutant type, fm, takes the
following simple form:

df m
dt

p f m(12 f m)(rm(E)2 rw(E)): ð8Þ

The frequency of the mutant type increases if its per capita
growth rate is higher than the wild type’s. Equation (8)
shows that the rate of frequency change is scaled by the
population variance, f m(12 f m), and thus neatly separates
the effect of genetic variance from the effect of selection,
measured by the difference in per capita growth rates.

Change in Mean Trait

We can also translate the change in frequency into a quan-
tity that is more easily measurable, such as the mean phe-
notype in the population. For a given trait z, with value zi
for type i, we track the average trait value, �z p

P
izif i. As-

suming that the trait values zi do not vary with time (e.g.,
there is no seasonal or circadian variation in phenotypic
expression), the change in mean trait depends only on
the dynamics of frequencies and is given by the following
equation:

d�z
dt

p
X

i

zi
df i
dt

p
X

i

ziri(E)f i 2 �z �r(E)

p cov(z, r(E)):

ð9Þ

Equation (9) shows that directional changes in the mean
trait will be observed if there is a nonzero covariance be-
tween the trait and the per capita growth rate across all
strains. In other words, if strains with a higher value of
the trait tend to have a higher per capita growth rate, then
the covariance will be positive and natural selection will
cause the mean trait to increase.

We can equivalently express this covariance as the
product of the population variance and the regression of
the per capita growth rate on the trait. We then have by
definition

d�z
dt

p jzzbzr , ð10Þ

where jzz is the population variance in the trait and

bzr p
cov(z, r(E))

jzz

is the least-square regression coefficient between the trait
and the per capita growth rate. Equation (10) was first for-
malized by Robertson (1966). It gives the effect of natural

selection on the change in mean trait and highlights two
key ingredients of Darwinian evolution. First, for natural
selection to operate, we need some variability in the popu-
lation (jzz 1 0). The rate of evolutionary change by natural
selection is scaled by the variance. Second, it shows that the
direction of selection is determined by a linear relationship
between the per capita growth rate, ri(E), and the trait. This
may seem surprising at first, because we lose a fair bit of
information by focusing on this regression. However, as
long as we are interested in the change in mean trait and
not on the change in other moments of the distribution
of the trait (such as the variance), this is all we need (for
a more complete discussion, see Rice 2004, chap. 6).
As mentioned above, equation (9) holds true only for

traits that do not change over time. For many ecologically
relevant traits, such as photosynthetic rates, hormonal se-
cretion, or the infectivity of parasites, circadian or seasonal
rhythms are likely to cause variations in phenotypic ex-
pression over time. Other traits, such as biomass produc-
tion or total population growth rate, are also necessarily
time dependent. When considering time-dependent traits
zi(t), an additional term

P
if idzi=dt must be added to

equation (9). We shall see an example of this term later
on in the discussion of Fisher’s fundamental theorem.

The Price Equation

Equation (10) is not a complete description of evolution-
ary change, because it does not take into account changes
occurring during reproduction through mutation or re-
combination. Consider, for instance, that ri(E) can be writ-
ten as bi(E)2 di(E), with bi(E) being the birth rate and di(E)
being the death rate. Assuming that mutation occurs with
probability m during reproduction and that with probabil-
ity mji type i may mutate to type j, the per capita growth
rate of type i takes the form (1=ni)dni=dt p (12 m)bi(E)1
m
P

jmijbj(E)2 di(E), and using the same approach as above,
one may write the change in the trait as

d�z
dt

p cov(z, r(E))1 m
X

i

�X
j

mjizj 2 zi

�
bi(E)f i ð11Þ

or more simply as

d�z
dt

p cov(z, r(E))1 mbi(E)di , ð12Þ

where di p
P

jmjizj 2 zi is the difference between the trait
of an individual of type i and the mean trait calculated over
the mutation distribution,

P
jmjizj. This is a specific version

of the Price (1970, 1972) equation, which generally parti-
tions the change in mean trait into a part due to natural
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selection (the covariance term) and a part due to changes
occurring during reproduction (the second term). The sec-
ond term in equation (12) is proportional to the mutation
rate and can be rewritten as m(�zm 2 �zn) in this simple ge-
netical context: here, �zm is the mean trait among new off-
spring in the presence of mutations, �zm p

P
ibi(E)

P
jmjizjf i,

while �zn p
P

ibi(E)zif i is the mean trait among offspring
in the absence of mutation. Thus, the second term in equa-
tion (12) measures the additional directional effect on the
mean trait due to mutation bias.

In contrast to most treatments of the Price equation (e.g.,
Gardner 2008; Frank 2012; Queller 2017), equation (12) ex-
plicitly incorporates the dependence on the environment,
through the vector E. Doing so emphasizes that the Price
equation, as a description of evolutionary change, needs to
be coupled with a set of dynamical equations describing
the dynamics of n and e. Of course, because the Price
equation is precisely derived from these equations, it does
not provide additional information. However, it still
allows one to translate population dynamics into pheno-
typic change, which is useful for biological applications.
Moreover, with additional assumptions on the trait distri-
bution (e.g., weak selection or Gaussian approximation of
the traits) or the dependence of the vital rates on the trait,
it is possible to decouple to some extent the dynamics of
the mean trait from the environmental dynamics, as we
shall see in the next sections. Hence, provided we are ex-
plicit on environmental feedbacks and the approximations
we make, we can use the Price equation as a meaningful
description of evolutionary change, with an explicit cou-
pling with ecological dynamics. For instance, an applica-
tion of this approach to evolutionary epidemiology has
been used to study the short-term dynamics of virulence
evolution (Gandon and Day 2007).

In more abstract treatments, the effect of environmental
change is often incorporated into the second term of the
Price equation, which tends to be treated as negligible com-
pared to the more fundamental covariance term (Queller
2017). In contrast, the approach I follow here represents
the change in the environment as a coupled set of dynam-
ical equations. I view this as a useful representation be-
cause it forces us to be explicit on the ecological basis of
selection and makes no a priori assumption on the relative
forces of ecological and evolutionary processes.

Fisher’s Fundamental Theorem

A particular trait one may want to look at is the net
growth rate, ri(E). Because this trait is a function of the en-
vironment, which depends on time, we need an additional
term to account for environmental change. Slightly gener-
alizing Gandon and Day’s (2009) approach, this gives the

following equation for the dynamics of the mean growth
rate, �r(E):

d�r(E)
dt

p var(r(E))|fflfflfflfflffl{zfflfflfflfflffl}
Drns

1 mbi(E)di|fflfflfflffl{zfflfflfflffl}
Drm

1∇E�r(E) ⋅
dE
dt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Dre

: ð13Þ

In the population genetics literature, �r(E) would be inter-
preted as mean fitness. Equation (13) thus partitions the
change in mean fitness into three components. The first
component, Drns, is the change in mean fitness due to natu-
ral selection, which is simply the variance in the growth rate
ri(E). The second term, Drm, is the change in mean fitness
due to mutation or recombination, which takes the same
form as in the Price equation, except that di is now calcu-
lated using ri(E) as the trait zi. The third term, Dre, repre-
sents the change in mean fitness due to environmental
change (Frank and Slatkin 1992; Gandon and Day 2009).
This term is the product of ∇E�r(E), the gradient of the
mean growth rate with respect to the environmental vector
E multiplied by the time derivative of the environment.
If Drm and Dre are 0, equation (13) collapses to Fisher’s

(1930) fundamental theorem, which states that the part of
the change in mean trait due to natural selection is equal
to the variance in fitness. Because a variance cannot be
negative, this implies that natural selection always leads
to an increase in mean fitness. The emphasis on natural
selection is important because otherwise this statement
would be wrong. In fact, mean fitness does not necessarily
increase, because of mutation (Drm) or environmental change
(Dre; Frank and Slatkin 1992). Fisher (1930) referred to the
Dre term as the “deterioration of the environment”: at evo-
lutionary equilibrium (d�r=dt p 0) and in the absence of
mutational bias, the increase in mean fitness due to the se-
lection term (Drns 1 0) is necessarily opposed by a decrease
due to the environmental term (Dre 1 0). More generally,
depending on the magnitude of the various terms, mean
fitness can even decrease until the population becomes ex-
tinct (Matsuda and Abrams 1994; Webb 2003). The crucial
point is that Fisher defined the environment from an indi-
vidual- or gene-centered perspective, so that environmen-
tal change encompasses both changes in external abiotic or
biotic factors and changes in population densities or allele
frequencies. Thus, Fisher’s concept of environment is con-
sistent with the definition used in this synthesis.
Hence, Fisher’s fundamental theorem emphasizes a rather

restrictive definition of natural selection, which excludes en-
vironmental feedbacks. It is important to note that while
this definition is verymuch in line with the tradition in pop-
ulation genetics, evolutionary ecologists generally consider
environmental feedbacks as part and parcel of the action
of natural selection. The key to understanding this apparent
discrepancy is to recognize that theoretical evolutionary
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ecology generally relies on an argument of separation of
timescales: environmental change is assumed to take place
on a fast timescale compared to evolutionary dynamics
(Gandon and Day 2009). Separations of timescales are
key ingredients in modeling evolutionary change and will
be discussed in Long-Term Evolution and Limiting Muta-
tion Regimes.

Change in Trait Variance

In most of the literature, the Price equation formalism is
used to describe the change in the mean trait and not the
change in other moments of the trait distribution. How-
ever, the approach is more general, and equation (12) is
best seen as the first of an infinite hierarchy of moment
equations giving the dynamics of the variance and of other
moments. Various assumptions have been used to close
the system ofmoment equations, themost common one be-
ing the Gaussian approximation (Lande 1976, 1982; Lande
and Arnold 1983). If we are ready to assume that the distri-
bution of traits is (and remains) Gaussian, only the mean
and variance are needed to describe the full distribution.
We can then either assume that the variance is constant
and treat it as a parameter or explicitly track the dynamics
of the variance (Slatkin 1980; Taylor and Day 1997; Day
and Proulx 2004; Rice 2004; Débarre and Otto 2016).

In our general model, a Price equation for the dynamics
of the variance can be obtained using the definition jzz pP

iz2i f i 2 �z2. Dropping the mutation term for simplicity,
we obtain

djzz

dt
p cov((z 2 �z)2, r(E))

p cov(z2, r(E))2 2�z
d�z
dt

:

ð14Þ

Equation (14) is valid for any distribution of the trait and
shows that even when there is no directional change in the
mean trait, the variance can still change due to the covari-
ance between the squared trait and the per capita growth
rate. An increase in variance while the mean stays constant
could, for instance, arise due to symmetric disruptive selec-
tion around the mean. Figure 1 provides an illustration us-
ing the Lotka-Volterra model described in example 1. In
the presence of mutation, a similar analysis shows that
even when there is no mutation bias in the trait (i.e., the
second term of eq. [12] is 0), any nonzero mutation bias
in the squared trait will affect the dynamics of the variance.

Multivariate Traits: An Example from
Evolutionary Epidemiology

My treatment so far focuses on the evolution of single traits,
but the joint evolution of several traits brings other chal-

lenges to the modeler. Provided the mutation events are
rare, we can drop the mutation term from the Price equa-
tion, and the change in a vector of traits z takes the form

dz
dt

p G(z) ⋅ S(z), ð15Þ

where G is a genetic (co)variance matrix and S is a vector of
selection gradients. The structure of equation (15) illustrates
two additional difficulties with evolution in multidimen-
sional trait spaces. First, the change in a focal mean trait will
depend on the selection gradient of all other traits, and
therefore interactions between the fitness effects of the traits
may affect the direction of evolution. Second, these fitness
effects are weighted by trait-specificmeasures of genetic var-
iation that can be correlated due to pleiotropic effects. This
should be contrasted with one-dimensional traits, where ge-
netic variance affects only the magnitude of selection, while
its direction can be determined using the selection gradient
only.
As an example of multivariate evolution, let us look at

the joint evolution of transmission and virulence in a par-
asite population. The coupled ecological and evolutionary
dynamics of the host-parasite interaction following the
SIR epidemiological model can be written as follows. As-
suming that the only variable traits are transmission and
virulence, we have for the epidemiological dynamics

dS
dt

p b2 dS2 �bSI 1 rR, ð16aÞ

dI
dt

p [�bS2 (d 1 �a 1 g)]I, ð16bÞ

dR
dt

p gI 2 rR: ð16cÞ

Furthermore, we can expand the various covariance
terms cov(z, r(E)) in function of second moments of the
distribution of traits. This gives us the following equation
for the change in mean traits (Day and Gandon 2006):

d
dt

�a
�b

� �
p G ⋅ 21

S

� �
1mutation bias: ð17Þ

Equation (17) partitions the change in the vector of mean
traits into two components. The first component is the
product between the genetic covariance matrix G and the
selection gradient (21 S)⊤. The genetic covariance matrix
has the variances jaa and jbb on its diagonal and the
covariances jab and jba on its antidiagonal. The second
term represents the effect of mutation bias, which depends
on the mutation model. Equation (17) shows that potential
equilibria are determined by the balance between selection
and mutation. Note the striking similarity between equa-
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tion (17) and classical quantitative genetics models (Lande
and Arnold 1983). In both cases, the change in mean trait
is determined by the product of the covariance matrix and
the selection gradient. Crucially, equation (17) does not de-
pend on the assumption that the distributions of the traits
are Gaussian and does not assume that population variance
is small. It does, however, rely on the assumption that the
dynamics linearly depend on the traits.

Equations (16) and (17) can be used to investigate two
conceptually different questions about the coupled eco-
evolutionary dynamics of the host-parasite interaction.
First, they can be used to study the short-term evolution

of the traits. In general, numerical integration is the only
way to obtain results. However, as discussed above, equa-
tion (17) gives only the dynamics of the first moment of
the trait distribution and depends on higher-order mo-
ments (the variances and covariances in matrix G). To
make some progress, we therefore need additional assump-
tions on the distribution of traits (Day and Proulx 2004).
The quantitative genetics literature typically relies on the
Gaussian or small variance approximations (box 1), in which
case the gradient dynamics of equation (17) can be approx-
imated using partial derivatives and coupled to a closed
equation for the dynamics of the variance.

A Change in mean trait

0.50
0.75
1.00
1.25
1.50

−0.01

0.00

0.01

0 1500 3000 4500

0 1500 3000 4500

Time

Time

M
ea

n 
tra

it
β(
z,

 r )

B Change in trait variance

0.00

0.05

0.10

−0.01

0.00

0.01

0 1500 3000 4500

0 1500 3000 4500

Time

Time
Tr

ai
t v

ar
ia

nc
e

β(
(z

−
z)

2 , r
)

C Change in distribution

0

1000

2000

3000

4000

5000

0.0 0.5 1.0 1.5 2.0
Trait

Ti
m

e

D t = 0

z

(z −z)2

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5 2.0
Trait

Fr
eq

ue
nc

ie
s

E t = 1500

z

(z −z)2

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5 2.0
Trait

Fr
eq

ue
nc

ie
s

F t = 5000

z

(z −z)2

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5 2.0
Trait

Fr
eq

ue
nc

ie
s

Figure 1: Dynamics of the mean and variance of a trait distribution. This figure presents results of a numerical integration of the Lotka-
Volterra competition model studied by Kisdi (1999; example 1 described in the main text). I use r(z) p exp(2z2=2), a(x) p 2(12 1=(11
exp(2 2:2x))), which corresponds to figure 3 in Kisdi (1999). At t p 0, the population is initiated with a Gaussian distribution of the trait, with
mean 0.5 and standard deviation 0.1. There is no mutation, so selection operates solely on the standing variation. A, Change in the mean trait
(top) and the regression of ri(E) on the trait (bottom). B, Change in the trait variance (top) and the regression of ri(E) on (zi 2 �z)2 (bottom). C,
Time evolution of the trait distribution (darker shades indicate higher strain frequencies). D–F, Trait distribution at t p 0, 1,500, and 5,000.
Until about t p 1,500, the mean trait increases, but the distribution stays Gaussian with an approximately constant variance. After t p 1,500,
the variance increases and the distribution splits into two phenotypic clusters, while the mean stays approximately constant. D–F, insets,
weighted linear regressions of the per capita growth rates ri(E) on zi and (zi 2 �z)2 (each dot corresponds to one type, and the size of each
dot is proportional to the frequency of the type). Selection becomes disruptive near �z p 1:1 (dashed line in A), which is the value predicted
by the adaptive dynamics model of Kisdi (1999, fig. 3). See video 1 (available online) for an animated version of D–F.

28 The American Naturalist



Equation (17) can also be used to investigate the long-
term evolution of the traits. For instance, neglecting muta-
tion, equation (17) shows that at evolutionary equilibrium
the following relationship holds (Day and Gandon 2007):

jab

jaa

p
1

Ŝ
, ð18Þ

where jaa is the variance of virulence and jab is the covari-
ance between virulence and transmission. In this specific
example, maximizing the regression between virulence and
transmission at evolutionary equilibrium is equivalent to
minimizing the equilibrium density of susceptible hosts, Ŝ.
As we shall see later, a similar result can be derived from in-
vasion analyses (box 2). Equation (18) can be viewed as the

quantitative genetics equivalent of the pessimization prin-
ciple (Mylius and Diekmann 1995; see Optimization, Poly-
morphism, and the Dimension of the Environmental Feed-
back Loop).

Long-Term Evolution and Limiting
Mutation Regimes

Although the above equations yield an exact deterministic
description of the joint ecological and evolutionary dynam-
ics of the population, they are usually not analytically trac-
table and are typically studied using numerical integration
or under restrictive assumptions on the trait distribution.
Various approximations have been used to make further

Box 1: Environmental Feedback and Classical Quantitative Genetics Models

A major contribution of early quantitative genetics theory was to consider the joint dynamics of ecological and
evolutionary processes (Lande 1976; Slatkin 1979; Taper and Case 1985; Abrams et al. 1993). This is particularly
apparent in models of ecological character displacement, where fitness W(z, n, p(z,�z)) is assumed to depend on the
individual’s trait z, the total density n, and the distribution p(z,�z) of the trait in the population (Slatkin 1980; Taper
and Case 1985, 1992). Such fitness functions therefore explicitly depend on the environmental feedback, as discussed
in the main text. However, it was immediately realized that these coupled models are often too complex to analyze.
As a result, various analytical approximations have been sought, using either the Gaussian approximation or a small
variance approximation. These assumptions yield two useful gradient expressions for the change in mean trait.
The Gaussian approximation assumes that the trait is (and remains) normally distributed. It can then be shown

that the dynamics of the mean trait is

d�z
dt

p jzz

∂w
∂z

, ðaÞ

where the partial derivative ∂w=∂z is averaged over the trait distribution (Lande 1976, 1982; Lande and Arnold 1983;
Taylor 1996; Taylor and Day 1997; Day and Proulx 2004). However, forcing the distribution to remain normal im-
plicitly assumes a specific form of environmental feedback. Figure 1 shows that, in general, environmental feedbacks
may alter the shape of the trait distribution. Whether this is relevant on the timescale of observation depends on the
question at hand.
Alternatively, under the small variance approximation, the trait dynamics take the form (Charlesworth 1990;

Iwasa et al. 1991; Abrams et al. 1993)

d�z
dt

p jzz

∂w
∂z

����
zp�z

: ðbÞ

This result does not assume any particular shape of the trait distribution, except that it should be relatively narrow
around the mean (although this condition can be relaxed if we make additional assumptions on the distribution; see,
e.g., Abrams et al. 1993).
In many studies, an additional assumption is made about the fitness function, typically defined as a function

w(z, �z) of the individual’s trait and of the mean trait. It is worth highlighting that this formulation assumes a restrictive
form of environmental feedback, because frequency dependence is handled only through the mean trait instead of
the full distribution of the traits. However, different distributions with the same mean need not have the same ecol-
ogical effect. Moreover, it is not always possible to write the fitness as a closed function of the mean trait, for in-
stance, when frequency dependence is mediated by other ecological variables. For this reason, the environmental
feedback formulation is in general conceptually more satisfying.
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progress, often taking the form of quasi-equilibrium ap-
proximations based on a separation of timescales. I will
consider two limiting regimes for the mutation process:
mutation limitation (low mutation rate) and weak selection
(small phenotypic effects of mutations).

Mutations Are Rare

If the mutation rate is sufficiently low, one may assume
that the population reaches its ecological attractor before
a new type appears in the population (Metz et al. 1992;
Geritz et al. 1998). In other words, we assume a separation
of timescales so that ecological dynamics takes place on a
fast timescale, while evolutionary dynamics is much slower.

For simplicity, let us assume that this attractor is a fixed
point, characterized by a constant environment, E p Ê. In
this environment, the population is stable, and

�r(Ê ) p 0: ð19Þ
A rare focal strain, m, will not affect this equilibrium, and
from equation (6) we can write the initial dynamics of the
rare mutant as

df m
dt

p f mrm(Ê ): ð20Þ

Hence, whether the mutant will grow depends on the sign
of its per capita growth rate, rm(Ê), in the environment set
by the resident population on its ecological attractor. This
is the definition of invasion fitness (Metz et al. 1992, 1996;
Geritz et al. 1998), which is a core concept of the adaptive
dynamics framework. Note that while the above discussion
focuses on equilibria, the concept of invasion fitness is valid
for other types of ecological attractors, such as periodic at-
tractors (cycles), in which case one needs to consider the er-
godic average of the per capita growth rate of the mutant on
the attractor of the resident dynamics. For instance, for a
periodic environment, one needs to integrate the per capita
growth rate over one period of the cycle.

Because the environment on the resident attractor is
solely determined by the resident dynamics, we can write
Ê as a function of the different resident traits zi. Hence, in-
vasion fitness can be written equivalently as a function of
resident and mutant traits, s(zm; z), and we may write the
invasion condition of the mutant type equivalently as

rm(Ê ) 1 0 or s(zm; z) 1 0: ð21Þ
For monomorphic resident populations, the signs of the
invasion fitness s(zm; zw) for different combinations of mu-
tant and resident traits can be synthesized into a pairwise
invasibility plot (PIP; Geritz et al. 1998), which allows
the practitioner to graphically gauge the potential evolu-
tionary outcomes of the model (see fig. 2 for an example).

Mutations Have Small Phenotypic
Effects (Weak Selection)

Alternatively, we may assume that the mutation step is
very small, so that the population variance in the trait is
vanishingly small. This leads to another separation of time-
scales. If the trait value for each type is close to the mean
trait in the population (i.e., we write zi p �z 1 εdi for a
small parameter ε), it can be shown that the environmental
dynamics are given by the zeroth-order terms of equations
(3) and (5), while the dynamics of the frequencies fi and the
mean trait �z depend on the first- and second-order terms
of equations (8) and (10), respectively (see appendix; see
also Meszéna et al. 2005). Therefore, under weak selection
one may assume that ecological dynamics unfold on a fast
timescale compared to the slower evolutionary dynamics.
Under this separation of timescales, one may therefore as-
sume that e and n reach a quasi equilibrium and use this
quasi-equilibrium value to compute the first-order effect of
selection on either the change in frequency or the change
in mean trait.2 This result holds irrespective of the fre-
quency of each type and does not depend in particular
on an assumption of rarity for a focal mutant strain.

The Adaptive Dynamics Toolbox

If we assume that mutations are rare and have small phe-
notypic effects, we recover the standard toolbox of adap-
tive dynamics or evolutionary game theory, which I will
now review briefly. Because mutations are rare, it is typical
to focus (at least initially) on a rare mutant in a monomor-
phic resident population on its ecological attractor. Under
weak selection, we can write the change in mutant fre-
quency as

1
f m

df m
dt

p s(zm; zw) p ε
∂s
∂zm

1
ε2

2
∂2s
∂z2m

1 O(ε3), ð22Þ

where ε p zm 2 zw and the partial derivatives are evaluated
at zm p zw. The direction of selection is given by the first-
order effect on the change in frequency or equivalently by
the selection gradient. The mutant frequency increases if

S(zw) p ∂s
∂zm

����
zmpzw

1 0: ð23Þ

The zeros of the selection gradient, S(z), allow us to identify
the evolutionary singularities (i.e., the potential evolution-

2. More generally, one may compute the ergodic average of the per capita
growth rate (Meszéna et al. 2005).
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Box 2: Adaptive Dynamics of a Host-Parasite Interaction

To illustrate the adaptive dynamics methodology, let us consider a simple host-parasite interaction with density-
dependent birth and vertical transmission (Lipsitch et al. 1996; Ferdy and Godelle 2005). The dynamics of the
monomorphic resident population is given by the following system of ODEs:

dS
dt

p b(S1 (12 d)f (a)I) 12
N
K

� �
2 b(a)SI 2 dS;

dI
dt

p dbf (a)I 12
N
K

� �
1 b(a)SI 2 (d 1 a)I:

Susceptible hosts reproduce at rate b and die at rate d. Infected hosts die at rate d 1 a, where a is the virulence of
parasites, and reproduce at rate bf(a), where f(a) is the relative fecundity of infected hosts, which is assumed to be a
function of parasite virulence. Vertical transmission of the parasite occurs on reproduction with probability d. Hor-
izontal transmission occurs at rate b(a), where we assume a trade-off between transmission and virulence. De-
pending on the parameter values, the model can lead to the extinction of both species, a disease-free equilibrium
with Ŝ p K(12 d=b), or an endemic equilibrium (Ŝ, Î).

Horizontal Transmission Only (d p 0)

In the absence of vertical transmission, the invasion fitness of a rare mutant parasite with virulence am in a res-
ident population at endemic equilibrium takes the following simple form:

s(am;a) p b(am)Ŝ 2 (d 1 am): ðaÞ
In this textbook example, invasion fitness depends on only one environmental variable (Ŝ) in a monotone way. This
model therefore admits an optimization principle (see Optimization, Polymorphism, and the Dimension of the En-
vironmental Feedback Loop). For an increasing, concave function b(a), the evolutionarily stable a* can be obtained
by simply maximizing the function b(a)=(d 1 a), which can be interpreted as the lifetime infectivity of a parasite.
This is equivalent to minimizing the equilibrium density of susceptibles Ŝ(a) p (d 1 a)=b(a). In the end, the par-
asite strategy that can survive with the lower possible density of susceptible hosts is selected for. This is an example
of the pessimization principle (Mylius and Diekmann 1995).

Two Routes of Transmission

When d is nonzero, the invasion fitness is given by

s(am;a) p dbf (am) 12
N̂
K

� �
1 b(am)Ŝ 2 (d 1 am): ðbÞ

Equation (b) shows that invasion fitness now depends on two environmental variables, Ŝ and N̂ . In this case, there is
no optimization principle, and it is possible to find conditions where evolutionary branching occurs at an evolution-
ary singularity, which is a zero of the selection gradient,

∂s
∂am

����
ampa

p dbf 0(a) 12
N̂
K

� �
1 b0(a)Ŝ2 1:

The stability of an evolutionary singularity, a*, is given by the sign of the second-order derivative,

∂2s
∂a2

m

����
ampapa*

p dbf 00(a*) 12
N̂
K

� �
1 b00(a*)Ŝ:

Thus, for a concave-down trade-off b(a), the stability of a* depends on the convexity of f(a). If f 00(a)* is positive, it is
possible to find some parameters such that a* is an evolutionarily stable strategy for low values of d and a branching
point for higher values of d, as illustrated in figure 2.
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ary end points). Two questions may be asked regarding
these singularities. First, one may ask whether a given singu-
larity, z*, can be attained through small mutation steps (con-
vergence stability; Eshel 1983, 1996; Taylor 1989; Geritz
et al. 1998). An evolutionary singularity is convergence sta-
ble if the selection gradient S(z) is a locally decreasing func-
tion of z (dS(z)=dz ! 0), which can be written in terms of

second-order derivatives (Geritz et al. 1998) as

∂2s
∂z2w

����
zmpzwpz*

1
∂2s
∂z2m

����
zmpzwpz*

: ð24Þ

Convergence-stable strategies are called evolutionary at-
tractors.
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Figure 2: Examples of evolutionary outcomes for mutation-limited evolution. The panels are drawn using the model of box 2. A, Virulence is
predicted to evolve toward an evolutionarily stable strategy. B, Virulence is predicted to evolve toward a branching point. Top, pairwise
invasibility plot (invasion fitness is positive in black regions). Middle, fitness profile around the evolutionary singularity (corresponding
to the dashed vertical line in the pairwise invasibility plot). Bottom, selection gradient (giving the sign of selection along the diagonal).
Parameters: d p 0 (A), d p 0:5 (B). The following trade-off functions are used: a(z) p z, b(z) p b0z=(11 z), bI(z) p bk=(11 cz). Other
parameters: b p 3, d p 1, K p 5, b0 p 10, c p 6, k p 15. See videos 2, 3 (available online) for animations showing the change in the fitness
landscape resulting from changes in the resident trait.
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Second, the evolutionarily stability of these singularities
can be determined by the sign of the second-order term of
the Taylor expansion of the invasion fitness (Taylor 1989;
Christiansen 1991; Eshel 1996; Geritz et al. 1998). In par-
ticular, a singularity z* will be called evolutionarily stable
(ESS) if

∂2s
∂z2m

����
zmpzwpz*

! 0: ð25Þ

A singularity that is both an ESS and convergence stable
is called a continuously stable strategy (Eshel and Motro
1981; Eshel 1983) and represents a monomorphic end
point of the evolutionary process. In contrast, a singularity
that is convergence stable but not ESS is called a branching
point: an initially monomorphic population is attracted
toward this singularity, but in the vicinity of the singular
point the population becomes dimorphic and splits into
two diverging subpopulations owing to disruptive selection
(Geritz et al. 1998). We have already encountered this sit-
uation in figure 1, and another example is described in box 2.
Figure 2 illustrates how an ESS and a branching point can be
identified using a PIP or by looking at the shape of invasion
fitness around the singularity.

The Canonical Equation of Adaptive Dynamics

As for the Price equation, we can derive a dynamical equa-
tion for the change in the trait z under this limiting muta-
tion process. The resulting ODE has been named the
canonical equation of adaptive dynamics and was intro-
duced by Dieckmann and Law (1996). In its basic form
for one-dimensional traits in unstructured population, it
reads:

dz
dt

p
1
2
m(z)j(z)n̂(z)

∂s
∂zm

����
zwpzmpz

, ð26Þ

where m(z) is mutation rate per birth event, j(z) is the var-
iance of the mutation distribution, and n̂(z) is the equilib-
rium size of the resident population. This equation shows
that the direction of the change in the trait z is given by the
selection gradient and scaled by a positive factor that gives
the rate of evolutionary change. This equation is derived as
a deterministic approximation of a stochastic model under
the assumptions that mutations are rare and have small
steps (Dieckmann and Law 1996; Champagnat et al. 2001,
2006; Proulx and Day 2001). The canonical equation has
been extended to class-structured and physiologically struc-
tured populations as well as diploid and haplodiploid ge-
netics (Durinx et al. 2008; Méléard and Tran 2009; Metz
and de Kovel 2013). A general form has been given by

Metz (2011) for the dynamics of a vector of traits:

dz
dt

p Nem(z)C(z)S(z): ð27Þ

Here, m(z) is mutation rate per birth event, C(z) is the mu-
tational covariance matrix, S(z) is the vector of selection
gradients, and Ne is the effective size of the population.
Note the similarity with the multidimensional Price equa-
tion (15). The dynamics of mean traits is also given by the
product of a matrix, G p NemC, multiplied by a vector of
selection gradient S. However, equation (15) does not as-
sume a separation of timescales.
As noted previously, the direction of selection in a mul-

tidimensional trait space will in general be affected by
pleiotropic effects, which the matrix C captures. Thus,
defining convergence stability for vector traits is not as
straightforward as for scalar traits. A summary of known
results on multidimensional convergence stability can be
found in Leimar (2009), where the notion of strong con-
vergence stability is introduced. He shows that if the Jaco-
bian matrix of the selection gradient is negative definite at
a singular point (where S p 0), this singular point is an
asymptotically stable point of equation (15), irrespective
of the genetic matrix G. In this situation, pleiotropy does
not matter. Similarly, evolutionarily stability can be evalu-
ated from the Hessian matrix (Leimar 2009; Débarre et al.
2014; Svardal et al. 2014; Mullon et al. 2016). These latter
articles provide a good entry point into the topic of multi-
dimensional trait space, with particular reference to the
consequences on evolutionary branching. It should also
be noted that, mathematically speaking, the coevolution
of two species is not a different question from the joint evo-
lution of two traits, and a similar toolbox can be applied
(see, e.g., Marrow et al. 1996; Best et al. 2010; Débarre
et al. 2014).
To better understand the connection between the ca-

nonical equation and the quantitative genetics framework,
an alternative formulation introduced by Champagnat et al.
(2001), Proulx and Day (2001), and Day (2005) is useful. In-
stead of using a branching process approximation, they de-
rive an equation for the mean trait in function of a gradient
of fixation probability instead of a gradient of invasion fit-
ness. They obtain the following equation, under the assump-
tion that the trait distribution is tightly centered around the
mean �z (which is equivalent to assuming small mutational
steps):

d�z
dt

p m(�z)j(�z)b(�z)n̂(�z)
∂U
∂z

����
zp�z

1 m(�z)b(�z)M: ð28Þ

The first term on the right-hand side of equation (28) bears a
close resemblance to the right-hand side of equation (26).
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The extra b(�z) factor, which represents the per capita birth
rate, comes from the substitution of the fixation probability
U for invasion fitness. However, there is a second term that
is proportional toM, the first moment of the mutation dis-
tribution. A nonzero value of M indicates mutational bias
in phenotype space. Although frequently ignored in the the-
oretical literature, evidence of systematic distortions of
the mutation machinery suggests that the directional effect
of mutations on phenotypic evolution may be important
(Stoltzfus and Yampolsky 2009; Lynch 2010). Thus, equa-
tion (28) partitions the change in mean trait into a compo-
nent due to selection and a component due tomutation bias,
as in the Price equation, but does so with the extra assump-
tions of a separation between ecological and evolutionary
timescales and of weak selection.

Finally, it is worth emphasizing that, as in the Price
equation, the canonical equation of adaptive dynamics is
only the first of a series of moment equations. An equiv-
alent dynamical equation could be written for the muta-
tional variance of the covariance matrix and for higher
moments of the mutation distribution.

Implications

The focus on environmental feedbacks helps to lay bare
the formal connections between the Price equation and
adaptive dynamics formalisms. It is also helpful when dis-
cussing the implications of both theoretical frameworks
for our understanding of eco-evolutionary processes.

Environmental Feedback, Population
Variance, and Timescales

Most models in evolutionary theory assume a separation of
timescales between ecological and evolutionary processes.
This is true of classical population genetics models, where
population size is treated as a constant parameter, and of
more elaborate ecological models studied using adaptive dy-
namics. A key insight of the large body of work that is syn-
thesized here is that the tightness of the coupling between
ecology and evolution crucially depends on the variance in
the trait distribution. This can be seen by writing each trait
as a deviation from the mean trait, zi p �z 1 εdi. As a result,
the variance is proportional to ε2, and the scaling parame-
ter ε can be used to investigate the impact of variance on
the coupling between ecological and evolutionary dynam-
ics. If ε is small, the full ecological-evolutionary dynamics
can be described by the following system:

environmental dynamics 
dE
dt

p F 7(�z ,E)1 O(ε), ð29aÞ

evolutionary dynamics 
d�z
dt

p jzz[S7(�z ,E)1 O(ε)]:

ð29bÞ
In equation (29a), the function F 7 represents the zeroth-
order term of the environmental dynamics with respect
to the parameter ε. In other words, F 7(�z,E) represents
the part of environmental dynamics that results from a
monomorphic population where all types have the same
value of the trait, zi p �z. Similarly, equation (29b) shows
that the evolutionary dynamics depends on the variance
jzz multiplied by the selection gradient S7(�z,E). Again, to
evaluate the selection gradient, we retain only the environ-
mental feedback due to a monomorphic population with
the mean trait. The errors resulting from substituting this
simplified environment for the true environment are of
order ε.
This perturbation analysis allows us to identify three

main regimes of interest for evolutionary ecologists. First,
when the variance is vanishingly small, a full separation of
timescales is possible because the mean trait changes on a
much slower timescale compared to the environmental
dynamics. This is because the dynamics of the mean trait
is scaled by the variance, which is O(ε2) whereas ecological
dynamics are O(1). Then, it is possible to assume that the
environmental dynamics (29a) have reached an attractor
and to calculate the selection gradient as S7(�z, Ê), where
Ê is calculated on the (monomorphic) ecological attractor.
Furthermore, because the variance changes on an even slower
timescale, it is possible to treat the variance as a constant, at
least away from evolutionary singularities.
Second, when the variance is larger but remains suffi-

ciently small for the approximations (29) to remain accu-
rate, it is no longer possible to assume that the environmen-
tal dynamics have reached an ecological attractor before a
change in the mean trait can be observed. Hence, a full sep-
aration of timescales is not possible, but it is still possible
to summarize a potentially complex environmental feed-
back using the monomorphic environment. This greatly
simplifies the problem, because the full distribution of the
trait then becomes irrelevant to calculate the dynamics.
The environmental feedback is determined only by the
mean trait (see, e.g., Abrams and Matsuda 1997; Day and
Proulx 2004). This can be seen as a generalization of the
standard quantitative genetics approach where fitness is as-
sumed to depend only on the individual’s trait and the
mean trait (box 1).
Finally, when the variance is too large for approxima-

tions (29) to hold, there is no escaping the complex problem
of jointly tracking the entangled dynamics of the trait dis-
tribution and the environmental variables. In most cases,
analytical insight will be harder to obtain, and researchers
will typically have to turn to numerical approaches.
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An interesting perspective for future research would be
to investigate the domains of validity of these three re-
gimes. When a particular shape for the fitness function
is assumed, as in many quantitative genetics models, a
condition for the accuracy of the small variance approxi-
mation can be obtained that depends on the higher-order
derivatives of fitness (Abrams et al. 1993; Abrams and
Matsuda 1997). Other conditions have been derived in
more complex ecological models (see, e.g., Day and Proulx
2004), but most of our current understanding comes from
models with a full separation of timescales. We lack a clear
picture of the interplay between population variance and
environmental feedback in general ecological scenarios.

When Does Invasion Imply Fixation?

Equation (29b) shows that, provided selection is weak
enough, the direction of selection depends only on the sign
of the selection gradient. In particular, the change in fre-
quency of a focal mutant type in an equilibrium mono-
morphic resident population with trait value zw can be
written as

df m
dt

p εf m(12 f m)S(zw)1 O(ε2): ð30Þ

The selection gradient has been found to be independent of
the frequency of the mutant type in a large class of haploid
models with a single demographic attractor (Rousset 2004,
2006; Meszéna et al. 2005; Lehmann and Rousset 2014;
Lehmann et al. 2016). Frequency dependence, then, appears
only in the second-order terms of the change in frequency
(Rousset 2004; Meszéna et al. 2005). This implies that, away
from an evolutionary singularity, the direction of selection
will not change as the mutant frequency increases, and as
a consequence, invasion implies fixation. The long-term evo-
lutionary process can thus be described as a trait-substitution
sequence (Gillespie 1983; Eshel 1996; Hammerstein 1996;Metz
et al. 1996; Weissing 1996; Eshel et al. 1998; Geritz et al. 1998).

However, there are many interesting cases where inva-
sion need not imply fixation. First, in models where a sep-
aration of timescales does not hold, a focal type may be
selected only transiently. This has been observed in epide-
miological models and experiments where the initial
abundance of susceptible hosts favors virulent strains that
are subsequently counterselected when the endemic equi-
librium is reached (Lenski and May 1994; Gandon and
Day 2007; Bull and Ebert 2008). Second, even when the
population has reached an ecological attractor, it is not al-
ways possible to predict the outcome of the competition
between the mutant and the resident using only an inva-
sion criterion. This may occur in ecological models with

multiple demographic attractors, where an initially suc-
cessful invasion by a mutant type may cause the resident
population to switch to another attractor at which the mu-
tant cannot invade, resulting in the failure of the invasion
(a scenario known as “the resident strikes back” in the lit-
erature; see, e.g., Doebeli 1998; Diekmann et al. 1999;
Mylius and Diekmann 2001). In such situations, invasion
will imply fixation only if the resident and mutant traits
are sufficiently close (Geritz et al. 2002; Geritz 2005) and
if the population is away from a bifurcation point where
the resident attractor undergoes an abrupt change (see,
e.g., Matsuda and Abrams 1994; Doebeli 1998). Hence,
it is important to bear in mind that the focalization on rel-
atively simple ecological models and a particular set of
approximations (weak selection) may cause us to miss im-
portant features of real ecological communities.

The Ubiquity of Gradient Dynamics

The adaptive dynamics and quantitative genetics frame-
works both show that it is possible to capture the effect
of selection through a gradient formulation: the change
in mean trait is given by a measure of genetical variation,
which depends on the mutational regime, multiplied by a
selection gradient that gives a first-order (linear) approxi-
mation of fitness. In the absence of mutational bias, this is
all we need to evaluate the direction of selection and po-
tential evolutionary end points.
This result has been repeatedly found in the literature.

This is a cornerstone of many key results in quantitative
genetics (see box 1). In fact, the label “canonical” was at-
tached to equation (26) by Dieckmann and Law (1996)
precisely to refer to the ubiquitous nature of such gradient
dynamics in evolutionary theory. There is, however, a sub-
tle difference between the interpretations of the measure
of genetic variation in quantitative genetics and in adap-
tive dynamics. In quantitative genetics, the factor in front
of the selection gradient measures the standing variation
in the population on which selection can operate. In the
canonical equation of adaptive dynamics, the factor de-
pends on the probability and variance of new mutations.
This difference arises because the canonical equation of
adaptive dynamics is obtained as a particular limit of the
selection-mutation balance leading to mutation-limited
evolution.
Gradient dynamics are ubiquitous because theoreticians

tend to use the same approximations to describe evolu-
tion. The environmental feedback perspective emphasizes
that gradient dynamics implicitly assume a specific form
of feedback where the effect of selection is affected only
by the contribution of environmental dynamics resulting
from a monomorphic population with the mean trait.

Theories in Evolutionary Ecology 35



Optimization, Polymorphism, and the Dimension
of the Environmental Feedback Loop

A popular misconception is that evolution necessarily leads
to the maximization of a population- or individual-level
quantity. In our discussion of Fisher’s fundamental theo-
rem, we have seen that mean population growth rate is
not necessarily maximized through evolution, due to the
effect of environmental change. This mirrors the well-
known result in population genetics that frequency depen-
dence prevents the maximization of mean fitness (see, e.g.,
Rice 2004; Day 2005 for discussions). But is it nonetheless
possible to predict the outcome of long-term evolution by
maximizing some well-chosen measure of absolute fitness,
such as individual lifetime reproductive success?

The Rarity of Optimization Principles. Recent theoretical
advances have shown that the answer to this question lies
in the effective dimension of the environmental feedback
loop, defined as the number of independent variables needed
to characterize the sign of the invasion fitness r(zm, Ê) of a
mutant with trait zm in the resident environment Ê (Mylius
and Diekmann 1995; Heino et al. 1998; Metz et al. 2008;
Gyllenberg et al. 2011; Metz and Geritz 2016). In short, if
the effect of the environment on the sign of invasion fit-
ness can be summarized by a single number with mono-
tonic effect, it is possible to find a function of the trait ɸ(z)
that is maximized at an ESS (optimization principle) or
equivalently a function of the environment w(Ê) that is
minimized at an ESS (pessimization principle). In some
special cases, the function ɸ coincides with the lifetime off-
spring number R0 or the intrinsic rate of natural increase r
(Mylius and Diekmann 1995; Metz et al. 2008; Gyllenberg
et al. 2011), but this is not a general property.

Most realistic ecological models will require more than
one real number to accurately describe the action of the
environment. Think of a predator feeding from multiple
prey species, a forager exploiting a time-fluctuating re-
source, or a size-structured population where intraspecific
competition depends on the size distribution. However,
many textbook results are simple enough to allow a one-
dimensional representation of the environment. For in-
stance, models satisfying some form of marginal value theo-
rem (Charnov 1976) admit an optimization principle. An
example is provided in box 2 using our running example for
parasite evolution, where, in the absence of vertical transmis-
sion, invasion fitness (eq. [a]) is an increasing function of
the density of susceptible hosts. This focalization on simple
models may partly explain the long tradition of using opti-
mization approaches in evolutionary theory.

Environmental Feedbacks and Evolutionary Branching. An
immediate consequence of the existence of an optimization

principle is that the evolutionary process is of the simplest
kind: any evolutionarily stable strategy is an evolutionary at-
tractor and vice versa (Metz et al. 2008). Consequently, evo-
lutionary branching is impossible, and at most one type can
persist in the population. In contrast, evolutionary branching
can occur inmore general models where the effective dimen-
sion of the environment is higher than 1. This can be seen as
a generalization of Levin’s competitive exclusion principle
(Levin 1970). Properly assessing the dimensionality of the
environmental feedback is therefore a critical step in the for-
mulation of an evolutionary model, especially if one is inter-
ested in the origin and maintenance of diversity.
Once the population becomes dimorphic, new tools are

needed to analyze the evolutionary dynamics. These tools rely
on the concept of invasion fitness of a rare mutant in a coali-
tion of coexisting strategies (eq. [21]). For instance, one may
use s(zm; z1, z2), the invasion fitness of a mutant with trait zm
in a resident population consisting of two types with traits z1
and z2, or more generally rm(Ê(C)), the invasion fitness of
a mutant calculated on the ecological attractor determined
by the resident community C (Geritz et al. 1998, 2004; Metz
2008). It is then possible to determine dimorphic singulari-
ties and check whether they are evolutionarily stable or
whether further branching is possible (see Kisdi 1999 for an il-
luminating introductory example). Quantitative genetics mod-
els provide an alternative approach to disruptive selection based
on the dynamics of the variance (Wakano and Iwasa 2013;
Débarre and Otto 2016). In finite populations, this approach
has been used to show that small population sizes tend to
be less conducive to evolutionary branching (Claessen et al.
2007; Wakano and Iwasa 2013; Débarre and Otto 2016).

Models for the Real World?

Over the years, the development of the AD and QG ap-
proaches has provided us with a strong theoretical basis to
analyze the feedback loop between ecology and evolution.
However, for many realistic ecological scenarios, further ex-
tensions are needed, and we still face some unresolved chal-
lenges. In this last section, I will briefly describe various
refinements of the AD and QG approaches to tackle physio-
logically and spatially structured populations and to study
the evolution of responsive or plastic traits. I then sum up
four key challenges for future theory, namely, the integration
of complex genetics, the development of new techniques be-
yond the weak selection or normal approximations, the con-
sequences of stochasticity, and the coupling of evolutionary
change with complex, nonstable population dynamics.

Natural Populations Are Structured

In nature, individuals of a given type may still differ by
their state (heterogeneity, or h-state; Metz et al. 1992; Metz
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2008). The h-state of an individual collects all sources of
heterogeneity, such as the physiological state of the individ-
ual (age, size, infection status, etc.) or even its spatial loca-
tion. A population structured with a discrete h-state is often
referred to as class structured (Taylor 1990; Caswell 2001;
Rousset 2004), but age- or size-structured populations pro-
vide examples of a continuous h-state (Metz and Diekmann
1986; Charlesworth 1994; de Roos 1997; Diekmann et al.
2003).

The description of populations used in the above sec-
tions ignores population structure by aggregating all indi-
viduals of a given type together. However, this may be mis-
leading or uninformative because the different h-states
need not have the same evolutionary value. This occurs,
for instance, in species with both reproducing and sterile
stages, in populations exploiting habitats of different qual-
ities, or in age-structured populations where the strength
of selection may vary with age. In the literature, these in-
trinsic differences in quality among h-states are generally
quantified using the notion of reproductive value, which
measures the relative contribution of each class to the fu-
ture of the population (Fisher 1930; Taylor 1990; Frank
1998; Rousset 2004; Rousset and Ronce 2004). Reproduc-
tive values are best viewed as a vector of weights that give
the relative importance of selective effects in each class
(Taylor 1990; Frank 1998; Gardner et al. 2011; Lehmann
and Rousset 2014).

Equipped with this concept, extensions of the theory to
account for class structure have been formulated, either in
models with separation of timescales (Taylor 1990; Metz
et al. 1992; Frank 1998; Rousset 2004; Rousset and Ronce
2004; Metz 2008) or using the Price equation (Day and
Gandon 2006; Gandon and Day 2007). Related approaches
exist for continuous h-states (Durinx et al. 2008; Day et al.
2011). In particular, integral projection models have be-
come a popular tool for modeling structured populations
and can be coupled with both the AD and the QG ap-
proaches (Rees and Ellner 2016). In most studies, analyt-
ical insight is typically gained with the additional help of
the now familiar weak selection assumption.

Spatial Structure and Inclusive Fitness Theory

Spatial structure is another important component of realistic
ecological dynamics. In spatially structured populations, se-
lection will be determined by the interplay between demo-
graphic and genetic structures (Lion et al. 2011). Demographic
structure describes the spatial distribution of individuals,
while genetic structure describes the spatial distribution
of types. Genetic structure may generally be neglected
when we have infinite local population sizes, but typically
local fluctuations and limited dispersal will lead to the
buildup of genetic structure in the population. For in-

stance, under local dispersal, one may expect similar types
to be more clustered together than they would be in a well-
mixed population. Deviations from random spatial distri-
butions of types can be quantified using relatedness coeffi-
cients, which typically measure the probability of identity
between pairs of genes sampled in different individuals
(Rousset 2004; Lehmann and Rousset 2014).
Spatial structure therefore complicates our vision of en-

vironmental feedback in two important ways. First, we need
many more variables to accurately describe the spatial struc-
ture of the environment, which leads to high-dimensional
models. Second, a proper description of spatial dynamics
requires one to take into account local demographic sto-
chasticity. It is therefore not obvious that the above frame-
work is helpful when studying spatially structured popula-
tions.
However, provided the total population is large enough,

the Price equation and adaptive dynamics approaches can
be extended to account for spatial structure. The idea is to
use a moment expansion to express the rate ri(E) in func-
tion of higher-order spatial moments (van Baalen and Rand
1998; Bolker and Pacala 1999; van Baalen 2000; Ovaskai-
nen et al. 2014; Lion 2016). The differential equations de-
scribing the dynamics of the densities ni should now be
viewed as representing the expected dynamics derived from
amicroscopic description of the spatial individual-based pro-
cess and must be coupled with a suite of equations describ-
ing the expected dynamics of various spatial moments (Ovas-
kainen et al. 2014; Lion 2016). Spatially structured versions
of the Price equation and adaptive dynamics methodolo-
gies can then be derived (Lion 2016; Lion and Gandon
2016). The downside of this approach is that the environ-
ment E is now an infinite vector collecting all relevant spa-
tial moments of the population. As a result, moment clo-
sure approximations are needed to close the system and
obtain a low-dimensional approximation. Unfortunately,
the accuracy of those approximations is currently poor.
Alternative perturbation methods have been proposed as
a replacement (Ovaskainen and Cornell 2006), but their ap-
plication to evolutionary theory has so far been limited (but
see North et al. 2011).
There is a close relationship betweenmodels based on spa-

tial moment equations and more classical deme-structured
populations, often analyzed using inclusive fitness meth-
odology (Rousset and Billiard 2000; Metz and Gyllenberg
2001; Ajar 2003; Parvinen et al. 2003; Rousset 2004; Leh-
mann et al. 2016). From an ecological perspective, inclu-
sive fitness is perhaps best viewed as an expansion of inva-
sion fitness to take into account the indirect fitness effects
generated by spatial demographic and genetic structuring
(see also Lehmann and Rousset 2014; Van Cleve 2015;
Lehmann et al. 2016 for a more technical treatment). How-
ever, many discussions of inclusive fitness, kin selection, or
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group selection focus on simplified models with little eco-
logical realism (Lion et al. 2011). An unfortunate conse-
quence is that the ecological underpinning of inclusive fit-
ness theory is not apparent. It should be noted, however,
that although the inclusive fitness approach to evolution
in space has been extended to models with fluctuating de-
mography (Rousset and Ronce 2004; Lehmann and Rousset
2014), the application of these methods to complex ecologi-
cal scenarios is not straightforward. In some cases, such as
models of host-parasite interactions, spatial moment equa-
tions have been used to derive compact analytical expres-
sions for invasion fitness while retaining the useful interpre-
tation in terms of inclusive fitness and kin selection theory
(Lion and Gandon 2016).

In general, deriving good approximations of evolution-
ary change in complex spatial ecologies is still a challenge
and an active area of research. An important objective of a
research program in spatial evolutionary ecology is to for-
mulate new methods to derive deterministic approxima-
tions of spatial models and to check the range of validity
of approximations. It is possible that in many real-life ex-
amples, taking into account spatial structure will bring lit-
tle added value compared to standard well-mixed models,
but we still lack a good understanding of when spatial
structure can and cannot be neglected.

Beyond Traits: Evolution of Responsive Phenotypes

I have previously discussed the evolution of fixed traits,
following standard practice in evolutionary ecology. How-
ever, most traits we are interested in are not constant but
change in response to another continuous variable. For in-
stance, the vital rates of an individual generally depend on
their age and can also be affected by environmental condi-
tions (pH, temperature, salinity, etc.). Such responsive traits
are best viewed as functions (Stinchcombe et al. 2012).
Common examples of function-valued traits are growth tra-
jectories (e.g., mean body size as a function of age) or the
reaction norms of plastic phenotypes (giving the expected
phenotype of a given genotype as a function of an environ-
mental variable).

To study the evolution of responsive traits, an extension
of the classical QG machinery was proposed by a number
of authors (Kirkpatrick and Heckman 1989; Kirkpatrick
and Lofsvold 1992; Beder and Gomulkiewicz 1998; King-
solver et al. 2001). Although these models considered very
simple ecological dynamics, more realistic environmental
feedbacks can be taken into account. Using an epidemio-
logical dynamics, Day et al. (2011) derived a Price equation
for function-valued traits. As for fixed traits, additional
assumptions (such as normal distribution of phenotypes,
weak selection, or mutation limitation) can be used to re-
write the covariance term as a gradient dynamics (Kirk-

patrick and Heckman 1989; Dieckmann et al. 2006; Day
et al. 2011; Stinchcombe et al. 2012). Thus, although math-
ematically more challenging, the evolution of responsive
phenotypes can be studied through the same methods as
fixed traits. Depending on the context, responsiveness
and plasticity can also be studied using more simple class-
structured models, for instance, when modeling the eco-
evolutionary consequences of animal personalities (Wolf
et al. 2007; Wolf and Weissing 2012).

Further Challenges

The body of theoretical literature I synthesize here appears
to be sufficiently robust to handle population heterogene-
ity, spatial structure, and even function-valued traits used
to model responsive phenotypes. In my opinion, these ex-
tensions raise technical (and often mathematically diffi-
cult) problems but do not pose a real conceptual challenge
to theoreticians.
However, the above discussion highlights an important

difficulty of current eco-evolutionary theory. Indeed, al-
though the Price equation approach is very general, the
resulting models are often difficult to analyze without re-
course to numerical methods. Both the AD and the QG
approaches rely on a small variance approximation to make
analytical progress, but as we have seen, the timescales be-
tween ecological and evolutionary dynamics are affected by
the magnitude of population variance. When the population
variance is sufficiently small, the environmental feedback
can be simplified and decoupled from the evolutionary dy-
namics, but to my knowledge little attention has been de-
voted to the domain of validity of this approximation. In
particular, it is unclear to what extent we can use this ap-
proximation to study rapid evolutionary dynamics caused
by high standing variation and/or mutation rates. Progress
will likely come from new perturbation methods that go
beyond the common assumption of tightly clustered uni-
modal trait distributions or Gaussian trait distribution.
The oligomorphic approximation introduced by Sasaki
and Dieckmann (2011) seems a promising step in that di-
rection. This approach extends the standard theoretical
toolbox through a decomposition of multimodal trait dis-
tributions into a sum of unimodal distributions, each cor-
responding to a morph (oligo p “a few”). It would be
interesting to conduct an extensive investigation of the
coupling with environmental feedbacks within this frame-
work.
Another limitation of current theory is the focus on

ecological attractors. Broadly speaking, analytical predic-
tions for evolution under complex ecological scenarios
are possible only if the ecological dynamics are poised at
an attractor (in practice, often an equilibrium). As we have
seen, this requires a separation of timescales. However, the
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concept of an ecological attractor or stationary ecological
states has been criticized for being unrealistic, especially
when studying rapid environmental changes such as cli-
mate fluctuations. Recently, Chesson (2017) suggested that
the classical attractor concept could be usefully replaced
in ecology by an asymptotic environmentally determined
trajectory, which is a time-dependent function of the en-
vironment toward which the population converges. This
could provide an interesting starting point for an exten-
sion of eco-evolutionary theory to handle rapid, nonsta-
tionary dynamics for which the standard separation of
timescales fails. In particular, this could shed new light on
the mechanisms causing evolution toward extinction (evo-
lutionary suicide; Matsuda and Abrams 1994; Parvinen
2005) or away from extinction (evolutionary rescue; Bell
and Gonzalez 2009).

The deterministic models I have discussed assume large
population sizes and neglect environmental stochasticity.
Stochastic models of population dynamics, as well as
individual-based simulations, often show systematic devia-
tions from deterministic predictions (Lande et al. 2003).
Evolutionary dynamics can also be strongly affected by sto-
chasticity, for instance, because of genetic drift (Lenormand
et al. 2009). In particular, in finite populations, the “invasion
implies fixation” principle breaks down and the probability
of fixation will typically be a better measure of selection
than invasion fitness (Proulx and Day 2001). However,
we still lack a clear picture of the ecological conditions
under which deterministic approximations fail and sto-
chasticity needs to be explicitly taken into account. In partic-
ular, because most studies of evolution in finite populations
assume some kind of separation of timescales, often based on
a weak selection assumption (Rousset 2004, 2006; Van Cleve
2015; Débarre and Otto 2016), we are still far from a full
understanding of the joint effect of stochasticity and envi-
ronmental feedback on evolutionary dynamics.

The last challenge is perhaps more fundamental. As is
common practice in evolutionary ecology, I have chosen
to simplify the genetics to focus on the ecology. Clearly,
for many ecologically relevant traits in nature, integrating
genetics and ecology is a necessary challenge, and the task
may seem daunting. There are still very few studies that
couple complex genetics or developmental pathways with
ecologically realistic models. For instance, the adaptive
dynamics methodology can be extended to diploids, pro-
vided the initial frequency of mutant homozygotes is neg-
ligible (Kisdi and Geritz 1999; Van Dooren 1999, 2006;
Metz 2008; Metz 2011; Metz and de Kovel 2013). For
structured populations, extensions of inclusive fitness the-
ory to account for dominance or multilocus genetics have
been derived (Roze and Rousset 2003, 2008; Lehmann and
Rousset 2014). The Price equation formalism has also been
used to analyze multilocus epidemiological models (Day

and Gandon 2012). However, a full synthesis currently re-
mains out of reach. Nonetheless, it is encouraging to note
that the methods that I have described in this synthesis
are conceptually similar to those used to analyze multilocus
models, which also rely on arguments of separation of time-
scales. This suggests that a tighter integration of these dif-
ferent fields may be technically possible with our current
theoretical toolbox.

Conclusion

There are a diversity of approaches to modeling evolution-
ary dynamics in an explicit ecological context. In this syn-
thesis, I have tried to highlight the connections between
different schools of thought. Central to this perspective
is the requirement that any eco-evolutionary model needs
to incorporate an explicit dependence of vital rates on
an environmental vector, thereby materializing the eco-
evolutionary feedback loop. This requirement is central
to adaptive dynamics theory but can usefully be adapted
to produce ecologically explicit versions of the Price equa-
tion. This environmental feedback perspective forces us to
adopt a mechanistic, rather than a phenomenological, view
of evolution, which is based on population dynamical pro-
cesses and is refreshingly close to Darwin’s original and
deeply ecological insight.
In most cases, analytical progress is possible only through

additional methodological assumptions, generally taking the
form of a separation of timescales. Typically, the aim is to
decouple ecological and evolutionary timescales, either by
focusing on the invasion of a rare mutant type or by assum-
ing thatmutations have small phenotypic effects (weak selec-
tion). Although this has proven to be a very successful tool-
box to study long-term evolution, a key challenge for future
studies is to take into account rapid or short-term transient
evolutionary dynamics in realistic ecological scenarios. This
has already motivated new approaches to model evolution-
ary epidemiology, based on the Price equation formalism I
discuss above (Day and Proulx 2004; Day and Gandon
2006; Gandon and Day 2007). It is certainly possible to hope
that the nascent dialogue between these different theoretical
frameworks will foster new understanding of the tangled
loop between ecology and evolution.
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APPENDIX

Separation of Timescales under
Weak Selection

Under weak selection, the dynamics of the environment
can be decoupled from the dynamics of the trait and from
the change in frequency. To see why, let us write the per
capita growth rate of type i as a function of the vector
of traits and of the environment, ri(z, E). We are interested
in understanding the behavior of the coupled ecological
and evolutionary system when all traits are close to the
mean value. We thus write zi p �z 1 εdi, where ε is a small
parameter. To first order, we have

ri(z,E) p ri(z7,E7)1 ε
dri
dε

(z7,E7)1 O(ε2),

where ri(z7, E7) is the per capita growth rate of type i when
ε p 0 (i.e., all types have trait value �z). Hence, z7 p
(�z ::: �z)⊤, and E7 is the neutral component of the envi-
ronmental vector. The dynamics of the densities ni are
therefore described by a perturbation of the monomorphic
dynamics when all types have the same trait value �z.

This allows us to calculate the dynamics of the total
density n as

dn
dt

p
X

i

ri(z,E)f i

 !
n

p
X

i

f iri(z7,E7)1 εf i
dri
dε

(z7,E7)1 O(ε2)

" #
n

p �r(z7,E7)n1 ε
d�r
dε

(z7,E7)n1 O(ε2):

To zeroth order, the dynamics of the total density is given
by the dynamics of the population when all individuals
have the same value �z. A similar perturbation can be ap-

plied to the dynamics of the external variables, e, and we
finally have

dE
dt

p F 7(z7,E7)1 O(ε):

The environmental dynamics are therefore O(1).
We now Taylor expand the change in frequency as

df i
dt

p f i(ri(z)2 �r(z))

p f i(ri(z7,E7)2 �r(z7,E7))1 εfi
d(ri 2 �r)

dε
(z7,E7)

1 O(ε2):

In a population where all types have the same trait value,
we should not observe any frequency change. This re-
quirement of neutrality implies that we have necessarily
ri(z7,E7) p �r(z7,E7) and as a result

df i
dt

p εfi
d(ri 2 �r)

dε
(z7,E7)1 O(ε2):

The change of frequency is therefore O(ε).
Finally, the change in mean trait is given by

d�z
dt

p
X

i

zi
df i
dt

p
X

i

�z
df i
dt

1 ε
X

i

di
df i
dt

:

The first term cancels out because
P

if i p 1, and we have

d�z
dt

p ε2
X

i

di fi
d(ri 2 �r)

dε
(z7,E7)1 O(ε3):

The dynamics of the mean trait is therefore O(ε2). This
shows that under weak selection we can decouple the
change in the environment (which is O(1)) from the
change in frequencies and mean trait (which are O(ε)
and O(ε2), respectively).
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