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I. INTRODUCTION

Concatenated block coding technique was introduced by P. Elias in 1954 [START_REF] Elias | Error-free coding[END_REF]. In 1994, R. Pyndiah introduced binary (BCH codes [START_REF] Bose | On a class of error correcting binary group fields[END_REF]) and non-binary (RS codes [START_REF] Reed | Polynomial codes over certain finite fields[END_REF]) block turbo codes (BTCs) with a soft-input soft-output (SISO) iterative decoding algorithm [START_REF] Pyndiah | Near optimum decoding of product codes[END_REF] which offers a good trade-off between performance and complexity. Since BTC can achieve high data rates with a low decoding complexity, it has found widespread applications (LMDS, UMTS, IEEE 802. [START_REF] Lalam | On the use of reed-solomon codes in space-time coding[END_REF]) and has become a key ingredient in the telecommunication system design process.

Soft iterative decoding of BTC requires the generation of a large set of codewords to compute reliable soft output for each bit. Various approaches have been developed in the literature in order to create a codeword list for a linear binary block code, denoted C(n, k), where n is the length of the code and k its dimension. However, we can distinguish them into three major classes.

The first class of algorithm uses encoding to decode the received sequence. In the OSD [START_REF] Fossorier | Soft-decision decoding of linear block codes based on ordered statistics[END_REF]-BMA [START_REF] Martin | On softinput soft-output decoding using "box and match" techniques[END_REF] or in [START_REF] Gazelle | Reliability-based code-search algorithms for maximum-likelihood decoding of block codes[END_REF] or [START_REF] Martin | Soft-input softoutput list-based decoding algorithm[END_REF], the principle is to reorder the soft values of the received sequence according to their reliability. Error patterns of increasing Hamming weight are applied at the k most reliable independent positions (MRIPs) and encoding is performed on the thresholded resulting sequences. All produced codewords are stored in the list of candidates. However, a new code generator must be evaluated for the encoding process due to the reordering, which increases the decoder complexity.

The second class of algorithm uses an algebraic decoder to construct a list of candidates. In the GMD [START_REF] Forney | Generalized minimum distance decoding[END_REF], the Chase [START_REF] Chase | A class of algorithms for decoding block codes with channel measurement information[END_REF] or in [START_REF] Kaneko | An efficient maximum-likelihood-decoding algorithm for linear block codes with algebraic decoder[END_REF], the principle is to locate the least reliable independent positions (LRIPs) in the received sequence. After thresholding, error patterns are applied at these LRIPs and algebraic Peterson [START_REF] Peterson | Error-correcting codes[END_REF] or Berlekamp-Massey (BM) [START_REF] Berlekamp | Algebraic Coding Theory[END_REF] algorithm is performed. If the result is a codeword, then it is stored in the list of candidates.

The third class of algorithm uses both encoding and decoding to decode the received sequence as in [START_REF] Hu | An efficient hybrid decoding algorithm for reedsolomon codes based on bit reliability[END_REF].

The techniques described above process at the binary level. Generally, these algorithms are also applied for non binary block codes, but to their binary representation, e.g the Chase-2 algorithm for RS codes in [START_REF] Aitsab | Performance of reed-solomon block turbo code[END_REF]. This approximation leads to suboptimal performance.

The conventional SISO iterative decoding algorithm using the Chase algorithm is considered very efficient for BTCs with high code rates such as Hamming-BTCs (Hamming codes as component codes). However, for an high error correction capability (typically t ≥ 2) its performance is far from the capacity limit and new algorithms have to be found.

In this paper, we propose to use a sliding encoding-window (SEW) algorithm [START_REF] Lalam | On the use of reed-solomon codes in space-time coding[END_REF] to decode binary or non-binary BTC with systematic cyclic codes as its component codes (BCH or RS codes). For this type of codes, the SEW algorithm can easily generate a list of codewords, which are close to the received sequence in terms of the Hamming distance. By combining this list of codewords with the one generated by a classical algebraic-based decoder, such as the Chase algorithm, we can form an enlarged set of test patterns. Based on the new test patterns, the SISO iterative decoding algorithm can produce a better log-likelihood ratio (LLR) of each decoded digit. This eventually improves the bit error probability in the iterative decoding of the BTC.

This paper is organized as follows. Part II briefly introduces the transmission scheme. Part III describes the SEW algorithm and its combination with the Chase or the BM algebraic decoding. Part The parameters of the BTC C = C 1 ⊗ C 2 are the products of the component code parameters such as the code length n = n 1 × n 2 , the information length k = k 1 × k 2 and the Hamming distance d = d 1 × d 2 . Thus, a BTC has a larger minimum Hamming distance. All of the rows of the matrix c are codewords of C 2 and all of its columns are codewords of C 1 [START_REF] Macwilliams | The Theory of Error Correcting Codes[END_REF]. This is a very important property of BTCs since in the iterative decoding process, both information bits and parity check bits can exploit the extrinsic information from the received sequences.

Symbols can be either q-ary symbols (RS case) or bits (BCH case). For non binary codes, each q-ary symbol can be represented by an unique set of m bits, with q =2 m .

Let c be the binary representation of one binary or nonbinary codeword of C and c =2 c -1 be the modulated representation of c using a BPSK. BPSK symbols are sent through a Gaussian channel and the received vector r is given by:

r = c + n ( 1 
)
where n is the additive white Gaussian noise (AWGN). The optimum decoded sequence can be obtained by using the maximum-likelihood (ML) decoding algorithm. It chooses a codeword ĉ from the code set C, which has a smallest Euclidean distance from the received vector, r:

ĉ =argmin c∈C r -c 2 =argmin c∈C r -2c +1 2 (2)
Unfortunately, it is infeasible to search all the codewords in the ML decoding due to an extremely large number of codewords up to 2 mk for a large value of k.

III. DECODING ALGORITHM

A. Chase Algorithm

The Chase algorithm [START_REF] Chase | A class of algorithms for decoding block codes with channel measurement information[END_REF] is a sub-optimum decoding algorithm, which belongs to the argument list decoding algorithm. Instead of reviewing all the codewords of a code, the Chase algorithm searches the codewords within a sphere of radius d -1 about the received word r due to the fact that the ML codeword ĉ is located in the sphere of radius d -1 with a very high probability at a high SNR. Thus, all possible error patterns of binary weight less than or equal to d -1 are considered.

However, to decrease the complexity, we use the second form of the Chase algorithm applied at the binary level. Let y be the hard decision of r. We search the n d LRIPs of r (lowest absolute values) and then make all possible commutations (0 or 1)a tt h e s en d positions in y.T h e2 n d produced sequences are decoded using a classical algebraic decoder. Only valid codewords are added to the code subset C(n d ).

The decoded codeword ĉ is chosen according to [START_REF] Bose | On a class of error correcting binary group fields[END_REF], where we use the subset C(n d ) instead of the whole codeword set C.

For non-binary codes, we use the same approach as in [START_REF] Aitsab | Performance of reed-solomon block turbo code[END_REF] where the algorithm is still applied at the binary level on the binary representation of a codeword.

In order to apply the Chase algorithm to the SISO iterative decoding, it is desirable that the code set C(n d ) should contain the decoded codeword ĉ and its concurrent (competitor) codewords for all the binary positions. However, for nonbinary codes and high error correction capability binary codes (typically t ≥ 2), it appears that the code subset generated by the Chase algorithm is too small to find the concurrent codewords for all bits. In this case, the SISO iterative decoder has to use a coefficient to approximate the soft decoder output. This will lead to a performance degradation. To deal with this problem, we consider a sliding encoding-window (SEW) algorithm [START_REF] Lalam | On the use of reed-solomon codes in space-time coding[END_REF] for decoding the systematic cyclic codes. In particular, the SEW algorithm can generate a large set of codewords used by the decoder to find the concurrent codewords in order to compute more reliable soft-decision outputs. This can eventually improve the iterative decoding performance.

B. Sliding encoding-window algorithm

We recall that in systematic codes the information part is visible in the codeword, generally at the beginning or the end of the codeword. With a cyclic q-ary code, any cyclic permutation over q-ary symbols of a codeword is still a codeword.

The SEW algorithm exploits both the systematic and cyclic properties of a code, but processes at the binary level, to easily generate candidates, which are in the neighbourhood of the received sequence. The SEW algorithm consists of two successive steps: the encoding phase (EP) and the sliding phase (SP) repeated until all bits are covered with codeword diversity. We describe the algorithm for q-ary RS codes, but its extension to binary codes (m =1) is straightforward.

Let W be the block of the km soft values extracted from r corresponding to the information part, n e ≤ km be the number of the LRIPs inside W and W be the hard decision of W. By permuting the bits (0 or 1)a tt h en e LRIPs of W and encoding the result, we produce 2 ne codewords "close" to y: at least km-n e bits are identical. Codewords generated during this encoding phase (EP) are stored in the set C ne .

As we use systematic codes, we introduce codeword diversity only over the (n -k)m bits of the redundancy part. To create diversity over all bits, we exploit the q-ary cyclic property of the RS code. We cyclically shift W of ∆ q-ary symbols (km bits) over r. After this sliding phase (SP), we perform the EP on the new window. We call W the sliding encoding-window and ∆ the SEW step.

Due to the systematic coding, the obtained codewords must be cyclically shifted in the reverse order so that their kmlength information part matches the position of W in r.W e store shifted codewords in C ne .

We repeat the EP and SP until all bits are covered with diversity. Obviously, the minimum step size is ∆=1, which means that every time, we slide the encoding window by one symbol position for a total of n EPs to process. Considering that the main objective of the SEW algorithm is to generate the codeword diversity for all n coded symbols and that each EP can potentially provide a codeword diversity over n -k symbols, it is natural to set the step size of the sliding window operation ∆=n -k. This is the step size which can be used to generate the codeword diversity for all coded symbols continuously with least overlapping. In this case, we need ⌈ n n-k ⌉ EPs to perform, where ⌈.⌉ is the upper integer part. We can show that 2 ne ≤ card(C(n e )) ≤⌈ n n-k ⌉2 ne . It is interesting to note that a small step size ∆ can provide better decoding performance but it suffers from a higher computational complexity. Therefore, it is possible to choose ∆ between 1, ⌈ n n-k ⌉ to achieve a good trade-off between the complexity and performance. Unless we precise a value of ∆, we will use ∆=n -k in the following.

The decoded codeword ĉ is chosen according to [START_REF] Bose | On a class of error correcting binary group fields[END_REF], where we use the subset C(n e ) instead of the entire code set C.

The SEW algorithm is different from conventional encoderbased decoding algorithms in the way that no permutation or reordering of the received bits according to the reliability is required. Therefore, there is no need to recompute either the generator or parity check matrix, which is carried out by the Gaussian elimination method by checking the linear independence of the most reliable set of bits. Note that the complexity of encoding is much lower than that of the Gaussian elimination operation, one gets the performance enhancement at a slightly increased complexity.

C. Combination with decoding-based algorithm

The SEW algorithm always generates a codeword, but does not guarantee finding the most probable. In fact, if the thresholded input contains less than t errors, any algebraic decoding will produce the most probable codeword. Therefore, we combine the SEW algorithm with at least one algebraic decoding, to ensure that if the input is successfully algebraically decoded, the proposed decoder produces the most probable codeword. In the following, we consider the Chase and the BM algorithms.

Depending on the algebraic decoding-based algorithm chosen, we combine the code set generated by the SEW C(n e ) with either the code set of the Chase C(n d ) or the decoded codeword if the BM succeeds. We denote C(n e ) + this enlarged codeword set.

D. SISO decoder with combined decoding algorithm

The superior performance of BTC is due to the SISO iterative decoder. Decoding is performed either column-wise first and then row-wise or vice versa. For each bit of the selected codeword ĉ, its LLR is computed according to:

Γ(ĉ i )=ln Pr(ĉ i =1|r) Pr(ĉ i =0|r) (3) 
We use the subset C(n e ) + instead of the entire set C to compute [START_REF] Reed | Polynomial codes over certain finite fields[END_REF]. Following the same approach as in [START_REF] Lalam | Sliding encoding-window for reed-solomon code decoding[END_REF], the LLR can be approximated by:

Γ(ĉ i ) ≈< c i,1 -c i,0 , r > (4) 
where <.,.>is the scalar product and:

c i,j =argmax c∈C(ne) + |ci=j < 2c -1, r > (5) 
From ( 4) we can estimate the extrinsic information w i of the i th bit:

Γ(ĉ i ) ≈ < c i,1 -c i,0 , r > ≈ r i + j =i (c i,1 j -c i,0 j )r j ≈ r i + w i (6) 
The extrinsic information from the horizontal (vertical) codes can be used to update the received vector r for decoding the vertical (horizontal) codes.

r(m)=r + α(m)w(m) (7) 
where m is the index of the iteration, w(m) is the extrinsic information computed from the previous decoding step and α(m) is a weighting factor [START_REF] Pyndiah | Near optimum decoding of product codes[END_REF]. The decoding procedure described above is then generalized by cascading the elementary decoders as illustrated in Fig 1.

A parameter β is used for the computation of w i , when either c i,1 or c i,0 is not available in C(n e ) + for the i th position [START_REF] Pyndiah | Near optimum decoding of product codes[END_REF].

IV. NON-BINARY BTCS

A. Codeword diversity

The SEW algorithm naturally creates codeword diversity. For SEW (n e =8) and the code RS(15, 9, 7), Fig. 2 represents an average histogram of all codewords of C ne sorted by their Hamming distance from the transmitted codeword. Distances are computed at the binary level over 1000 decodings. Fig. 2. SEW(ne =8) codeword diversity at the binary level for RS [START_REF] Aitsab | Performance of reed-solomon block turbo code[END_REF][START_REF] Forney | Generalized minimum distance decoding[END_REF][START_REF] Gazelle | Reliability-based code-search algorithms for maximum-likelihood decoding of block codes[END_REF] As the signal to noise ratio increases, the SEW algorithm generates more codewords in the neighbourhood of the sent codeword. For the code RS(15, 9, 7),t h eS E W( n e =8 ) performs 768 encoding operations, which can generate 767 and 766 different codewords at E b /N 0 =0dBand 6d B , respectively. However, in the radius of Hamming distance of 15 from the transmitted codeword, there are more codewords (325)a t E b /N 0 =6dBthan that (163 codewords) at E b /N 0 =0dB. The enlarged set of the codewords in the close neighbourhood of the correct codeword can help to improve the log-likelihood ratio of the decoder output.

This figure shows that the SEW algorithm provides sufficient codeword diversity to be used in a SISO context in order to compute soft output reliability. Due to this codeword diversity, the choice of the β parameter, used when no concurrent codewords are found for a given position [START_REF] Pyndiah | Near optimum decoding of product codes[END_REF], is less determining.

B. Simulation results

We use 4 iterations in the simulations and the parameters of the BTC [START_REF] Pyndiah | Near optimum decoding of product codes[END_REF] defined for each half-iteration are:

• α = {0.0, 0.25, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} • β = {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} For the BTC RS(15, 9, 7) 2 the decoding algorithms are : Chase(n d =4 ), BM + SEW(n e =8 )a n dB M+S E W( n e = 12). Fig. 3 presents the bit error rate (BER) on a Gaussian channel. We observe a gain of 0.75 dB and 1.5d B at a BER of 10 -4 with the addition of the SEW (n e =8 )a n dt h eS E W (n e =12) algorithm respectively.

For the BTC RS(31, 27, 5) 2 ,Fig. 4sho wstheBERandthe word error rate (WER) performance of the code with various decoding algorithms on a Gaussian channel: Chase

(n d =5 ), B M+S E W ( n e =8), Chase(n d =5)+S E W ( n e =8), BM + SEW(n e =8, ∆=1)a n dB M+S E W( n e =12).
We can observe that while the BM + SEW (n e =8) achieves the same BER performance as the Chase (n d =8) algorithm, the BM + SEW (n e =8 ) performs 0.15 dB better than the Chase (n d =5 ) algorithm in WER. In addition, we see that the BM + SEW (n e =8, ∆=1) and Chase (n d =5)+S E W (n d =8) have the same performance and outperform the Chase (n d =5 ) algorithm by 0.2 and 0.25 dB in BER and WER, respectively. Finally, we note that the BM + SEW (n e =12)is 0.5 and 0.6d Bbetter in BER and WER respectively than the classical Chase (n d =5 ). However, its complexity is greater than all the previous algorithms, but the SEW process can be parallelized as the 8 EPs performed for the RS(31, 27, 5) are independent from each other.

V. B INARY BTCS

The BTC BCH(31, 16, 7) 2 has been investigated over an AWGN channel with BPSK modulation by using Monte-Carlo simulation. The number of LRIPs of Chase algorithm is set as n d =5 . The number of LRIPs of the SEW algorithm is set as n e =6to maintain a reasonable complexity. The number of the iterations of the SISO iterative decoder is set to 4. The BER performance comparison of the combined and the conventional algorithms is shown in Fig. 5.

It is obvious that the considered algorithm outperforms the conventional Chase-Pyndiah decoding algorithm for the BTC. In Fig 5, we also show the effect of step size ∆ of the sliding operation on the code error performance. We can see that reducing the step size ∆ from 15 to 8 can slightly improve the 
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  C 1 (n 1 ,k 1 ,d 1 ) and C 2 (n 2 ,k 2 ,d 2 ) respectively as its component codes, where n i is the codeword length, k i is the information length and d i is the minimum Hamming distance of the code, i =1 , 2. The information symbols are put in a k 1 × k 2 symbol matrix. The k 2 columns are encoded with the code C 1 (n 1 ,k 1 ,d 1 ), then the n 1 obtained rows are encoded with the code C 2 (n 2 ,k 2 ,d 2 ).
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VI. CONCLUSION

We considered an improved iterative decoding algorithm for turbo product codes. The algorithm exploits the code properties of the cyclic codes to generate an enlarged set of test patterns close to the received word, which is combined with the result of an algebraic decoding based algorithm, such as Chase or BM. The addition of the SEW algorithm can improve the reliability of extrinsic information hence to improve the bit and the word error performance of BTCs.

We show that the proposed algorithm can improve the BER of BTCs up to 1.5d B . When combined with the Chase algorithm, the SEW algorithm produces an enlarged codeword set at the expense of a slightly increased complexity. Compared to the other encoder-based decoding algorithms, the proposed algorithm has the advantage that there is no requirement to recompute the generator or parity-check matrix by using Gaussian elimination operations.