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Abstract— Since the introduction of the block turbo code
(BTC) concept, several soft-input / soft-output (SISO) algorithms
have been used in order to softly decode product codes. The
classical Chase-Pyndiah algorithm seems to be one with the best
trade-off between complexity and performance, especially for low
error correction capability t (typically 1 or 2) where it is nearly
optimal. However, as an algebraic decoding-based algorithm, the
lack of codeword diversity is one of its weakness for BTCs with
higher error correction capability and/or non binary BTCs. In
this paper, we propose an improved iterative decoding algorithm
for BTCs. We present a simple sliding encoding-window (SEW)
based decoding algorithm which exploits the cyclic and systematic
properties of RS or BCH codes. By adding the SEW algorithm to
a classical algebraic decoding method, the proposed decoder can
easily generate a list of codewords that are close to the decoded
codeword. With the codeword diversity, we can compute more
reliable soft output necessary in the turbo decoding process.
Monto-Carlo simulations of binary and non-binary BTCs are
carried out on Gaussian channels. The results show that the
algorithm can improve the error performance up to 1.5 dB

relative to the conventional Chase-Pyndiah decoder, while the
increase in complexity due to the encoding is minor since it
is a low-cost process compared to that of algebraic decoding.
Compared to the other encoder-based decoding algorithms in
the literature, the proposed algorithm has the advantage that
there is no requirement to recompute the generator or parity-
check matrix by using Gaussian elimination operations, thus a
lower computational complexity.

I. INTRODUCTION

Concatenated block coding technique was introduced by

P. Elias in 1954 [1]. In 1994, R. Pyndiah introduced binary

(BCH codes [2]) and non-binary (RS codes [3]) block turbo

codes (BTCs) with a soft-input soft-output (SISO) iterative

decoding algorithm [4] which offers a good trade-off between

performance and complexity. Since BTC can achieve high

data rates with a low decoding complexity, it has found

widespread applications (LMDS, UMTS, IEEE 802.16) and

has become a key ingredient in the telecommunication system

design process.

Soft iterative decoding of BTC requires the generation of a

large set of codewords to compute reliable soft output for each

bit. Various approaches have been developed in the literature

in order to create a codeword list for a linear binary block

code, denoted C(n, k), where n is the length of the code and

k its dimension. However, we can distinguish them into three

major classes.

The first class of algorithm uses encoding to decode the

received sequence. In the OSD[5]-BMA[6] or in [7] or [8],

the principle is to reorder the soft values of the received

sequence according to their reliability. Error patterns of in-

creasing Hamming weight are applied at the k most reliable

independent positions (MRIPs) and encoding is performed on

the thresholded resulting sequences. All produced codewords

are stored in the list of candidates. However, a new code

generator must be evaluated for the encoding process due to

the reordering, which increases the decoder complexity.

The second class of algorithm uses an algebraic decoder

to construct a list of candidates. In the GMD [9], the Chase

[10] or in [11], the principle is to locate the least reliable

independent positions (LRIPs) in the received sequence. After

thresholding, error patterns are applied at these LRIPs and

algebraic Peterson [12] or Berlekamp-Massey (BM) [13] al-

gorithm is performed. If the result is a codeword, then it is

stored in the list of candidates.

The third class of algorithm uses both encoding and decod-

ing to decode the received sequence as in [14].

The techniques described above process at the binary level.

Generally, these algorithms are also applied for non binary

block codes, but to their binary representation, e.g the Chase-

2 algorithm for RS codes in [15]. This approximation leads to

suboptimal performance.

The conventional SISO iterative decoding algorithm using

the Chase algorithm is considered very efficient for BTCs

with high code rates such as Hamming-BTCs (Hamming codes

as component codes). However, for an high error correction

capability (typically t ≥ 2) its performance is far from the

capacity limit and new algorithms have to be found.

In this paper, we propose to use a sliding encoding-window

(SEW) algorithm [16] to decode binary or non-binary BTC

with systematic cyclic codes as its component codes (BCH

or RS codes). For this type of codes, the SEW algorithm

can easily generate a list of codewords, which are close to

the received sequence in terms of the Hamming distance. By

combining this list of codewords with the one generated by a

classical algebraic-based decoder, such as the Chase algorithm,

we can form an enlarged set of test patterns. Based on the

new test patterns, the SISO iterative decoding algorithm can
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produce a better log-likelihood ratio (LLR) of each decoded

digit. This eventually improves the bit error probability in the

iterative decoding of the BTC.

This paper is organized as follows. Part II briefly introduces

the transmission scheme. Part III describes the SEW algorithm

and its combination with the Chase or the BM algebraic

decoding. Part IV presents simulation results with non-binary

RS-based BTCs on Gaussian channel, while Part V deals with

binary BCH-based BTCs. Part VI concludes the paper.

II. TRANSMISSION SCHEME

Information symbols are coded with a BTC scheme at the

transmitter side before modulation. A BTC can be constructed

by concatenating two or more short block codes with a block

interleaver to become a long powerful code with a large

minimum Hamming distance. Let us consider two linear block

codes, C1(n1, k1, d1) and C2(n2, k2, d2) respectively as its

component codes, where ni is the codeword length, ki is the

information length and di is the minimum Hamming distance

of the code, i = 1, 2. The information symbols are put in a

k1 × k2 symbol matrix. The k2 columns are encoded with the

code C1(n1, k1, d1), then the n1 obtained rows are encoded

with the code C2(n2, k2, d2).

The parameters of the BTC C = C1 ⊗C2 are the products

of the component code parameters such as the code length

n = n1 × n2, the information length k = k1 × k2 and the

Hamming distance d = d1 × d2. Thus, a BTC has a larger

minimum Hamming distance. All of the rows of the matrix

c are codewords of C2 and all of its columns are codewords

of C1 [17]. This is a very important property of BTCs since

in the iterative decoding process, both information bits and

parity check bits can exploit the extrinsic information from

the received sequences.

Symbols can be either q-ary symbols (RS case) or bits

(BCH case). For non binary codes, each q-ary symbol can

be represented by an unique set of m bits, with q = 2m.

Let c be the binary representation of one binary or non-

binary codeword of C and c̃ = 2c − 1 be the modulated

representation of c using a BPSK. BPSK symbols are sent

through a Gaussian channel and the received vector r is given

by:

r = c̃ + n (1)

where n is the additive white Gaussian noise (AWGN). The

optimum decoded sequence can be obtained by using the

maximum-likelihood (ML) decoding algorithm. It chooses

a codeword ĉ from the code set C, which has a smallest

Euclidean distance from the received vector, r:

ĉ = argmin
c∈C‖r − c̃‖2 = argmin

c∈C‖r − 2c + 1‖2 (2)

Unfortunately, it is infeasible to search all the codewords

in the ML decoding due to an extremely large number of

codewords up to 2mk for a large value of k.

III. DECODING ALGORITHM

A. Chase Algorithm

The Chase algorithm [10] is a sub-optimum decoding algo-

rithm, which belongs to the argument list decoding algorithm.

Instead of reviewing all the codewords of a code, the Chase

algorithm searches the codewords within a sphere of radius

d − 1 about the received word r due to the fact that the ML

codeword ĉ is located in the sphere of radius d − 1 with a

very high probability at a high SNR. Thus, all possible error

patterns of binary weight less than or equal to d − 1 are

considered.

However, to decrease the complexity, we use the second

form of the Chase algorithm applied at the binary level. Let y

be the hard decision of r. We search the nd LRIPs of r (lowest

absolute values) and then make all possible commutations (0
or 1) at these nd positions in y. The 2nd produced sequences

are decoded using a classical algebraic decoder. Only valid

codewords are added to the code subset C(nd).
The decoded codeword ĉ is chosen according to (2), where

we use the subset C(nd) instead of the whole codeword set C.

For non-binary codes, we use the same approach as in [15]

where the algorithm is still applied at the binary level on the

binary representation of a codeword.

In order to apply the Chase algorithm to the SISO iterative

decoding, it is desirable that the code set C(nd) should con-

tain the decoded codeword ĉ and its concurrent (competitor)

codewords for all the binary positions. However, for non-

binary codes and high error correction capability binary codes

(typically t ≥ 2), it appears that the code subset generated

by the Chase algorithm is too small to find the concurrent

codewords for all bits. In this case, the SISO iterative decoder

has to use a coefficient to approximate the soft decoder

output. This will lead to a performance degradation. To deal

with this problem, we consider a sliding encoding-window

(SEW) algorithm [16] for decoding the systematic cyclic

codes. In particular, the SEW algorithm can generate a large

set of codewords used by the decoder to find the concurrent

codewords in order to compute more reliable soft-decision

outputs. This can eventually improve the iterative decoding

performance.

B. Sliding encoding-window algorithm

We recall that in systematic codes the information part is

visible in the codeword, generally at the beginning or the

end of the codeword. With a cyclic q-ary code, any cyclic

permutation over q-ary symbols of a codeword is still a

codeword.

The SEW algorithm exploits both the systematic and cyclic

properties of a code, but processes at the binary level, to

easily generate candidates, which are in the neighbourhood

of the received sequence. The SEW algorithm consists of

two successive steps: the encoding phase (EP) and the sliding

phase (SP) repeated until all bits are covered with codeword

diversity. We describe the algorithm for q-ary RS codes, but

its extension to binary codes (m = 1) is straightforward.
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Let W be the block of the km soft values extracted from

r corresponding to the information part, ne ≤ km be the

number of the LRIPs inside W and W be the hard decision

of W. By permuting the bits (0 or 1) at the ne LRIPs of W

and encoding the result, we produce 2ne codewords “close”

to y: at least km−ne bits are identical. Codewords generated

during this encoding phase (EP) are stored in the set Cne
.

As we use systematic codes, we introduce codeword di-

versity only over the (n − k)m bits of the redundancy part.

To create diversity over all bits, we exploit the q-ary cyclic

property of the RS code. We cyclically shift W of ∆ q-ary
symbols (km bits) over r. After this sliding phase (SP), we

perform the EP on the new window. We call W the sliding

encoding-window and ∆ the SEW step.

Due to the systematic coding, the obtained codewords must

be cyclically shifted in the reverse order so that their km-

length information part matches the position of W in r. We

store shifted codewords in Cne
.

We repeat the EP and SP until all bits are covered with

diversity. Obviously, the minimum step size is ∆ = 1, which

means that every time, we slide the encoding window by one

symbol position for a total of n EPs to process. Considering

that the main objective of the SEW algorithm is to generate

the codeword diversity for all n coded symbols and that each

EP can potentially provide a codeword diversity over n − k
symbols, it is natural to set the step size of the sliding window

operation ∆ = n − k. This is the step size which can be

used to generate the codeword diversity for all coded symbols

continuously with least overlapping. In this case, we need

⌈ n
n−k

⌉ EPs to perform, where ⌈.⌉ is the upper integer part.

We can show that 2ne ≤ card(C(ne)) ≤ ⌈ n
n−k

⌉2ne .

It is interesting to note that a small step size ∆ can provide

better decoding performance but it suffers from a higher

computational complexity. Therefore, it is possible to choose

∆ between
[

1, ⌈ n
n−k

⌉
]

to achieve a good trade-off between

the complexity and performance. Unless we precise a value of

∆, we will use ∆ = n − k in the following.

The decoded codeword ĉ is chosen according to (2), where

we use the subset C(ne) instead of the entire code set C.

The SEW algorithm is different from conventional encoder-

based decoding algorithms in the way that no permutation

or reordering of the received bits according to the reliability

is required. Therefore, there is no need to recompute either

the generator or parity check matrix, which is carried out

by the Gaussian elimination method by checking the linear

independence of the most reliable set of bits. Note that

the complexity of encoding is much lower than that of the

Gaussian elimination operation, one gets the performance

enhancement at a slightly increased complexity.

C. Combination with decoding-based algorithm

The SEW algorithm always generates a codeword, but

does not guarantee finding the most probable. In fact, if the

thresholded input contains less than t errors, any algebraic

decoding will produce the most probable codeword.

Therefore, we combine the SEW algorithm with at least one

algebraic decoding, to ensure that if the input is successfully

algebraically decoded, the proposed decoder produces the most

probable codeword. In the following, we consider the Chase

and the BM algorithms.

Depending on the algebraic decoding-based algorithm cho-

sen, we combine the code set generated by the SEW C(ne)
with either the code set of the Chase C(nd) or the decoded

codeword if the BM succeeds. We denote C(ne)
+ this enlarged

codeword set.

D. SISO decoder with combined decoding algorithm

The superior performance of BTC is due to the SISO

iterative decoder. Decoding is performed either column-wise

first and then row-wise or vice versa. For each bit of the

selected codeword ĉ, its LLR is computed according to:

Γ(ĉi) = ln
Pr(ĉi = 1|r)

Pr(ĉi = 0|r)
(3)

We use the subset C(ne)
+ instead of the entire set C to

compute (3). Following the same approach as in [18], the LLR

can be approximated by:

Γ(ĉi) ≈< ci,1 − ci,0, r > (4)

where < ., . > is the scalar product and:

ci,j = argmax
c∈C(ne)+|ci=j < 2c − 1, r > (5)

From (4) we can estimate the extrinsic information wi of

the ith bit:

Γ(ĉi) ≈ < ci,1 − ci,0, r >

≈ ri +
∑

j �=i

(ci,1
j − ci,0

j )rj

≈ ri + wi (6)

The extrinsic information from the horizontal (vertical)

codes can be used to update the received vector r for decoding

the vertical (horizontal) codes.

r(m) = r + α(m)w(m) (7)

where m is the index of the iteration, w(m) is the extrinsic

information computed from the previous decoding step and

α(m) is a weighting factor [4]. The decoding procedure de-

scribed above is then generalized by cascading the elementary

decoders as illustrated in Fig 1.

A parameter β is used for the computation of wi, when

either ci,1 or ci,0 is not available in C(ne)
+ for the ith position

[4].

IV. NON-BINARY BTCS

A. Codeword diversity

The SEW algorithm naturally creates codeword diversity.

For SEW (ne = 8) and the code RS(15, 9, 7), Fig. 2 represents

an average histogram of all codewords of Cne
sorted by their

Hamming distance from the transmitted codeword. Distances

are computed at the binary level over 1000 decodings.
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Fig. 2. SEW(ne = 8) codeword diversity at the binary level for RS(15, 9, 7)

As the signal to noise ratio increases, the SEW algorithm

generates more codewords in the neighbourhood of the sent

codeword. For the code RS(15, 9, 7), the SEW (ne = 8)

performs 768 encoding operations, which can generate 767 and

766 different codewords at Eb/N0 = 0 dB and 6 dB, respec-

tively. However, in the radius of Hamming distance of 15 from

the transmitted codeword, there are more codewords (325) at

Eb/N0 = 6 dB than that (163 codewords) at Eb/N0 = 0 dB.

The enlarged set of the codewords in the close neighbourhood

of the correct codeword can help to improve the log-likelihood

ratio of the decoder output.

This figure shows that the SEW algorithm provides suf-

ficient codeword diversity to be used in a SISO context in

order to compute soft output reliability. Due to this codeword

diversity, the choice of the β parameter, used when no con-

current codewords are found for a given position [4], is less

determining.

B. Simulation results

We use 4 iterations in the simulations and the parameters

of the BTC [4] defined for each half-iteration are:

• α = {0.0, 0.25, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}
• β = {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}

For the BTC RS(15, 9, 7)2 the decoding algorithms are :

Chase(nd = 4), BM + SEW(ne = 8) and BM + SEW (ne =
12). Fig. 3 presents the bit error rate (BER) on a Gaussian

channel.
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Fig. 3. BER vs Eb/N0 - BTC-RS(15, 9, 7)2 on a Gaussian channel - 4
iterations

We observe a gain of 0.75 dB and 1.5 dB at a BER of

10−4 with the addition of the SEW (ne = 8) and the SEW

(ne = 12) algorithm respectively.

For the BTC RS(31, 27, 5)2, Fig. 4 shows the BER and the

word error rate (WER) performance of the code with various

decoding algorithms on a Gaussian channel: Chase(nd = 5),

BM + SEW(ne = 8), Chase(nd = 5) + SEW(ne = 8), BM +

SEW(ne = 8, ∆ = 1) and BM + SEW (ne = 12).

We can observe that while the BM + SEW (ne = 8) achieves

the same BER performance as the Chase (nd = 8) algorithm,

the BM + SEW (ne = 8) performs 0.15 dB better than the

Chase (nd = 5) algorithm in WER. In addition, we see that

the BM + SEW (ne = 8, ∆ = 1) and Chase (nd = 5) + SEW

(nd = 8) have the same performance and outperform the Chase

(nd = 5) algorithm by 0.2 and 0.25 dB in BER and WER,

respectively. Finally, we note that the BM + SEW (ne = 12) is

0.5 and 0.6 dB better in BER and WER respectively than the

classical Chase (nd = 5). However, its complexity is greater

than all the previous algorithms, but the SEW process can be

parallelized as the 8 EPs performed for the RS(31, 27, 5) are

independent from each other.

V. BINARY BTCS

The BTC BCH(31, 16, 7)2 has been investigated over an

AWGN channel with BPSK modulation by using Monte-Carlo

simulation. The number of LRIPs of Chase algorithm is set as

nd = 5. The number of LRIPs of the SEW algorithm is set

as ne = 6 to maintain a reasonable complexity. The number

of the iterations of the SISO iterative decoder is set to 4.

The BER performance comparison of the combined and the

conventional algorithms is shown in Fig. 5.

It is obvious that the considered algorithm outperforms the

conventional Chase-Pyndiah decoding algorithm for the BTC.

In Fig 5, we also show the effect of step size ∆ of the sliding

operation on the code error performance. We can see that

reducing the step size ∆ from 15 to 8 can slightly improve the
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bit error rate. However, the performance improvement obtained

by reducing the step size ∆ from 8 to 4 is negligible.

VI. CONCLUSION

We considered an improved iterative decoding algorithm

for turbo product codes. The algorithm exploits the code

properties of the cyclic codes to generate an enlarged set of test

patterns close to the received word, which is combined with

the result of an algebraic decoding based algorithm, such as

Chase or BM. The addition of the SEW algorithm can improve

the reliability of extrinsic information hence to improve the bit

and the word error performance of BTCs.

We show that the proposed algorithm can improve the BER

of BTCs up to 1.5 dB. When combined with the Chase algo-

rithm, the SEW algorithm produces an enlarged codeword set

at the expense of a slightly increased complexity. Compared

to the other encoder-based decoding algorithms, the proposed

algorithm has the advantage that there is no requirement

to recompute the generator or parity-check matrix by using

Gaussian elimination operations.
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