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Abstract

We performed a scan for genetic variants associated with multiple phenotypes by comparing large 

genome-wide association studies (GWAS) of 42 traits or diseases. We identified 341 loci (at an 

FDR of 10%) associated with multiple traits. Several loci are associated with a large number of 

phenotypes; for example, a nonsynonymous variant in the zinc transporter SLC39A8 influences 

seven of these traits, including risk of schizophrenia (rs13107325: log-odds ratio = 0.15, P = 2 × 

10−12) and Parkinson's disease (log-odds ratio = −0.15, P = 1.6 × 10−7), among others. Second, we 

used these loci to identify traits that share multiple genetic causes in common. For example, 

variants that increase risk of schizophrenia also tend to increase risk of inflammatory bowel 

disease. Finally, we developed a method to identify pairs of traits that show evidence of a causal 

relationship. For example, we show evidence that increased BMI causally increases triglyceride 

levels.

Introduction

The observation that a genetic variant affects multiple phenotypes (a phenomenon often 

called “pleiotropy” 1-3, though we will not use this term) is informative in a number of 

applications. One such application is to learn about the molecular function of a gene. For 

example, men with cystic fibrosis (primarily known as a lung disease) are often infertile due 
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to congenital absence of the vas deferens; this is evidence of a shared role for the CFTR 

protein in lung function and the development of reproductive organs 4. Another application 

is to learn about the causal relationships between traits. For example, individuals with 

congenital hypercholesterolemia also have elevated risk of heart disease 5; this is now 

interpreted as evidence that changes in lipid levels causally influence heart disease risk 6.

In these two applications, the same observation–that a genetic variant influences two traits–

is interpreted in fundamentally different ways depending on known aspects of biology. In the 

first case, a genetic variant influences the two phenotypes through independent physiological 

mechanisms (graphically: P1 ← G → P2, if G represents the genotype, P1 the first 

phenotype, P2 the second phenotype, and the arrows represent causal relationships7), while 

in the second case, G → P1 → P2. In some situations, knowing which interpretation of the 

observation to prefer is simple: for example, it seems difficult to imagine how the 

reproductive and lung phenotypes of a CFTR mutation could be related in a causal chain. In 

other situations, interpretation is considerably more challenging. For example, the causal 

connections between various lipid phenotypes and heart disease have been debated for 

decades (e.g. 8).

As the number of reliable associations between genetic variants and various phenotypes has 

grown over the last decade 9, these issues have received increasing attention. A number of 

recent studies have identified genetic variants associated with multiple traits 10-20; in 

general, these associations are interpreted as most plausibly due to independent effects of a 

genetic variant on different aspects of physiology. For example, a genetic variant in LGR4 is 

associated with bone mineral density (BMD), age at menarche, and risk of gallbladder 

cancer 16, presumably due to effects mediated through different tissues.

There has also been increasing interest in the alternative, causal framework for interpreting 

genetic variants that influence multiple phenotypes, which has been formalized under the 

name “Mendelian randomization” 21-23. Mendelian randomization has been used to provide 

evidence for (or against) a causal role for various clinical variables in disease etiology 24-30. 

For example, genetic variants associated with body mass index (BMI) are also associated 

with type 2 diabetes 27; this is consistent with a causal role for weight gain in the etiology of 

diabetes.

To date, most studies of multiple traits have been performed genome-wide on groups of 

traits already known or hypothesized to be related 10;31-33, or via testing small sets of 

variants for effects on a wide range of traits 20;34. We aimed to systematically perform a 

genome-wide search for genetic variants that influence pairs of traits, and then to interpret 

these associations in the light of the causal and non-causal models described above. In this 

paper, we describe the results of such a search using large genome-wide association studies 

of 42 traits.

Results

We assembled summary statistics from 43 genome-wide association studies of 42 traits or 

diseases performed in individuals of European descent (Table 1; two of these GWAS are for 
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age at menarche). These studies span a wide range of phenotypes, from anthropometric traits 

(e.g. height, BMI, nose size) to neurological disease (e.g. Alzheimer's disease, Parkinson's 

disease) to susceptibility to infection (e.g. childhood ear infections, tonsillectomy). 17 of 

these GWAS were performed by the personal genomics company 23andMe, and have not 

previously been reported (for details of these studies, see Supplementary Data Sets 1-17). 

For studies that were not done using imputation to all variants in phase 1 of the 1000 

Genomes Project 35, we performed imputation at the level of summary statistics using ImpG 

v1.0 36. We estimated the approximate number of independent associated variants (at a false 

discovery rate of 10%) in each study using fgwas v.0.3.6 37. The number of associations 

ranged from around five (for age at voice drop in men) to over 500 (for height).

Identification of genetic variants that influence pairs of traits

We first aimed to identify genetic variants that influence pairs of traits. To do this, we 

developed a statistical model (extending that used by Giambartolomei et al. 38) to estimate 

the probability that a given genomic region either 1) contains a genetic variant that 

influences the first trait, 2) contains a genetic variant that influences the second trait, 3) 

contains a genetic variant that influences both traits, or 4) contains both a genetic variant that 

influences the first trait and a separate genetic variant that influences the second trait (Figure 

1). The input to the model is the set of summary statistics (effect size estimates and standard 

errors) for each SNP in the genome on each of the two phenotypes, and (if the two GWAS 

were performed on overlapping sets of individuals) the expected correlation in the summary 

statistics due to correlation between the phenotypes. We can then fit the following log-

likelihood function:

where D is the data, M is the number of approximately independent blocks in the genome, 

Π0 is the prior probability that a region contains no genetic variants than influence either 

trait, Π1, Π2, Π3 and Π4 represent the prior probabilities of the four models described above, 

Θ is the set of all five Π parameters, and  is the regional Bayes factor measuring the 

support for model j in genomic region i (see Supplementary Information for details). In the 

presence of missing data, we consider only the subset of SNPs with data in both studies; if 

the causal SNP is not present this acts to reduce power to detect a shared effect 38. In fitting 

this model, we estimate the prior parameters and the posterior probability of each model for 

each region of the genome (for numerical stability, in practice we penalize the estimates of 

the prior parameters, and so obtain maximum a posteriori estimates). We were mainly 

interested in the estimated prior probability that each genomic region contains a variant that 

influences both trait ( ) and the corresponding posterior probabilities for each genomic 

region.

Several caveats of this method are worth mentioning. First, note that the estimate  is best 

thought of as the proportion of genomic regions that detectably influence both traits–if one 
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study is small and underpowered, this estimate will necessary be zero. This contrasts with 

methods that aim to provide unbiased estimates of the “genetic correlation” between traits 

that do not depend on sample size 39-41. Second, in general it is not possible to distinguish a 

single causal variant that influences both traits (Model 3 in Figure 1) from two separate 

causal variants (Model 4 in Figure 1) in the presence of strong linkage disequilibrium 

between the causal variants. For any individual genomic region discussed below, the 

possibility of two highly correlated causal variants must be considered as an alternative 

possibility in the absence of functional follow-up. (Indeed, this latter possibility appears to 

be common in quantitative trait locus studies performed in model organisms 42). Finally, we 

evaluated the method in simulations (Supplementary Figures 1-5), and found that the model 

gives a small overestimate of proportion of shared effects (Supplementary Figure 3). This is 

because the amount of evidence against the null model of no associations is greater when a 

variant influences both phenotypes compared to when it only influence a single phenotype 

(Supplementary Figure 4).

Overlapping association signals identified in 43 GWAS

We applied the method to all pairs of the 43 GWAS listed in Table 1. For each pair of 

studies, we first estimated the expected correlation in the effect sizes from the summary 

statistics, and included this correction for overlapping individuals in the model. Note that 

this is conservative: in pairs of GWAS where we are sure there are no overlapping 

individuals (for example, age at menarche and age at voice drop) we see that the correlation 

in the summary statistics is non-zero, indicating that we are correcting out some truly shared 

genetic effects on the two traits (Supplementary Figure 6).

To gain an exploratory sense of the relationships between the phenotypes, we examined the 

patterns of overlap in associations among all 43 studies. Specifically, the model can be used 

to estimate, for each pair of traits [i,j], the proportion of detected variants that influence trait 

i that also detectably influence trait j. These estimates are shown in Figure 2, with 

phenotypes clustered according to their patterns of overlap. We see several clusters of related 

traits. For example, of the variants that detectably influence age at menarche (in the Perry et 

al. 43 study), the maximum a posteriori estimate is that 36% detectably influence height, 

30% detectably influence age at voice drop, 28% influence BMI, 10% influence breast size, 

and 10% influence male pattern baldness. We interpret this as a set of phenotypes that share 

hormonal regulation. Additionally, there is a large cluster of phenotypes including coronary 

artery disease, type 2 diabetes, red blood cell traits, and lipid traits, which we interpret as a 

set of metabolic traits. Further, immune-related disease (allergies, asthma, hypothyroidism, 

Crohn's disease and rheumatoid arthritis) all cluster together, and also cluster with infectious 

disease traits (childhood ear infections and tonsillectomy). This biologically-revelant 

clustering validates the principle that GWAS variants can identify shared mechanisms 

underlying pairs of traits in a systematic way. As a control, we performed the same 

clustering of phenotypes by the estimated proportion of genomic regions where two causal 

sites fall nearby (Model 4 in Figure 1). In this case, there was no biologically-meaningful 

clustering (Supplementary Figure 7).
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Individual loci that influence many traits

We next examined the individual loci identified by these pairwise GWAS. We identified 341 

genomic regions where we infer the presence of a variant that influences a pair of traits, at a 

threshold of a posterior probability greater than 0.9 of model 3 (Supplementary Table 1). 

This number excludes “trivial” findings where a genetic variant influences two similar traits 

(two lipid traits, two red blood cell traits, two platelet traits, both measures of bone mineral 

density, both inflammatory bowel diseases, or type 2 diabetes and fasting glucose) and the 

MHC region. A previous “phenome-wide association study” identified 44 genetic variants 

associated with multiple phenotypes 34, so this represents an order-of-magnitude increase in 

the number of such loci.

Some genomic regions contain variants that influence a large number of the traits we 

considered. We ranked each genomic region according to how many phenotypes share 

genetic associations in the region (that is, if the pairwise scan for both height and CAD, and 

the pairwise scan for CAD and LDL, both indicated the same region, we counted this as 

three phenotypes sharing an association in the region). The top region in this ranking 

identified a non-synonymous polymorphism in SH2B3 (rs3184504) that is associated with a 

number of autoimmune diseases, lipid traits, heart disease, and red blood cell traits 

(Supplementary Figure 8; Supplementary Table 2). This variant has been identified in many 

GWAS, particularly for autoimmune disease 44.

The next region in this ranking contains the gene coding for the ABO histo-blood groups in 

humans, and has a variant associated with 11 traits in these data (and many other additional 

traits not in these data, see also 20;45-47). In Figure 3A, we show the association statistics in 

this region for coronary artery disease and probability of having a tonsillectomy. At the lead 

SNP, the non-reference allele is associated with increased risk of CAD (Z = 5.7; P = 1.1 × 

10−8) and increased risk of having a tonsillectomy (Z = 6.0; P =1.5 × 10−9). This variant is 

also strongly associated with other immune, red blood cell, and lipid traits in these data 

(Figure 3B). A tag for a microsatellite that influences the expression of ABO 48 is correlated 

to the lead SNP rs635634, as is a tag for the O blood group (Figure 3A). However, the lead 

SNP is an eQTL for both ABO and the nearby gene SLC2A6 in whole blood 46, so this 

allele may in fact have downstream effects via effects on the expression of two genes.

Among the top-ranked regions are several where the likely causal variant is known:

1. A non-synonymous variant in the zinc transporter SLC39A8 (rs13107325; 

Supplementary Figure 9) that is associated with schizophrenia (log-odds 

ratio of the non-reference allele = 0.15, P = 2 × 10−12), Parkinson's disease 

(log-odds ratio = −0.15, P = 1.6 × 10−7), and height  s.d., P = 

3.8 × 10−7), among others

2. A non-synonymous variant in the glucokinase regulator GCKR 
(rs1260326; Supplementary Figure 10) that is associated with fasting 

glucose (  s.d., P = 5 × 10−25) and height (  s.d., P = 2.6 × 

10−11), among others.
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3. A set of variants near the APOE gene (which we presume to be driven by 

the APOE4 allele; Supplementary Figure 11) that is associated with 

nearsightedness (rs6857 log-odds ratio = −0.04, P = 1.8 × 10−5), waist-hip 

ratio (  s.d., P = 8.3 × 10−5), and several lipid traits apart from 

the well-known association with Alzheimer's disease.

4. Regulatory variants in an intron of the FTO gene 49;50 that are associated 

with breast size in women (Supplementary Figure 12: rs1421085 

s.d., P = 3.5 × 10−7) and age at voice drop in men (  s.d., P = 

2.7 × 10−5), among others.

It has previously been observed that association signals for different phenotypes tend to 

cluster spatially in the genome 51; these results suggest that in some cases clustered 

associations are driven by single variants. We note anecdotally that the variants that 

influence a large number of phenotypes seem to often be non-synonymous, rather than 

regulatory, changes, which contrasts with the pattern seen in association studies overall 

(e.g. 37).

Identifying pairs of phenotypes with correlated effect sizes

In our scan for variants that influence pairs of phenotypes, we did not assume any 

relationship between the effect sizes of a variant on the two phenotypes. However, if two 

traits are influenced by shared underlying molecular mechanisms, we might expect the 

effects of a variant on the two phenotypes to be correlated. To test this, we returned to the set 

of variants identified by analysis of each phenotype individually (the numbers of these 

variants for each trait are in Table 1). For each set, we calculated the rank correlation 

between the effect sizes of the variants on the index trait (the one in which the variants were 

identified) and all of the other traits.

The results of this analysis are presented in Figure 4. Apart from closely related traits (e.g. 

the two measurements of bone density), we see a number of traits that are correlated at a 

genetic level. We focus on two of these. First, variants that delay age of menarche in women 

tend, on average, to decrease BMI (ρ = −0.53, P = 1.2 × 10−6), reduce risk of male pattern 

baldness (ρ = −0.45, P = 5.9 × 10−5), and increase height (ρ = 0.52, P = 2.2 × 10−6; Figure 

4). These patterns hold both for the GWAS on age at menarche performed by Perry et al.43 

and that performed by 23andMe (Figure 4). Most of these variants also delay age at voice 

drop in men (Figure 2), so we interpret these variants as ones that influence pubertal timing 

in general. The negative correlation between a variant's effect on age at menarche and BMI 

has previously been observed 39;43;52, as has the positive correlation between a variant's 

effect on age at menarche and height 39;43. The negative correlation between a variant's 

effect on age at menarche (or more likely, puberty in general) and male pattern baldness has 

not been previously noted, but is consistent with the known role for increased androgen 

signaling in causing hair loss 53-55.

Second, we find that genetic variants that increase risk of schizophrenia tend to increase risk 

of both Crohn's disease (ρ = 0.27, P = 2.2 × 10−4) and ulcerative colitis (ρ = 0.33, P = 6.6 × 
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10−6). These correlations (identified only at “significant” SNPs) are also present at the level 

of genome-wide genetic correlations between the diseases (39, Supplementary Figure 13). 

This observation is consistent with slightly higher rates of autoimmune diseases (including 

Crohn's and ulcerative colitis) in schizophrenia patients in Denmark 56-58, and with 

molecular evidence for a partial autoimmune etiology for schizophrenia (e.g. 59).

Inferring causal relationships between traits

Finally, we were interested in identifying pairs of traits may be related in a causal manner. 

Since we are using observational data (rather than, for example, a randomized controlled 

trial), we view strong statements about causality as impossible. Nonetheless, a realistic goal 

might be to identify aspects of the data that are more consistent with a causal model versus a 

non-causal model.

As a motivating example, we considered the correlation between levels of LDL cholesterol 

and risk coronary artery disease, now widely accepted as a causal relationship 60. We noticed 

that variants ascertained as having an effect on LDL cholesterol levels have correlated 

effects on risk of coronary artery disease (Figure 4, Figure 5C), while variants ascertained as 

having an effect on CAD risk do not in general have correlated effects on LDL levels (Figure 

5D). This is consistent with the hypothesis that LDL cholesterol is one of many causal 

factors that influence CAD risk. An alternative interpretation is that LDL cholesterol is 

highly genetically correlated to an unobserved trait that causally influences risk of CAD.

We developed a method to detect pairs of traits that show this asymmetry in the effect sizes 

of associated variants, which we interpret as more consistent with a causal relationship 

between the traits than a non-causal one (Methods). At a threshold of a relative likelihood of 

100 in favor of a causal versus a non-causal model, we identified five pairs of putative 

causally-related traits. (At a less stringent threshold of a relative likelihood of 20 in favor of 

a causal model, we identified 11 additional pairs of traits (Supplementary Figure 14)) 

Simulations suggest this threshold corresponds approximately to a P-value around 0.001 

(Supplementary Figure 15), and that the power of this test depends on the number of genetic 

variants used as input and the true underlying correlation in their effect sizes (Supplementary 

Figure 16). Four of these are shown in Figure 5. First, genetic variants that influence BMI 

have correlated effects on triglyceride levels, while the reverse is not true; this suggests 

increased BMI is a cause for increased triglyceride levels (Figure 5). Randomized controlled 

trials of weight loss are also consistent with this causal link 61;62, as are Mendelian 

randomization studies 63;64. Second, we confirm the evidence in favor of a causal role for 

increased LDL cholesterol in coronary artery disease (Figure 5), and in favor of a causal role 

for increased BMI in type 2 diabetes risk (Figure 5, Supplementary Figure 17). Finally, we 

suggest that increased risk of hypothyroidism causes decreased height (Figure 5). While it is 

known that severe hypothyroidism in childhood leads to decreased adult height (e.g. 65), 

these data indicate that hypothyroidism susceptibility may also influence height in the 

general population. A fifth potentially causal relationship (between risk of coronary artery 

disease and rheumatoid arthritis) could not be confirmed in a larger study and so is not 

displayed (see Supplementary Information, Supplementary Figure 18).
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Discussion

We have performed a scan for genetic variants that influence multiple phenotypes, and have 

identified several hundred loci that influence multiple traits. This style of scan complements 

methods to quantify the “genetic correlation” between two traits 39;41;66;67 that are not 

generally concerned with identifying individual variants that influence both traits. We were 

interested in using the individual variants identified to identify biological relationships 

between traits, including potential relationships when one trait is causally upstream of the 

other. Other potential mechanisms that could lead to an association between a genetic variant 

and two phenotypes include trans-generational effects of a variant on a parental phenotype 

and a separate phenotype in the offspring (e.g. 68;69) or assortative mating that involves more 

than a single trait 70.

A number of limitations of this study are worth mentioning. First, all of the GWAS we have 

used are based on genotyping arrays and imputation, and so the loci identified are generally 

common (over 1% minor allele frequency). Inferences from common variants like these may 

not hold for rarer variants that may emerge from large sequencing studies. Second, we re-

iterate that all of our inferences are based on sets of “detectable” loci; the GWAS we have 

used have highly variable sample sizes, and the traits have variable genetic architectures. As 

sample sizes for all traits reach the millions, inferences from “detectable” loci will converge 

to inferences from all loci. If traits truly follow an infinitesimal model (where every genetic 

variant influences every trait), we speculate that patterns of genetic overlap (like those in 

Figure 2) will become less interpretable, while patterns of genetic correlation (like those in 

Figure 4) may be more useful.

One clear observation from these data is that genetic variants that influence puberty (age at 

menarche and age at voice drop) often have correlated effects on BMI, height, and male 

pattern baldness (Figure 4). In our scan for causal relationships between traits, we found 

modest evidence of a causal role of age at menarche in influencing adult height, and for a 

causal role of BMI in the development of male pattern baldness (Supplementary Figure 12). 

The non-causal alternative (also consistent with the data) is that all of these traits are 

influenced by some of the same underlying biological pathways, and perhaps the most likely 

candidate is hormonal signaling. This highlights the importance of considering evidence 

from multiple traits when interpreting the molecular consequences of a variant and designing 

experimental studies. While variants that influence height overall are enriched near genes 

expressed in cartilage 71 and variants that influence BMI are enriched near genes expressed 

broadly in the central nervous system 72, it seems a subset of these variants also influence 

age at menarche and male pattern baldness. For these variants, it may be worth considering 

functional follow-up in gonadal tissues or specific brain regions known to be important in 

hormonal signaling.

It is also striking to note how many genetic variants influence multiple traits (Figure 2) but 

without a consistent correlation in the effect sizes (Figure 4). For example, many of the 

autoimmune and immune-related traits appear to share many genetic causes in common, but 

the effect sizes of the variants on the different traits appear to be largely uncorrelated (see 

also 10;39). Likewise, many variants appear to influence lipid traits, red blood cell traits and 
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immune traits, but without consistent directions of effect. A trivial explanation of this 

observation is that we are underpowered to detect correlations in the effect sizes because we 

are using only a small set of the SNPs with the strongest associations. However, the genetic 

correlations between many of these traits (calculated using all SNPs) are not significantly 

different from zero (39, Supplementary Figure 13). Another possibility is that a given genetic 

variant often influences the function of multiple cell types through separate molecular 

pathways, or that the effects of a variant on two related phenotypes vary according to an 

individual's environmental exposures.

From the point of view of epidemiology, the ability to scan through many pairs of traits to 

find those that are potentially causally related seems appealing, and some previous analyses 

have had similar goals 73. Our approach makes the key assumption that, if two traits are 

related in a causal manner, then the “causal” trait is one of many factors that influence the 

“caused” trait. This induces an asymmetry in the effects of genetic variants on the two traits 

that can be detected (Figure 5). We also assume that we have identified a modest number of 

variants that influence both traits. This naturally means we are limited to considering 

heritable traits that have been studied with in cohorts with moderate sample sizes (on the 

order of tens to hundreds of thousands of individuals). It seems likely that the main limiting 

factor to scaling this approach (should it be generally useful) will be phenotyping rather than 

genotyping.

Methods

Methods are available in the Supplementary Materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the different models considered for a given genomic region and two 
GWAS
We divide the genome into approximately independent blocks (see Methods), and estimate 

the proportion of blocks that fit into the shown patterns. The null model with no associations 

is not shown. Each point represents a single genetic variant.
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Figure 2. Heatmap showing patterns of overlap between traits
Each square [i,j] shows the maximum a posteriori estimate of the proportion of genetic 

variants that influence trait i that also influence trait j, where i indexes rows and j indexes 

columns. Note that this is not symmetric. Darker colors represent larger proportions. Colors 

are shown for all pairs of traits that have at least one region in the set of 341 identified loci; 

all other pairs are set to white. Phenotypes were clustered by hierarchical clustering in R 74.
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Figure 3. Multiple associations near the ABO gene. A. Association signals for coronary artery 
disease and tonsillectomy
In the top panel, we show the P-values for association with coronary artery disease for 

variants in the window around the ABO gene. In the bottom panel are the P-values for 

association with tonsillectomy. In both panels, SNPs that tag functionally-important alleles 

at ABO are in color. In the middle are the gene models in the region–exons are denoted by 

blue boxes, and introns with red lines. Note that the ABO gene is transcribed on the negative 

strand. B. Association effect sizes for rs635634 on all tested traits. Shown are the effect size 

estimates for rs635634 for all traits. The lines represent 95% confidence intervals. Traits are 

grouped according to whether they are quantitative traits (in which case the x-axis is in units 

of standard deviations) or case/control traits (in which case the x-axis is in units of log-

odds).
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Figure 4. Heatmap showing patterns of correlated effect sizes of variants across pairs of traits
For each pair of traits [i,j], we extracted the set of variants that influence trait i and their 

effect sizes on both i and j. We then calculated Spearman's rank correlation between the 

effect sizes on i and the effect sizes on j, and tested whether this correlation was significantly 

different from zero. Shown in color are all pairs where this test had a P-value less than 0.01. 

Darker colors correspond to smaller P-values, and the color corresponds to the direction of 

the correlation (in red are positive correlations and in blue are negative correlations). The 

phenotypes are in the same order as in Figure 2. For a comparison to genome-wide genetic 

correlations, see Supplementary Figure 13.
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Figure 5. Putative causal relationships between pairs of traits
For each pair of traits identified as candidates to be related in a causal manner (see 

Methods), we show the effect sizes of genetic variants on the two traits (at genetic variants 

successfully genotyped or imputed in both studies). Lines represent one standard error. A. 
and B. BMI and triglycerides. The effect sizes of genetic variants on BMI and triglyceride 

levels for variants identified in the GWAS for BMI (A.) or triglycerides (B.). C. and D. LDL 
and coronary artery disease. The effect sizes of genetic variants on LDL levels and 

coronary artery disease for variants identified in the GWAS for LDL (C.) or coronary artery 
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disease (D.). E. and F. BMI and type 2 diabetes. The effect sizes of genetic variants on 

BMI and type 2 diabetes for variants identified in the GWAS for BMI (E.) or type 2 diabetes 

(F.). G. and H. Hypothyroidism and height. The effect sizes of genetic variants on 

hypothyroidism and height for variants identified in the GWAS for hypothyroidism (G.) or 

height (H.).

Pickrell et al. Page 19

Nat Genet. Author manuscript; available in PMC 2017 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pickrell et al. Page 20

Table 1
Phenotypes used in this study

For each study, we show the name of the phenotype, the abbreviation that will be used throughout this paper, 

the data source, the number of independent autosomal loci identified at a false discovery rate of 10%, and the 

number of participants in the study. For studies where the data source is 23andMe, a complete description of 

the GWAS is presented in the Supplementary Material.

Phenotype Abbreviation Data source Approx # of loci Approx # of participants, in thousands (cases/
controls, if applicable)

Neurological phenotypes

Alzheimer's disease AD 75 11 17 / 37

Migraine MIGR 23andMe 37 53 / 231

Parkinson's disease PD 23andMe 43 10 / 325

Photic sneeze reflex PS 23andMe 66 32 / 67

Schizophrenia SCZ 59 222 34 / 46

Anthropometric/social traits

Beighton hypermobility BHM 23andMe 18 64

Breast size CUP 23andMe 14 34

Body mass index BMI 72 30 240

Bone mineral density (femoral neck) FNBMD 17 19 33

Bone mineral density (lumbar spine) LSBMD 17 21 32

Chin dimples DIMP 23andMe 57 58 / 13

Educational attainment EDU 76 93 294

Height HEIGHT 71 584 253

Male pattern baldness MPB 23andMe 49 9 / 8

Nearsightedness NST 23andMe 183 106 / 86

Nose size NOSE 23andMe 13 67

Waist-hip ratio WHR 77 13 143

Unibrow UB 23andMe 61 69

Immune-related traits

Any allergies ALL 23andMe 43 67 / 114

Asthma ATH 23andMe 35 28 / 129

Childhood ear infections CEI 23andMe 15 47 / 75

Crohn's disease CD 78 61 6 / 15

Hypothyroidism HTHY 23andMe 30 18 / 117

Rheumatoid arthritis RA 79 74 14 / 44

Tonsillectomy TS 23andMe 48 60 / 113

Ulcerative colitis UC 78 42 7 / 21

Metabolic phenotypes

Age at menarche AAM 43 70 133

Age at menarche (23andMe) AAM (23) 23andMe 55 77

Age at voice drop AVD 23andMe 5 56

Coronary artery disease CAD 45 11 22 / 65
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Phenotype Abbreviation Data source Approx # of loci Approx # of participants, in thousands (cases/
controls, if applicable)

Type 2 diabetes T2D 80 11 12 / 57

Fasting glucose FG 81 15 58

Low-density lipoproteins LDL 82 41 85

High-density lipoproteins HDL 82 46 89

Triglycerides TG 82 31 86

Total cholesterol TC 82 53 89

Hematopoeitic traits

Hemoglobin HB 83 16 51

Mean cell hemoglobin concentration MCHC 83 15 46

Mean red cell volume MCV 83 42 48

Packed red cell volume PCV 83 13 44

Red blood cell count RBC 83 25 45

Platelet count PLT 84 50 44

Mean platelet volume MPV 84 29 17
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