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Watermarking error exponents in the presence of noise:
The case of the dual hypercone detector

Teddy Furon
Univ. Rennes, Inria, CNRS, IRISA

Rennes, France

ABSTRACT
The study of the error exponents of zero-bit watermarking is ad-
dressed in the article by Comesana, Merhav, and Barni, under the
assumption that the detector relies solely on second order joint
empirical statistics of the received signal and the watermark. This
restriction leads to the well-known dual hypercone detector, whose
score function is the absolute value of the normalized correlation.
They derive the false negative error exponent and the optimum
embedding rule. However, they only focus on high SNR regime, i.e.
the noiseless scenario.

This paper extends this theoretical study to the noisy scenario.
It introduces a new definition of watermarking robustness based
on the false negative error exponent, derives this quantity for the
dual hypercone detector, and shows that its performances is almost
equal to Costa’s lower bound.
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1 INTRODUCTION
This paper is a theoretical study of the performances of a precise
zero-bit watermarking scheme. It is theoretical because it considers
an unrealistic model where the signals to be watermarked and the
noise are assumed to be Gaussian distributed and infinitely long.
It is specific to a given watermarking scheme as it focuses on the
hypercone detector. This watermark detection scheme is important
as [13] proves its optimality under some conditions.

Nevertheless, the performances of this scheme and its optimal
watermark embedding are known only in the “high SNR regime" [3],
i.e. when the attack noise power tends to zero. The main contribu-
tion of this paper is a follow-up extending paper [3] to any SNR
regime. A shift of paradigm makes this extension tractable: Instead
of optimising the performances of the scheme for a given noise
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Figure 1: Zero-bit watermarking. The embedder hides a
mark into the content. The detector checks for the presence
of this mark.

power, the goal is to keep the performances acceptable over a max-
imum range of noise power. This shift brings a new viewpoint of
this problem. Its gives birth to a new definition of watermarking
robustness, which is a second contribution of the paper.

As a minor contribution, this paper revisits as well the noiseless
setup (i.e. the limit of the high SNR regime). Failing detecting the
watermark in the noiseless setup is equivalent to failing watermark-
ing of a given host signal. The amount of watermark power is not
big enough to make that host signal detectable. This observation
eases the computation of the false negative error exponent thanks
to a rolling-ball region filtering. It also has a nice connection with
isoperimetric Gaussian inequality.

Section 2 introduces zero-bit watermarking and the theoretical
setup. Section 3 lists the assumptions and the requirements specific
to digital watermarking. The paper starts by revisiting in Sect. 4 the
noiseless setup originally considered in [3], and extends this piece
of theory to the noisy setup in Sect. 5. Section 6 proposes some
upper and lower bounds adapting the rationale of M. Costa [4] to
zero-bit watermarking. At last, a practical embedding strategy is
deduced from this theoretical study in Sect. 7.

2 THE THEORETICAL SETUP
Zero-bit watermarking is different from multi-bit watermarking.
While people usually knows what watermarking means, some get
confused between the detection and the decoding of a watermark. In
multi-bit watermarking, a first algorithm, so-called embedder, hides
a message (possibly encoded in several bits) into a piece of content.
A second algorithm analyses a piece of content and proceeds to a
decoding. The decoding outputs the hidden message or the decision
that the piece of content under scrutiny is indeed not watermarked.

In zero-bit watermarking, one is solely interested in distinguish-
ing watermarked from non watermarked content. Therefore, the
embedding does not hide any message, but just a mark. There is
no modulation of a signal by the message to be transmitted since
there is no message. Hence, the term zero-bit watermarking. In the
same way, the second algorithm does not perform a decoding, but
a detection of the presence or the absence of the mark (see Fig. 1).
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2.1 Notations
A feature vector in Rn is extracted from a piece of multimedia
content. Vectors ®x and ®r denote respectively the extracted features
from an original content, so-called the host, and from the content
received by the detector. The embedder transforms ®x into ®y by
adding a watermark signal: ®y = ®x + ®w(®x). This vector depends on
the host (for a side-informed watermarking scheme) and on a secret
key (not indicated to keep notations simple).

We consider a power constraint watermark problem where the
energy of the watermark per sample is limited.

∥ ®w(®x)∥2 ≤ nP ,∀®x ∈ Rn . (1)

The Euclidean norm of vector ®x ∈ Rn is denoted by ∥ ®x ∥.
The model of an attack is the addition of a noise vector ®z, and

the received vector extracted from the content under scrutiny is
®r = ®y + ®z. At the detection side, two hypotheses are competing.
The decision of the detector is denoted by d : d = 1 if the received
content is deemed watermarked, d = 0 otherwise. There are two
types of errors:

Under H0 : The received vector has not been watermarked:
®r = ®x + ®z. A false positive happens when d = 1 with proba-
bility Pfp := P[d = 1|H0].

UnderH1 : The received vector has been watermarked: ®r =
®x+ ®w(®x)+®z. A false negative happens ifd = 0with probability
Pfn := P[d = 0|H1].

To take a decision, we assume that the detector first computes
a score from received vector s(®r ) with s(·) : Rn → R. Then, it
compares this score to a threshold τ : d = 1 if s(®r ) ≥ τ and d = 0
otherwise. This defines the region W ⊂ Rn of the vectors deemed
as watermarked:

W := {®x ∈ Rn |s(®x) ≥ τ }. (2)

2.2 Theoretical setup
The theoretical setup assumes that the signals are instances of a
white Gaussian distribution in Rn . Denote by ®X the random host
vector whose power is σ 2

X , ®X ∼ N(®0n ,σ 2
X .In ), and ®Z the random

noise vector of power σ 2
Z , ®Z ∼ N(®0n ,σ 2

Z .In ). We assume that ®Z is
independent of ®X and the secret key.

Computation of the performances (Pfp, Pfn) is difficult even un-
der this simple setup. To facilitate comparison, the study focuses
on the error exponents, i.e. the exponential decay rate of the error
probabilities:

Efp := lim
n→∞

−
1
n
log Pfp, Efn := lim

n→∞
−
1
n
log Pfn. (3)

For the sake of simplicity, notations omit the fact that (Efp,Efn)
depends on (P ,σ 2

X ,σ
2
Z ).

Note that, at then end of the paper, Section 7 deals with a more
practical setup where no statistical model of the host is assumed.

3 REQUIREMENTS AND PRIOR ART
The prior art of zero-bit watermarking is mainly organised around
the issue of obliviousness.When describing awatermarking scheme,
assumptions about what the embedder and the detector know and

do not know about the setup is critical. This matters when turn-
ing a theoretical watermarking scheme into a practical technique
watermarking content.

3.1 Assumption on obliviousness
Multimedia contents have a wide diversity. Features extracted from
these contents are certainly not white Gaussian distributed with a
fixed power σ 2

X . This is the reason why the above setup is pure the-
ory. As a small step towards being more realistic, content diversity
may imply that σ 2

X vary from one content to another. A watermark-
ing scheme relying on the knowledge of the watermark detector
about that parameter (to guarantee a given Pfp, for instance) is not
applicable in practice.

This reasoning holds as well for P . The watermarking power
usually depends on the masking properties of the host content.
These properties are also very diverse from one content to another.
For instance, the human eye is less sensitive to noise in textured
areas than in flat regions. Therefore, one has to adapt the watermark
power to the visual content of an image. The masking properties of
the host content are usually analysed by a Human Visual System
model at embedding. Yet, the watermark detector might receive a
heavily distorted copy of the content preventing such analysis. In
other words, the detector cannot know the value of P used at the
embedding.

As for σ 2
Z , obliviousness is also a plus at the embedding side: The

embedder may not know in advance the amount of noise power
that the watermarked content will support.

To conclude, this paper integrates the specificities of watermark-
ing in the theoretical setup by imposing the following obliviousness
assumptions:

• The embedder is oblivious w.r.t. σ 2
Z .

• The detector is oblivious w.r.t (σ 2
X ,σ

2
Z , P).

3.2 Requirements
This section outlines the relevance of the concept of error expo-
nent in practice where the length n is large enough. C. E. Shannon
indeed motivated its use in his seminal work [15]. He warns that
an error exponent a priori leads to inaccurate probability estimate:
As Pfp = e−nEfp+o(n), neglecting the term o(n) may cause large
multiplier uncertainty. Yet, for given Efp and Pfp, Shannon out-
lines that − log(Pfp)/Efp sharply determines the necessary vector
length. There is thus a trade-off between the exponent Efp and the
complexity of the scheme reflected by length n.

In practice, the main requirement is the probability of false posi-
tive Pfp. In many applications, its level is low and must be provably
low. This means that one has to prove that the detector operates
at a required low level. In the theoretical setup, operating a given
exponent Efp = E then determines the vector length n.

The false negative probability Pfn is usually less constrained than
Pfp. In many applications, watermarking is a dissuasive weapon:
Pfn should be small enough that attackers don’t take the risk of
pirating content. Indeed, Pfn ≈ 1/2 might be dissuasive enough.
In the asymptotical setup, having Efn = 0 means that Pfn is not
converging to zero exponentially fast. It might converge to zero
more slowly or it might converge to another value.



Error exponent of the dual hypercone detector IHMMSEC ’19, July 03–05, 2019, Paris, France

Note that once the watermark detector operates at a fixed Efp,
say Efp = E, Efn depends on parameters (σ 2

X ,σ
2
Z , P ,E). The above

assumptions on obliviousness imply that there is no guarantee
about Efn at the detection side. However, just knowing that Efn > 0
even if it is by a very small amount, would prove that the dissuasion
is achieved. This motivates the following definition.

Definition 3.1. For a given setup (σ 2
X ,σ

2
Z , P ,E), a watermarking

scheme operating at Efp = E is deemed robust if Efn > 0. We
suppose that Efn is always a decreasing function w.r.t. σ 2

Z . The
robustness R(σ 2

X , P ,E) is the maximum noise power for which the
watermarking scheme is robust. It is defined as

R(σ 2
X , P ,E) := sup{σ 2

Z |Efn(σ
2
X ,σ

2
Z , P ,E) > 0}. (4)

For a given setup (σ 2
X ,σ

2
Z , P), the characteristic Efn = F (Efp) is

a decreasing function, illustrating the trade-off between the false
negative and false positive probabilities. Usually, this characteristic
vanishes to zero at some point that we name the right endpoint.

Definition 3.2. The right endpoint of the characteristic is the
biggest false positive error exponent for which the watermark is
robust.

ERfp(σ
2
X ,σ

2
Z , P) := sup{E |F (E) > 0}. (5)

3.3 Prior art
The issue of obliviousness w.r.t. (σ 2

X ,σ
2
Z ) at the detection side has

been solved in two ways in the literature.
The first approach relies on Voronoï modulation (a.k.a. modulo

channel) [16]. Lattices embedding have been widely studied for
decoding hidden messages (often called Quanitzed Index Modula-
tion) [2, 10, 12] but also in detecting zero-bit watermarking [9]. It
uses a Euclidean lattice Λ and the corresponding modulo operator
(®x mod Λ) to fold the space Rn onto the Voronoi cell of that lattice.

In a nutshell, the fine grain (a.k.a. high resolution) assumption
states that if the typical scale of the lattice is small compared to√
σ 2
X + σ

2
Z , then ( ®X + ®Z mod Λ) is uniformly distributed over the

Voronoï cell of Λ. This can be also achieved thanks to a dithering
signal which randomly shifts the lattice. In the end, the modulo
operator succeeds to transform the unknown distribution of ®X + ®Z
(because the detector is oblivious w.r.t. (σ 2

X ,σ
2
Z )) into a known

distribution (uniformity over the Voronoï cell). This in turn allows
to compute and guarantee probability Pfp.

The second approach uses a detection region W (2) which is
a linear cone: If ®x ∈ W, then α ®x ∈ W, ∀α > 0. This provides
an invariance to scaling. If the distribution of ®X + ®Z is isotropic
(as assumed in the theoretical setup), then ( ®X + ®Z )/∥ ®X + ®Z ∥ has a
uniform distribution over the unit hypersphere. Again, this allows
to compute and guarantee probability Pfp.

The well-known dual hypercone detection is an example of this
second approach with a score function defined as

s(®x) = | ®x⊤®u |/∥ ®x ∥, (6)

where ®u ∈ Rn , ∥®u∥ = 1, plays the role of a secret key. Threshold τ
in (2) is defined as τ = cos(θ ). RegionW is then the circular dual
hypercone of axis ®u and semi-angle θ ∈ [0,π/2].

This scheme has a long tradition in the history of digital water-
marking. Since the seminal papers of I. Cox et al. [5, 6], normalized

correlation has been used in a vast majority of papers [7] until side-
information schemes were introduced [2, 6]. The argument of the
seminal paper [5] was purely image processing oriented: normaliz-
ing the correlation is a way to be robust to contrast enhancement.
Then some signal processing arguments defended this option [6,
Sect. VI][1, Chap. 6, p. 237]: Decompose ®R as ( ®R⊤®u)®u + ®R⊥ where
®R⊥ is the Euclidean projection of ®R onto the subspace orthogonal to
®u. Under hypothesesH0 andH1, this projection has the same distri-
butionN(®0n−1,N .In−1). Variance N is then estimated by ∥ ®R⊥ ∥2/n−1

and used for comparing ®R⊤®u to the threshold τ =
√
N̂Φ−1(1 − Pfp).

This indeed amounts to compare the ratio ®R⊤®u/∥ ®R⊥∥ to a threshold,
say 1/tan(θ ), or equivalently, to compare s( ®R) = ®R⊤ ®u/∥ ®R ∥ to cos(θ ).

Ten years later, Merhav et al. show that this scheme is optimal
from the information theoretical veiwpoint [13]. Here is a brief
summary of results concerning the dual hypercone in the litera-
ture [3, 13]:

Efp = − log sin(θ ), (7)

lim
σ 2
Z→0

Efn =

{
0 if A < cos(θ )
S

(
A2

cos2(θ )

)
otherwise

(8)

where

A :=
√
P/σ 2

X , (9)

S(x) := (x − 1 − log(x))/2,∀x ∈ R>0. (10)

Note that function S(·) has a unique global minimum 0 at x = 1.
One can see that the characteristic Efn = F (Efp) is given by a

parametric equation on θ . Usually, the watermarking power P is
smaller than σ 2

X , so that A < 1. The right endpoint is then

ERfp = −1/2 log(1 −A2). (11)

Unfortunately, this characteristic is only known for σ 2
Z → 0.

This is the reason why the authors of [3] speak about ‘high SNR
regime’. Since it is a zero-order expression forσ 2

Z → 0, this is indeed
the characteristic in the noiseless scenario. Our main contribution
provides new results in the noisy scenario, i.e. when σ 2

Z > 0.

4 REVISITING THE NOISELESS SETUP
Before dealing with the noisy scenario, this section shows some
hints about the noiseless scenario. Let us define the embeddable
region as follows:

E(P) := {®x ∈ Rn |∃®y ∈ W : ∥ ®x − ®y∥2 < nP}. (12)

This is the set of vectors in Rn which can be successfully water-
marked with a power budget P . This region is the filtering of W
by a ball of radius

√
nP , a.k.a. the result of the rolling ball tech-

nique [14]: By rolling a ball of that radius over the boundary ofW,
the center of that ball draws the boundary of region E(P).

The main idea of this section is to note that, under the noiseless
scenario, a false negative happens at the detection side whenever
the embedding fails watermarking a given signal. Therefore,

Pfn = P( ®X < E(P)) = 1 − P( ®X ∈ E(P)). (13)

We are thus looking for a region W s.t. P( ®X ∈ W) = Pfp and
which, once filtered by the rolling ball technique, gives the lowest
Pfn, i.e. the biggest probability P( ®X ∈ E(P)). This is an elegant
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way to theoretically study side-informed watermarking under the
noiseless scenario because there is no need to specify anything
about the embedding mechanism (i.e. function ®w(·)).

4.1 Lower bound
The Gaussian isoperimetric inequality [8] gives the worse possible
region: For any region W ⊂ Rn and ®X ∼ N(®0n ,σ 2

X In ) s.t. P( ®X ∈

W) = Pfp, we have

P( ®X ∈ E(P)) ≥ Φ
(
Φ−1(Pfp) +A

√
n
)
, (14)

Pfn ≤ 1 − Φ
(
Φ−1(Pfp) +A

√
n
)
. (15)

Function Φ(·) is the cumulative density function ofN(0, 1). Accord-
ing to the Gaussian isoperimetric theorem, equality happens if and
only if W is a half-space. Following the definition (2) of W, this
means that s(®x) = ®x⊤®u. The upper bound (15) translates into the
following lower bound for Efn:

Efn ≥

(���� A√2 −

√
Efp

����
+

)2
. (16)

In the same way, ERfp ≥ A2/2.
This shows that a linear score function is indeed the worse choice

in the noiseless setup, independently from the assumptions about
obliviousness. Ironically, linear correlation was quite popular in
the early ages of watermarking.

4.2 Dual hypercone
This section presents the methodology for calculating Efn with
the rolling ball technique over the dual hypercone. Suppose that
®u = (1, 0, . . . , 0)⊤, without loss of generality. The definition of the
embeddable region writes as:

E(P) =

®x ∈ Rn |

√√ n∑
i=2

x2i ≤ |x1 | tan(θ ) +
√
nP cos−1(θ )

 . (17)

Define V1 = |X1 |/
√
n and V2 =

√∑n
i=2 X

2
i /n. These are two χk

random variables whose pdf is given by

f (v) =
2
√
n

2k/2Γ(k/2)

(
v
√
n

σX

)(k−1)
e
−n v2

2σ 2
X (18)

with degree of freedom k1 = 1 and k2 = n − 1 respectively. This
change of variable yields a definition of set E(P) independent of n:

V = {(v1,v2) ∈ R
2
≥0 |v2 ≤ v1 tan(θ ) +

√
P cos−1(θ )}, (19)

so that

Pfn =

∫
V

fV1 (V1)fV2 (v2)dv1dv2 (20)

= Kn

∫
V

д(v1,v2)e
−nh(v1,v2)dv1dv2, (21)

for some functions h(·) and д(·), and a multiplicative constant Kn
defined in the appendix. On one hand, we compute the ‘exponent’
of the multiplicative constant: κ := limn→∞ −n−1 logKn . On the
other hand, the Laplace method states that, as n → ∞, the integral
is dominated by the value e−nh

⋆
where h⋆ is the minimum of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5
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Figure 2: Laplace method for the dual hypercone with side
information in the noiseless scenario. The red area is region
V in the plane (v1,v2). Efn is related the minimum of func-
tion (23) over the domain V. The level sets of function are
depicted in colors. Here, the globalminimum (black +) is not
inV. The local minimum (black o) lies on the boundary.

function h(·) overV (under some mild conditions). Then, the error
exponent is given by:

Efn = min
V

h(v1,v2) + κ . (22)

For the dual hypercone in the noiseless scenario, calculations
lead to:

Efn = min
V

v21
2σ 2

X
+ S

(
v22
σ 2
X

)
. (23)

This function has a unique global minimum 0 at v1 = 0 and v2 =
σX (see (10)). This minimum lies in V if A ≤ cos(θ ). Otherwise,
the solution of (22) lies on the boundary, i.e. v2 = v1 tan(θ ) +
A cos−1(θ ). This yields a univariate function in v1 to be minimised,
whose derivative takes only positive values. This shows that the
minimum happens for the smallest value of v1, i.e. v1 = 0 so that
v2 = A/cos(θ ) (see Fig. 2). This rediscovers the results (8) of [3].

Interpretation: Probability Pfn is dominated by the probability
that ®X lies around the closest point to the origin in E(P). If this
minimum distance

√
nP cos(θ ) is lower than the typical module of

®X , i.e.
√
nσ 2

X , then watermarking fails almost surely as n → ∞ (by
concentration) so that Efn = 0.

5 THE NOISY SETUP
In the previous section, the rolling ball technique frees us to specify
the way host vectors are watermarked. This section is now a little
bit more specific for the hypercone detector. It is well known that
®w(®x) must lie in the 2D subspace spanned by ®u and ®x [11, 13]. We
work on the following basis of this subspace:

®e1 = ®u, ®e2 = (®x − (®x⊤®u)®u)/∥(®x − (®x⊤®u)®u)∥. (24)
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The watermark signal is crafted as:

®w(®x) =
√
n(w̃1®e1 + w̃2®e2). (25)

Any other embedding strategy wastes embedding energy in space
directions not useful for detecting the watermark. For the moment,
(w̃1, w̃2) is not specified as a function of ®x . The distortion constraint
imposes that w̃2

1 + w̃
2
2 ≤ P .

The appendix A shows with the same kind of change of variables
and the use of the Laplace method (as in Sect. 4) that:

Efn = min
F

v21
2σ 2

X
+ S

(
v22
σ 2
X

)
+
v24 +v

2
5

2σ 2
Z
+ S

(
v23
σ 2
Z

)
, (26)

with

F = {(v1 + w̃1 +v5)
2 tan2(θ ) ≤ (v2 + w̃2 +v4)

2 +v23} (27)

It is a priori not easy to solve this problem, but it is much simpler
to see whether Efn = 0. This can only happen for v1 = v4 = v5 = 0,
v2 = σX , and v3 = σZ . Therefore, Efn = 0 if this point lies inside
the feasible set F . This holds if and only if

H (w̃1, w̃2) ≤ σ 2
Z , with (28)

H (w̃1, w̃2) := w̃2
1 tan

2(θ ) − (σX + w̃2)
2. (29)

Interpretation: Asymptotically, the performance of the scheme
is governed by the way the typical realization of a host signal is
watermarked. This typical host is orthogonal to the axis of the
hypercone (v1 = 0) and has norm

√
nσX (because v21 + v

2
2 = σ 2

X ).
The typical realization of the noise has a norm

√
nσZ (because

v23 + v24 + v25 = σ 2
Z ), is orthogonal to the axis (v4 = 0) and is

orthogonal to the host (v5 = 0). Efn is null if this typical noise drives
the watermarked signal outside the hypercone. The intersection of
the hypercone with the plane v3 = σZ gives the hyperbola in R2:

C = {(a,b) ∈ R2 |a2 tan2(θ ) − b2 = σ 2
Z }. (30)

5.1 Provably good embeddings
This subsection assumes that the watermark designer has chosen
a given dimension n. The requirement on the false positive rate
imposes Efp ≈ E := −n−1 log(Pfp), which fixes the semi-angle θ
by (7). What is the value of the robustness R(σ 2

X , P ,E)?
We adopt now the point of view of the embedder. Our goal

is to avoid such a null error exponent Efn by carefully designing
a watermark embedding (w̃1, w̃2). In a 2D plane mapping point
(w̃1, w̃2), the embedding constraint w̃2

1 + w̃
2
2 ≤ P defines a ball of

radius
√
P centered on (0, 0)whereas (28) defines a region delimited

by an hyperbola (equality in (28)) of center (0,−σX ). AsσZ → 0, the
high-SNR regime tends to the noiseless scenario, and the hyperbola
‘shrinks’ towards its asymptotes: σX + w̃2 = ±w̃1 tanθ . Figures 3, 4,
and 5 shows the situation.

When P is small, the entire ball is contained ‘inside’ the hyperbola
(i.e. in between the two branches of the hyperbola as depicted
in Fig. 3): Whatever the embedding (w̃1, w̃2), the false negative
error exponent is zero. If P is big enough, the ball intersects the
hyperbola and there are some embedding strategies (w̃1, w̃2) which
provide non zero error exponent (Fig. 5).

We are interested in the limit case when the ball has kissing
points with the hyperbola (Fig. 4). The hyperbola is symmetric w.r.t.
the axis {w̃1 = 0} and there are two kissing points (one on the

Figure 3: Conditions for Efn ≥ 0 in the plane (w̃1, w̃2): P is too
small and Efn = 0. Setup: σX = 1, σZ = 0.5, and θ = π/3. The
distortion constraint defines the red circle of radius

√
P cen-

tered on the origin (0, 0); Efn ≥ 0 defines the gray area outside
the hyperbola of center C = (0,−σX ) and of asymptotes the
dashed blue lines.

Figure 4: Conditions for Efn ≥ 0 in the plane (w̃1, w̃2): P =
σ 2
X cos2 θ + σ 2

Z tan−2 θ . There are two kissing points given
by (32) in green. Same setup as Fig. 3.
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left hand side, the other on the right hand side of the hyperbola
–Fig. 4). The system of equations provided by (28) (with equality)
and w̃2

1 + w̃
2
2 = P implies that:

− (1 + tan2(θ )).w̃2
2 − 2σX .w̃2 + (P tan2(θ ) − σ 2

X − σ 2
Z ) = 0. (31)

This polynomial of degree two in w̃2 has a unique solution if and
only if P = P0 + σ 2

Z tan−2(θ ) with P0 := σ 2
X cos2(θ ).

Consider the three following cases:

• if P ≤ P0 then the ball and the hyperbola never intersect for
any σZ , including σZ = 0 (as in Fig. 3): Efn = 0 for any σZ .
We rediscover result (8) from the noiseless scenario.

• if P0 < P ≤ P0+σ 2
Z tan−2(θ ), then Efn = 0 for that particular

noise power σ 2
Z , but it might be strictly positive for a less

harmful attack.
• if P0 + σ 2

Z tan−2 θ < P (as in Fig. 5), then Efn > 0 for this
noise power and, in this sense, the watermark is robust to
that attack.

When we have exact equality P = P0 + σ 2
Z tan−2 θ (as in Fig. 4), the

two kissing points are given by (31):

(w̃⋆
1 , w̃

⋆
2 ) :=

(
±

√
P − σ 2

X cos4 θ ,−σX cos2 θ
)
. (32)

A nice interpretation follows: if P = P0 + δP with δP > 0,
then w̃⋆2

1 = P0 sin2 θ + δP and w̃⋆2
2 = P0 cos2 θ . In words, the wa-

termark signal first reaches the asymptotes of the hyperbola in
order to guarantee Efn > 0 in the noiseless scenario. The ‘shortest
path’ is to project (0, 0) on the asymptote by going along direction
(sinθ ,− cosθ ). This consumes the embedding power P0. If it re-
mains some extra embedding power δP > 0, the watermark signal
carries on pushing the host signal only along the direction of the
axis of the hypercone. This is depicted in Fig. 4.

The surprise is that this rediscovers the embedding shown to
be ‘optimum’ in the noiseless scenario [3]. In the noisy scenario,
this embedding can indeed be deemed as optimal as well with the
following meaning: It is not the embedding that maximizes Efn for
a given σ 2

Z . This would certainly make (w̃1, w̃2) a function of σ 2
Z ,

which violated the obliviousness of the embedder. On the contrary,
(32) is independent of σ 2

Z . It is the embedding that makes Efn > 0
over the biggest noise power range [0,R(σ 2

X , P ,E)] with

R(σ 2
X , P ,E) =

���� P

e2E − 1
− σ 2

X e
−2E

����
+

. (33)

Interpretation: Again, we see that R(σ 2
X , P ,E) > 0 if P > P0 =

σ 2
X (1 − e−2E ). When this is the case, the robustness is increasing

with P , but decreasing with σ 2
X . The robustness is also a decreasing

function of E := (− log Pfp)/n: This scheme is extremely robustness
for small E, i.e. very long signals. This complies with the well known
rule of thumb in watermarking: The more spread, the more robust
the watermark signal is. For a fixed Pfp, and long signals, we have:

R(σ 2
X , P ,E) =

nP

2(− log Pfp)
− σ 2

X + o(n
−1). (34)

Figure 5: Conditions for Efn ≥ 0 in the plane (w̃1, w̃2): P is big
enough so that there exist embeddings (w̃1, w̃2) on the red
circle inside the gray area. Same setup as Fig. 3.

5.2 Maximum Efp
The previous section assumes that Efp = E, which fixes the semi-
angle θ of the hypercone by (7), and establishes the expected robust-
ness. This section provides another view: it assumes that σ 2

Z < R

and looks for the biggest Efp for which Efn > 0, i.e. ERfp. For a given
Pfp, this gives a hint on the necessary vector length [15, Eq. (2) and
below], n > (− log(Pfp))/ERfp, to achieve a given robustness level.

This analysis is done for the watermarking strategy (32), when-
ever applicable (i.e. if P > P0). Inequality (28) implies that error
exponent Efn is not null if:

σ 2
X sin4 θ + (P + R − σ 2

X ) sin
2(θ ) − R ≥ 0. (35)

A special case is R = 0 and P ≥ σ 2
X : The above inequality always

holds which means that Efn is not null for any the angle of the
hypercone θ ∈ (0,π/2], and thus for any value of Efp. This was
shown in (8) and [3, 13].

Yet in the noisy scenario, (35) is a polynomial of degree two w.r.t.
ξ := sin2(θ ) which has two roots ξ− and ξ+ s.t. ξ− < 0 < ξ+ < 1
with:

ξ+ :=

√
(P + R − σ 2

X )
2 + 4σ 2

XR − (P + R − σ 2
X )

2σ 2
X

(≥ 0)

= 1 −
(P + R + σ 2

X ) −
√
(P + R + σ 2

X )
2 − 4Pσ 2

X

2σ 2
X

(< 1)

This polynomial takes positive values outside the interval [ξ−, ξ+].
This means that Efn > 0 if ξ+ < sin2 θ ≤ 1. This translates into the
following right endpoint:

ERfp = − log
√
ξ+. (36)
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Interpretation. : Again, as R → 0 (i.e. in the noiseless setup),
this ERfp tends to +∞ if P ≥ σ 2

X , or to −1/2 log(1 − P/σ 2
X ) if P < σ 2

X .
Expression (36) is thus compliant with (11).

As a special case, let R = σ 2
X , i.e. the maximum noise power

equals the power of the host signal. Then, the necessary vector
length to achieve both the requirement under H0 (i.e. Pfp) and the
target under H1 (i.e. R = σ 2

X ) is (asymptotically):

n =
2 log Pfp

log
(√

1 + P 2/4σ 2
X − P/2σ 2

X

) = 4σ 2
X
P

(− log(Pfp) + o(1)). (37)

Interpretation. : This formula is interesting in audio watermark-
ing, where the rule of thumb is that P/σ 2

X = cst , in the order of
−20dB. This makes n in the order of some thousands.

6 COSTA’S BOUNDS
The previous section does not explicit the characteristic function
Efn = F (Efp) but focuses on its feature ERfn. This is sufficient for as-
sessing whether the watermark is robust according to definition 3.1
while operating at Efp = E.

This section now compares the performances of the dual hy-
percone to bounds. It applies the idea of M. Costa in his famous
paper [4]1:

• Non side-informed: The lower bound is given by removing
the dependence on ®x in the definition of the watermark
signal. Now, the watermark signal is a fixed vector: ®w =
√
nP ®u. The received vector is ®R = ®w + ®X + ®Z .

• Non blind: The upper bound comes by giving the detector
an advantage: it knows the value of ®X . Removing this vector
to received vector, we obtain ®R = ®w + ®Z .

In both cases, the detector takes a decision based on ®R = ®w + ®N ,
where ®N is a white Gaussian noise of variance N = σ 2

X +σ
2
Z (lower

bound) or N = σ 2
Z (upper bound).

We must not forget the specificities listed in Sect. 3.1. They make
the detector oblivious to noise power N and watermark power P .
This forbids the use of the Neyman-Pearson test s(®x) = ®x⊤®u because
fixing the threshold fulfilling the requirement on the probability
of false positive Pfp needs the knowledge of N . Again, we propose
to use the scale invariant normalized correlation: s(®x) = ®x⊤®u/∥ ®x ∥.
Note that this time the detection region is a single circular hyper-
cone due to the absolute value operator missing.

C. E. Shannon already tackled the study of the probability Pfn in
this case [15]. The error exponent is given by:

Efn =

{
0, if 0 ≤ θ ≤ θ0
A2

2 − A
2G cosθ − log(G sinθ ) if θ0 < θ ≤ π/2.

(38)

withA :=
√
P/N , tan(θ0) = 1/A, andG = (A cos(θ )+

√
A2 cos2(θ ) + 4)/2.

It follows that:
ERfp =

1
2
log

(
1 +

P

N

)
, (39)

i.e. the capacity of a Gaussian channel. This is not a surprise. The
semi-angle θ0 defines the thinest cone for which the noise pushes
the transmitted signal ®w outside with an exponentially vanishing
1M. Costa used this idea for bounding the capacity of a side-informed communication
channel. He never applied it to zero-bit watermarking, of course.

10-3 10-2 10-1
10-3

10-2

10-1

100

101

102

Hypercone
Non side-informed
Non blind

Figure 6: Robustness R(σ 2
X , P ,E) as a function of E for σ 2

X = 1
and P = 0.1, i.e. function (33) and bounds (40)

.

probability Pfn. This probability represents the decoding error prob-
ability in a communication scenario. As for Pfp, it is the probability
that a random vector falls into the hypercone under isotropic dis-
tribution. It equals the ratio of the solid angle of the hypercone and
the one of the full hypersphere. ERfp can be though as representing,
in logarithmic scale and per dimension, the number of hypercones
with half angle θ0 needed to fill the full hypersphere. In a commu-
nication scenario, this is the maximum number of messages (in
logarithmic scale and per dimension) which can be reliably trans-
mitted over this channel (i.e. with exponentially vanishing error
probability).

The watermark is deemed robust if ERfp > E for N = σ 2
X + σ

2
Z

(lower bound) or N = σ 2
Z (upper bound). The robustness, i.e. the

value of σ 2
Z making ERfp = E, is given by:

R(σ 2
X , P ,E) =

{��� P
e2E−1 − σ 2

X

���
+

non side-informed
P

e2E−1 non blind
(40)

Again by applying Shannon’s argument (see Sect. 3.2), the nec-
essary vector length for targeting a robustness equalling σ 2

X is:

n =


2(− log(Pfp))

log
(
1+P/2σ 2

X

) = 4σ 2
X
P (− log(Pfp) + o(1)) non side-informed

2(− log(Pfp))

log
(
1+P/σ 2

X

) = 2σ 2
X
P (− log(Pfp) + o(1)) non blind

(41)
These expressions together with Figures 6 and 7 shows that the

dual hypercone scheme has performances very close to the lower
bound. When analysed under criteria and setups making sense
in digital watermarking, this scheme is deceiving. Note that the
authors of [3] claimed its optimality only in the noiseless scenario
and under a so-called limited resources constraint.
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Figure 7: Necessary vector length n as a function of P/σ 2
X ∈

[0.01, 0.2], to achieve Pfp = 10−6 and R(σ 2
X , P ,E) = σ 2

X , i.e. func-
tion (37) and bounds (41).

7 WATERMARKING REAL VECTORS
The above sections do not reveal how to watermark a host signal.
They show that the error exponent Efn is governed by the way
the typical host vector is watermarked. Asymptotically, this typ-
ical host vector is such that ®x⊤®u = 0 and ∥ ®x ∥2 = nσ 2

X because
(v1,v2) = (0,σX ) in Sect. 5.1. In this case, the optimal watermark
signal is given by (32). In practice, as n is not infinite, host vectors
are different. How should they be watermarked?

The idea is to compute an error exponent Efn(®x) dedicated for
that host vector. We no longer rely on a statistical model of the
host (i.e. white Gaussian noise). It amounts to replace random
variables (V1,V2) in appendix A.1 by their occurences (v1,v2) =
(®x⊤®u,

√
∥ ®x ∥2 − ®x⊤®u)/

√
n. This modifies (42) to:

Efn(®x) = min
F(®x )

v24 +v
2
5

2σ 2
Z
+ S

(
v23
σ 2
Z

)
, (42)

while F (®x) has the same definition (27). Cancelling Efn(®x) amounts
to define a robustness level, whose maximisation defines the water-
marking signal. This error exponent is null if and only if

R(®x , P ,E) := max
w̃2

1+w̃
2=P

(v1 + w̃1)
2 tan2(θ ) − (v2 + w̃2)

2 ≤ σ 2
Z . (43)

Note that this robustness depends on E through the semi-angle
θ (7). Having a priori v1 , 0 prevents finding a close form. The
optimal embedding has to be found numerically with a line search
prototyping (w̃1, w̃2) =

√
P(cos β , sin β) for β ∈ [0,−π/2]. Figure 8

shows that the difference with (32) is small. This means that (32) is
a good approximation of the optimal embedding.

Note that this derivation is not rigorous: on one hand the host
is not an infinite vector, one the other hand we compute error ex-
ponent, i.e. asymptotical quantities. Yet, it justifies an embedding
proposed by M. Miller, I. Cox and J. Bloom nineteen years ago [11,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Figure 8: The watermark vector (w1,w2) is shown as a vector
starting at point (v1,v2). They all have been scaled down to
make the figure more visible. There is little difference in be-
tween the numerical solution of (43) in black and the subop-
timal embedding (32) in magenta. The green line represents
the boundary of the hypercone. The red line is the boundary
of E(P) (the rolling ball smoothing of the detection region).
The color lines correspond to some level sets of R(®x , P ,E).

Eq. 4], well before that the concept of error exponent was intro-
duced in digital watermarking. This paper theoretically confirms
the remarkable intuition of this research team.

8 CONCLUSION
This paper completes the study of error exponents for the dual
hypercone scheme. This scheme is important as it is one of the
few schemes meeting the requirements on obliviousness at the
embedding and detection sides. The paper extends the work of
N. Merhav et al. to any SNR regime [3, 13]. It takes into account the
specificities of digital watermarking. It introduces a new definition
of robustness and the concept of necessary vector length to achieve
false positive and robustness requirements.
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In settings meaningful in digital watermarking, the asymptotical
robustness is indeed not much bigger than the lower bound, i.e.
the basic spread spectrum. This is in strong contrast with multi-
bit watermarking, where M. Costa has shown that side-informed
communication can perform as good as the upper bound. This is
indeed due to the nature of zero-bit watermarking combined with
the constraint of obliviousness. The open issue is whether there
exist other detection regions granting obliviousness and closer to
the upper bound. For instance, one can think of a union of thiner
hypercones. Yet, their optimal number might be difficult to find.

A LAPLACE METHOD IN THE NOISY
SCENARIO

A.1 Feasible set
Consider the basis (®e1, . . . , ®en ) of Rn where the first two vectors
are defined in (24). We introduce the following random variables:

V1 = ( ®X⊤®e1)/
√
n (44)

V2 = ( ®X⊤®e2)/
√
n (45)

V3 =

√√√ n∑
j=3

( ®Z⊤®ej )2/
√
n (46)

V4 = ®Z⊤®e2/
√
n (47)

V5 = ®Z⊤®e1/
√
n (48)

V1,V4, and V5 are Gaussian distributed while V3 is a χn−2 random
variable scaled by σZ /

√
n. V2 is a χn−1 r.v. scaled by σX (by the

definition of ®e2, ®X⊤®e2 is always positive). With this formulation, a
false negative happens if:

( ®R⊤®u)2

∥ ®R∥2
=

(V1 + w̃1 +V5)2

(V1 + w̃1 +V5)2 + (V2 + w̃2 +V4)2 +V 2
3

≤ cos2(θ ).

(49)
This means that the random vector (V1, . . . ,V5) lies in the domain
F ⊂ R × R2

≥0 × R
2:

F = {(v1 + w̃1 +v5)
2 tan2(θ ) ≤ (v2 + w̃2 +v4)

2 +v23} (50)

A.2 Laplace potential functions
The random variables above defined are independent. The product
of the their p.d.f. appears in the integral defining Pfn. When rewrit-
ing this integral in the form (21), Kn is thus the product of their
multiplicative constants, whereas the potential function h(·) is the
sum of their corresponding potential functions. This allows to deal
case by case.

A.2.1 Gaussian distribution. The p.d.f. ofV1 for instance is fV1 (v) =
√
ne−v

2n/2σ 2
X /

√
2πσX . This gives Kn =

√
n/2πσX whose exponent

is κ = 0, and the potential function h(v) = −v2/2σ 2
X .

A.2.2 Chi distribution with fixed degree. The p.d.f. is given in (18).
Its multiplicative constant is Kn = 2(n/2)k/2/Γ(k/2)σ whose expo-
nent is κ = 0. The potential function is h(v) = −v2/2σ 2

X .

A.2.3 Chi distribution with increasing degree. The p.d.f. of V3 for
instance is (18) wherek is a function ofn:k = n−2. Its multiplicative
constant is Kn = 2(n/2)n−2/2/Γ(n−2/2)σZ , whose exposant is κ =

−1/2. The potential function is h(v) = (v2/σ 2
Z − log(v2/σ 2

Z ))/2. In
total, we get S(v2/σ 2

Z ).
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